

Keysight Infiniium Oscilloscopes

Programmer's
Guide

Notices
© Keysight Technologies, Inc. 2007-2014

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Keysight
Technologies, Inc. as governed by United
States and international copyright laws.

Manual Part Number
Version 05.20.0000

Ed ition
September 30, 2014

Available in electronic format only

Published by:
Keysight Technologies, Inc.
1900 Garden of the Gods Road
Colorado Springs, CO 80907 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is subject
to being changed, without notice, in
future ed itions. Further, to the maxi-
mum extent permitted by applicable
law, Keysight d isclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, includ ing but not
l imited to the implied warranties of
merchantabil ity and fitness for a par-
ticular purpose. Keysight shall not be
l iable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or perfor-
mance of this document or of any infor-
mation contained herein. Should
Keysight and the user have a separate
written agreement with warranty terms
covering the material in this document
that confl ict with these terms, the war-
ranty terms in the separate agreement
shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a
U.S. Government prime contract or subcon-
tract, Software is delivered and licensed as
“Commercial computer software” as defined
in DFAR 252.227-7014 (June 1995), or as a
“commercial item” as defined in FAR

2.101(a) or as “Restricted computer soft-
ware” as defined in FAR 52.227-19 (June
1987) or any equivalent agency regulation or
contract clause. Use, duplication or disclo-
sure of Software is subject to Keysight Tech-
nologies’ standard commercial license
terms, and non-DOD Departments and
Agencies of the U.S. Government will receive
no greater than Restricted Rights as defined
in FAR 52.227-19(c)(1-2) (June 1987). U.S.
Government users will receive no greater
than Limited Rights as defined in FAR
52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a CAU-
TION notice until the indicated con-
ditions are fully understood and
met.

WARNING

A WARNING notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the l ike
that, if not correctly performed or
adhered to, could resul t in personal
injury or death. Do not proceed
beyond a WARNING notice until the
ind icated cond itions are fully
understood and met.

Keysight Infiniium Oscilloscopes Programmer's Guide 3

In This Book
This book is your guide to programming Infiniium oscilloscopes that have the 5.00
or greater, next-generation user interface software. Supported models include:

• 9000 Series and 9000H Series oscilloscopes.

• S-Series oscilloscopes.

• 90000A Series oscilloscopes.

• 90000 X-Series oscilloscopes.

• 90000 Q-Series oscilloscopes.

• Z-Series oscilloscopes.

• N8900A Infiniium Offline oscilloscope analysis software.

In this book, Chapter 1, “What's New,” starting on page 35, describes
programming command changes in the latest version of oscilloscope software.

Chapter 2, “Setting Up,” starting on page 57, describes the steps you must take
before you can control the oscilloscope with remote programs.

The next several chapters give you an introduction to programming the
oscilloscopes, along with necessary conceptual information. These chapters
describe basic program communications, interface, syntax, data types, and status
reporting:

• Chapter 3, “Introduction to Programming,” starting on page 65

• Chapter 4, “LAN, USB, and GPIB Interfaces,” starting on page 101

• Chapter 5, “Message Communication and System Functions,” starting on page
113

• Chapter 6, “Status Reporting,” starting on page 117

• Chapter 7, “Remote Acquisition Synchronization,” starting on page 141

• Chapter 8, “Programming Conventions,” starting on page 151

The next chapters describe the commands used to program the oscilloscopes.
Each chapter describes the set of commands that belong to an individual
subsystem, and explains the function of each command.

• Chapter 9, “Acquire Commands,” starting on page 161

• Chapter 10, “Bus Commands,” starting on page 191

• Chapter 11, “Calibration Commands,” starting on page 201

• Chapter 12, “Channel Commands,” starting on page 209

• Chapter 13, “Common Commands,” starting on page 269

• Chapter 14, “Digital Commands,” starting on page 293

• Chapter 15, “Disk Commands,” starting on page 299

• Chapter 16, “Display Commands,” starting on page 317

• Chapter 17, “Function Commands,” starting on page 347

• Chapter 18, “Hardcopy Commands,” starting on page 397

4 Keysight Infiniium Oscilloscopes Programmer's Guide

• Chapter 19, “Histogram Commands,” starting on page 403

• Chapter 20, “InfiniiScan (ISCan) Commands,” starting on page 417

• Chapter 21, “Limit Test Commands,” starting on page 439

• Chapter 22, “Lister Commands,” starting on page 447

• Chapter 23, “Marker Commands,” starting on page 451

• Chapter 24, “Mask Test Commands,” starting on page 469

• Chapter 25, “Measure Commands,” starting on page 527

• Chapter 26, “Pod Commands,” starting on page 799

• Chapter 27, “Root Level Commands,” starting on page 805

• Chapter 28, “Serial Bus Commands,” starting on page 843

• Chapter 29, “Self-Test Commands,” starting on page 917

• Chapter 30, “Serial Data Equalization Commands,” starting on page 921

• Chapter 31, “System Commands,” starting on page 965

• Chapter 32, “Time Base Commands,” starting on page 979

• Chapter 33, “Trigger Commands,” starting on page 993

• Chapter 34, “Waveform Commands,” starting on page 1191

• Chapter 35, “Waveform Memory Commands,” starting on page 1253

Chapter 36, “Obsolete and Discontinued Commands,” starting on page 1263,
describes obsolete (deprecated) commands that still work but have been replaced
by newer commands, and lists discontinued commands that are no longer
supported.

Chapter 37, “Error Messages,” starting on page 1275, describes error messages.

Chapter 38, “Sample Programs,” starting on page 1287, shows example programs
in various languages using the VISA COM, VISA, and SICL libraries.

Finally, Chapter 39, “Reference,” starting on page 1415, contains file format
descriptions.

See Also • For more information on using the SICL, VISA, and VISA COM libraries in
general, see the documentation that comes with the Keysight IO Libraries
Suite.

• For information on controller PC interface configuration, see the
documentation for the interface card used (for example, the Keysight 82350A
GPIB interface).

• For information on oscilloscope front-panel operation, see the User's Guide.

• For detailed connectivity information, refer to the Keysight Technologies
USB/LAN/GPIB Connectivity Guide. For a printable electronic copy of the
Connectivity Guide, direct your Web browser to "www.keysight.com" and
search for "Connectivity Guide".

• For the latest versions of this and other manuals, see:
"http://www.keysight.com/find/Infiniium-manuals"

http://www.keysight.com/
http://www.keysight.com/find/Infiniium-manuals

Keysight Infiniium Oscilloscopes Programmer's Guide 5

Contents
In This Book / 3

1 What's New

What's New in Version 5.20 / 36

What's New in Version 5.10 / 38

What's New in Version 5.00 / 39

What's New in Version 4.60 / 43

What's New in Version 4.50 / 44

What's New in Version 4.30 / 45

What's New in Version 4.20 / 46

What's New in Version 4.10 / 47

What's New in Version 4.00 / 48

What's New in Version 3.50 / 49

What's New in Version 3.20 / 51

What's New in Version 3.11 / 52

What's New in Version 3.10 / 53

2 Setting Up

Step 1. Install Keysight IO Libraries Suite software / 58

Step 2. Connect and set up the oscilloscope / 59
Using the USB (Device) Interface / 59
Using the LAN Interface / 59

Step 3. Verify the oscilloscope connection / 60

3 Introduction to Programming

Communicating with the Oscilloscope / 67

Instructions / 68

Instruction Header / 69

White Space (Separator) / 70

6 Keysight Infiniium Oscilloscopes Programmer's Guide

Braces / 71

Ellipsis / 72

Square Brackets / 73

Command and Query Sources / 74

Program Data / 75

Header Types / 76
Simple Command Header / 76
Compound Command Header / 76
Combining Commands in the Same Subsystem / 77
Common Command Header / 77
Duplicate Mnemonics / 77

Query Headers / 78

Program Header Options / 79

Character Program Data / 80

Numeric Program Data / 81

Embedded Strings / 82

Program Message Terminator / 83

Common Commands within a Subsystem / 84

Selecting Multiple Subsystems / 85

Programming Getting Started / 86

Referencing the IO Library / 87

Opening the Oscilloscope Connection via the IO Library / 88

Initializing the Interface and the Oscilloscope / 89
Autoscale / 89
Setting Up the Oscilloscope / 90

Example Program / 91

Using the DIGITIZE Command / 92

Receiving Information from the Oscilloscope / 94

String Variable Example / 95

Numeric Variable Example / 96

Definite-Length Block Response Data / 97

Multiple Queries / 98

Oscilloscope Status / 99

Keysight Infiniium Oscilloscopes Programmer's Guide 7

4 LAN, USB, and GPIB Interfaces

LAN Interface Connector / 102

GPIB Interface Connector / 103

Default Startup Conditions / 104

Interface Capabilities / 105

GPIB Command and Data Concepts / 106

Communicating Over the GPIB Interface / 107
Interface Select Code / 107
Oscilloscope Address / 107

Communicating Over the LAN Interface / 108

Communicating via Telnet and Sockets / 109
Telnet / 109
Sockets / 109

Bus Commands / 111
Device Clear / 111
Group Execute Trigger / 111
Interface Clear / 111

5 Message Communication and System Functions

Protocols / 114
Functional Elements / 114
Protocol Overview / 114
Protocol Operation / 115
Protocol Exceptions / 115
Suffix Multiplier / 115
Suffix Unit / 116

6 Status Reporting

Status Reporting Data Structures / 120

Status Byte Register / 122

Service Request Enable Register / 124

Message Event Register / 125

Trigger Event Register / 126

Standard Event Status Register / 127

Standard Event Status Enable Register / 128

8 Keysight Infiniium Oscilloscopes Programmer's Guide

Operation Status Register / 129

Operation Status Enable Register / 130

Mask Test Event Register / 131

Mask Test Event Enable Register / 132

Acquisition Done Event Register / 133

Process Done Event Register / 134

Trigger Armed Event Register / 135

Auto Trigger Event Register / 136

Error Queue / 137

Output Queue / 138

Message Queue / 139

Clearing Registers and Queues / 140

7 Remote Acquisition Synchronization

Programming Flow / 142

Setting Up the Oscilloscope / 143

Acquiring a Waveform / 144

Retrieving Results / 145

Acquisition Synchronization / 146
Blocking Synchronization / 146
Polling Synchronization With Timeout / 146

Single Shot Device Under Test (DUT) / 148

Averaging Acquisition Synchronization / 149

8 Programming Conventions

Truncation Rule / 152

The Command Tree / 153
Command Types / 153
Tree Traversal Rules / 153
Tree Traversal Examples / 154

Infinity Representation / 156

Sequential and Overlapped Commands / 157

Response Generation / 158

EOI / 159

Keysight Infiniium Oscilloscopes Programmer's Guide 9

9 Acquire Commands

:ACQuire:AVERage / 162
:ACQuire[:AVERage]:COUNt / 163
:ACQuire:BANDwidth / 164
(Enhanced bandwidth or noise reduction option only) / 165
:ACQuire:BANDwidth:FRAMe / 167
:ACQuire:COMPlete / 168
:ACQuire:COMPlete:STATe / 170
:ACQuire:HRESolution / 171
:ACQuire:INTerpolate / 172
:ACQuire:MODE / 173
:ACQuire:POINts[:ANALog] / 175
:ACQuire:POINts:AUTO / 177
:ACQuire:POINts:DIGital? / 178
:ACQuire:REDGe / 179
(90000 Q-Series, Z-Series) / 180
:ACQuire:RESPonse / 181
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 182
:ACQuire:SEGMented:COUNt / 183
:ACQuire:SEGMented:INDex / 184
:ACQuire:SEGMented:TTAGs / 185
:ACQuire:SRATe[:ANALog] / 186
:ACQuire:SRATe[:ANALog]:AUTO / 187
:ACQuire:SRATe:DIGital / 188
:ACQuire:SRATe:DIGital:AUTO / 189

10 Bus Commands

:BUS:B<N>:TYPE / 192
:BUS<N>:BIT<M> / 193
:BUS<N>:BITS / 194
:BUS<N>:CLEar / 195
:BUS<N>:CLOCk / 196
:BUS<N>:CLOCk:SLOPe / 197
:BUS<N>:DISPlay / 198
:BUS<N>:LABel / 199
:BUS<N>:READout / 200

11 Calibration Commands

:CALibrate:DATE? / 203
:CALibrate:OUTPut / 204
:CALibrate:SKEW / 205

10 Keysight Infiniium Oscilloscopes Programmer's Guide

:CALibrate:STATus? / 206
:CALibrate:TEMP? / 207

12 Channel Commands

:CHANnel<N>:BWLimit / 211
(9000 Series, 9000H Series, S-Series) / 212
:CHANnel<N>:COMMonmode / 213
:CHANnel<N>:DIFFerential / 214
:CHANnel<N>:DIFFerential:SKEW / 215
:CHANnel<N>:DISPlay / 216
:CHANnel<N>:DISPlay:AUTO / 217
:CHANnel<N>:DISPlay:OFFSet / 218
:CHANnel<N>:DISPlay:RANGe / 219
:CHANnel<N>:DISPlay:SCALe / 220
:CHANnel<N>:INPut / 221
:CHANnel<N>:ISIM:APPLy / 222
:CHANnel<N>:ISIM:BANDwidth / 223
:CHANnel<N>:ISIM:BWLimit / 224
:CHANnel<N>:ISIM:CONVolve / 225
:CHANnel<N>:ISIM:CORRection / 226
:CHANnel<N>:ISIM:DEConvolve / 228
:CHANnel<N>:ISIM:DELay / 229
:CHANnel<N>:ISIM:NORMalize / 230
:CHANnel<N>:ISIM:PEXTraction / 231
:CHANnel<N>:ISIM:SPAN / 233
:CHANnel<N>:ISIM:STATe / 234
:CHANnel<N>:LABel / 235
:CHANnel<N>:OFFSet / 236
:CHANnel<N>:PROBe / 237
:CHANnel<N>:PROBe:ACCAL / 238
:CHANnel<N>:PROBe:ATTenuation / 239
:CHANnel<N>:PROBe:AUTozero / 240
:CHANnel<N>:PROBe:COUPling / 241
:CHANnel<N>:PROBe:EADapter / 242
:CHANnel<N>:PROBe:ECOupling / 244
:CHANnel<N>:PROBe:EXTernal / 245
:CHANnel<N>:PROBe:EXTernal:GAIN / 246
:CHANnel<N>:PROBe:EXTernal:OFFSet / 247
:CHANnel<N>:PROBe:EXTernal:UNITs / 248
:CHANnel<N>:PROBe:GAIN / 249
:CHANnel<N>:PROBe:HEAD:ADD / 250

Keysight Infiniium Oscilloscopes Programmer's Guide 11

:CHANnel<N>:PROBe:HEAD:DELete ALL / 251
:CHANnel<N>:PROBe:HEAD:SELect / 252
:CHANnel<N>:PROBe:HEAD:VTERm / 254
:CHANnel<N>:PROBe:ID? / 255
:CHANnel<N>:PROBe:MODE / 256
:CHANnel<N>:PROBe:PRECprobe:BANDwidth / 257
:CHANnel<N>:PROBe:PRECprobe:CALibration / 258
:CHANnel<N>:PROBe:PRECprobe:DELay / 259
:CHANnel<N>:PROBe:PRECprobe:MODE / 260
:CHANnel<N>:PROBe:PRECprobe:ZSRC / 261
:CHANnel<N>:PROBe:SKEW / 263
:CHANnel<N>:PROBe:STYPe / 264
:CHANnel<N>:RANGe / 265
:CHANnel<N>:SCALe / 266
:CHANnel<N>:UNITs / 267

13 Common Commands

*CLS / 271
*ESE / 272
*ESR? / 274
*IDN? / 275
*LRN? / 276
*OPC / 278
*OPT? / 279
*PSC / 282
*RCL / 283
*RST / 284
*SAV / 285
*SRE / 286
*STB? / 288
*TRG / 290
*TST? / 291
*WAI / 292

14 Digital Commands

:DIGital<N>:DISPlay / 294
:DIGital<N>:LABel / 295
:DIGital<N>:SIZE / 296
:DIGital<N>:THReshold / 297

12 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:CDIRectory / 300
:DISK:COPY / 301
:DISK:DELete / 302
:DISK:DIRectory? / 303
:DISK:LOAD / 304
:DISK:MDIRectory / 305
:DISK:PWD? / 306
:DISK:SAVE:COMPosite / 307
:DISK:SAVE:IMAGe / 308
:DISK:SAVE:JITTer / 309
:DISK:SAVE:LISTing / 310
:DISK:SAVE:MEASurements / 311
:DISK:SAVE:PRECprobe / 312
:DISK:SAVE:SETup / 313
:DISK:SAVE:WAVeform / 314
:DISK:SEGMented / 316

16 Display Commands

:DISPlay:BOOKmark<N>:DELete / 318
:DISPlay:BOOKmark<N>:SET / 319
:DISPlay:BOOKmark<N>:VERTical / 321
:DISPlay:BOOKmark<N>:XPOSition / 322
:DISPlay:BOOKmark<N>:YPOSition / 323
:DISPlay:CGRade / 324
:DISPlay:CGRade:LEVels? / 326
:DISPlay:CGRade:SCHeme / 328
:DISPlay:CONNect / 330
:DISPlay:DATA? / 331
:DISPlay:GRATicule / 332
:DISPlay:GRATicule:AREA<N>:STATe / 333
:DISPlay:GRATicule:INTensity / 334
:DISPlay:GRATicule:NUMBer / 335
:DISPlay:GRATicule:SETGrat / 336
:DISPlay:LABel / 337
:DISPlay:LAYout / 338
:DISPlay:MAIN / 339
:DISPlay:PERSistence / 340
:DISPlay:PROPortion / 341
:DISPlay:SCOLor / 342
:DISPlay:STATus:COL / 344

Keysight Infiniium Oscilloscopes Programmer's Guide 13

:DISPlay:STATus:ROW / 345
:DISPlay:TAB / 346

17 Function Commands

:FUNCtion<F>? / 350
:FUNCtion<F>:ABSolute / 351
:FUNCtion<F>:ADD / 352
:FUNCtion<F>:ADEMod / 353
:FUNCtion<F>:AVERage / 354
:FUNCtion<F>:COMMonmode / 355
:FUNCtion<F>:DELay / 356
:FUNCtion<F>:DIFF / 357
:FUNCtion<F>:DISPlay / 358
:FUNCtion<F>:DIVide / 359
:FUNCtion<F>:FFT:FREQuency / 360
:FUNCtion<F>:FFT:REFerence / 361
:FUNCtion<F>:FFT:RESolution? / 362
:FUNCtion<F>:FFT:TDELay / 363
:FUNCtion<F>:FFT:WINDow / 364
:FUNCtion<F>:FFTMagnitude / 366
:FUNCtion<F>:FFTPhase / 367
:FUNCtion<F>:GATing / 368
:FUNCtion<F>:HIGHpass / 369
:FUNCtion<F>:HORizontal / 370
:FUNCtion<F>:HORizontal:POSition / 371
:FUNCtion<F>:HORizontal:RANGe / 372
:FUNCtion<F>:INTegrate / 373
:FUNCtion<F>:INVert / 374
:FUNCtion<F>:LOWPass / 375
:FUNCtion<F>:MAGNify / 376
:FUNCtion<F>:MATLab / 377
:FUNCtion<F>:MATLab:CONTrol1 / 378
:FUNCtion<F>:MATLab:CONTrol2 / 379
:FUNCtion<F>:MATLab:CONTrol3 / 380
:FUNCtion<F>:MATLab:OPERator / 381
:FUNCtion<F>:MAXimum / 382
:FUNCtion<F>:MHIStogram / 383
:FUNCtion<F>:MINimum / 384
:FUNCtion<F>:MTRend / 385
:FUNCtion<F>:MULTiply / 386
:FUNCtion<F>:OFFSet / 387

14 Keysight Infiniium Oscilloscopes Programmer's Guide

:FUNCtion<F>:RANGe / 388
:FUNCtion<F>:SMOoth / 389
:FUNCtion<F>:SQRT / 390
:FUNCtion<F>:SQUare / 391
:FUNCtion<F>:SUBTract / 392
:FUNCtion<F>:VERSus / 393
:FUNCtion<F>:VERTical / 394
:FUNCtion<F>:VERTical:OFFSet / 395
:FUNCtion<F>:VERTical:RANGe / 396

18 Hardcopy Commands

:HARDcopy:AREA / 398
:HARDcopy:DPRinter / 399
:HARDcopy:FACTors / 400
:HARDcopy:IMAGe / 401
:HARDcopy:PRINters? / 402

19 Histogram Commands

:HISTogram:AXIS / 405
:HISTogram:HORizontal:BINS / 406
:HISTogram:MEASurement:BINS / 407
:HISTogram:MODE / 408
:HISTogram:SCALe:SIZE / 409
:HISTogram:VERTical:BINS / 410
:HISTogram:WINDow:DEFault / 411
:HISTogram:WINDow:SOURce / 412
:HISTogram:WINDow:LLIMit / 413
:HISTogram:WINDow:RLIMit / 414
:HISTogram:WINDow:BLIMit / 415
:HISTogram:WINDow:TLIMit / 416

20 InfiniiScan (ISCan) Commands

:ISCan:DELay / 418
:ISCan:MEASurement:FAIL / 419
:ISCan:MEASurement:LLIMit / 420
:ISCan:MEASurement / 421
:ISCan:MEASurement:ULIMit / 422
:ISCan:MODE / 423
:ISCan:NONMonotonic:EDGE / 424
:ISCan:NONMonotonic:HYSTeresis / 425
:ISCan:NONMonotonic:SOURce / 426

Keysight Infiniium Oscilloscopes Programmer's Guide 15

:ISCan:RUNT:HYSTeresis / 427
:ISCan:RUNT:LLEVel / 428
:ISCan:RUNT:SOURce / 429
:ISCan:RUNT:ULEVel / 430
:ISCan:SERial:PATTern / 431
:ISCan:SERial:SOURce / 432
:ISCan:ZONE:HIDE / 433
:ISCan:ZONE:SOURce / 434
:ISCan:ZONE<N>:MODE / 435
:ISCan:ZONE<N>:PLACement / 436
:ISCan:ZONE<N>:STATe / 437

21 Limit Test Commands

:LTESt:FAIL / 440
:LTESt:LLIMit / 441
:LTESt:MEASurement / 442
:LTESt:RESults? / 443
:LTESt:TEST / 444
:LTESt:ULIMit / 445

22 Lister Commands

:LISTer:DATA / 448
:LISTer:DISPlay / 449

23 Marker Commands

:MARKer:CURSor? / 452
:MARKer:MEASurement:MEASurement / 453
:MARKer:MODE / 454
:MARKer:TSTArt / 455
:MARKer:TSTOp / 456
:MARKer:VSTArt / 457
:MARKer:VSTOp / 458
:MARKer:X1Position / 459
:MARKer:X2Position / 460
:MARKer:X1Y1source / 461
:MARKer:X2Y2source / 463
:MARKer:XDELta? / 465
:MARKer:Y1Position / 466
:MARKer:Y2Position / 467
:MARKer:YDELta? / 468

16 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:ALIGn / 471
:MTESt:AlignFIT / 472
:MTESt:AMASk:CREate / 474
:MTESt:AMASk:SOURce / 475
:MTESt:AMASk:SAVE / 477
:MTESt:AMASk:UNITs / 478
:MTESt:AMASk:XDELta / 479
:MTESt:AMASk:YDELta / 480
:MTESt:AUTO / 481
:MTESt:AVERage / 482
:MTESt:AVERage:COUNt / 483
:MTESt:COUNt:FAILures? / 484
:MTESt:COUNt:FUI? / 485
:MTESt:COUNt:FWAVeforms? / 486
:MTESt:COUNt:UI? / 487
:MTESt:COUNt:WAVeforms? / 488
:MTESt:DELete / 489
:MTESt:ENABle / 490
:MTESt:FOLDing / 491
(Clock Recovery software only) / 492
:MTESt:FOLDing:BITS / 494
:MTESt:FOLDing:COUNt / 496
:MTESt:FOLDing:FAST / 497
:MTESt:FOLDing:POSition / 499
:MTESt:FOLDing:SCALe / 501
:MTESt:FOLDing:TPOSition / 503
:MTESt:FOLDing:TSCale / 505
:MTESt:HAMPlitude / 507
:MTESt:IMPedance / 508
:MTESt:INVert / 509
:MTESt:LAMPlitude / 510
:MTESt:LOAD / 511
:MTESt:NREGions? / 512
:MTESt:PROBe:IMPedance? / 513
:MTESt:RUMode / 514
:MTESt:RUMode:SOFailure / 515
:MTESt:SCALe:BIND / 516
:MTESt:SCALe:X1 / 517
:MTESt:SCALe:XDELta / 518
:MTESt:SCALe:Y1 / 519

Keysight Infiniium Oscilloscopes Programmer's Guide 17

:MTESt:SCALe:Y2 / 520
:MTESt:SOURce / 521
:MTESt:STARt / 522
:MTESt:STOP / 523
:MTESt:STIMe / 524
:MTESt:TITLe? / 525
:MTESt:TRIGger:SOURce / 526

25 Measure Commands

:MEASure:AREA / 536
:MEASure:BINTerval / 537
:MEASure:BPERiod / 538
:MEASure:BWIDth / 539
:MEASure:CDRRATE / 540
:MEASure:CGRade:CROSsing / 541
:MEASure:CGRade:DCDistortion / 543
:MEASure:CGRade:EHEight / 545
:MEASure:CGRade:EWIDth / 547
:MEASure:CGRade:EWINdow / 549
:MEASure:CGRade:JITTer / 551
:MEASure:CGRade:QFACtor / 553
:MEASure:CHARge / 555
(9000 Series, 9000H Series, S-Series) / 556
:MEASure:CLEar / 557
:MEASure:CLOCk / 558
:MEASure:CLOCk:METHod / 559
:MEASure:CLOCk:METHod:ALIGn / 561
:MEASure:CLOCk:METHod:DEEMphasis / 563
:MEASure:CLOCk:METHod:EDGE / 564
:MEASure:CLOCk:METHod:JTF / 566
:MEASure:CLOCk:METHod:OJTF / 568
:MEASure:CLOCk:METHod:PLLTrack / 570
:MEASure:CLOCk:METHod:SOURce / 571
:MEASure:CLOCk:VERTical / 572
:MEASure:CLOCk:VERTical:OFFSet / 573
:MEASure:CLOCk:VERTical:RANGe / 574
:MEASure:CROSsing / 575
:MEASure:CTCDutycycle / 576
:MEASure:CTCJitter / 578
:MEASure:CTCNwidth / 580
:MEASure:CTCPwidth / 582

18 Keysight Infiniium Oscilloscopes Programmer's Guide

:MEASure:DATarate / 584
:MEASure:DEEMphasis / 586
:MEASure:DELTatime / 588
:MEASure:DELTatime:DEFine / 590
:MEASure:DUTYcycle / 592
:MEASure:EDGE / 594
:MEASure:ETOedge / 596
:MEASure:FALLtime / 597
:MEASure:FFT:DFRequency / 599
:MEASure:FFT:DMAGnitude / 601
:MEASure:FFT:FREQuency / 603
:MEASure:FFT:MAGNitude / 604
:MEASure:FFT:PEAK1 / 605
:MEASure:FFT:PEAK2 / 606
:MEASure:FFT:THReshold / 607
:MEASure:FREQuency / 608
:MEASure:HISTogram:HITS / 610
:MEASure:HISTogram:M1S / 611
:MEASure:HISTogram:M2S / 612
:MEASure:HISTogram:M3S / 613
:MEASure:HISTogram:MAX / 614
:MEASure:HISTogram:MEAN / 615
:MEASure:HISTogram:MEDian / 616
:MEASure:HISTogram:MIN / 617
:MEASure:HISTogram:MODE / 618
:MEASure:HISTogram:PEAK / 619
:MEASure:HISTogram:PP / 620
:MEASure:HISTogram:RESolution / 621
:MEASure:HISTogram:STDDev / 622
:MEASure:HOLDtime / 623
:MEASure:JITTer:HISTogram / 625
:MEASure:JITTer:MEASurement / 626
:MEASure:JITTer:SPECtrum / 627
:MEASure:JITTer:SPECtrum:HORizontal / 628
:MEASure:JITTer:SPECtrum:HORizontal:POSition / 629
:MEASure:JITTer:SPECtrum:HORizontal:RANGe / 630
:MEASure:JITTer:SPECtrum:VERTical / 631
:MEASure:JITTer:SPECtrum:VERTical:OFFSet / 632
:MEASure:JITTer:SPECtrum:VERTical:RANGe / 633
:MEASure:JITTer:SPECtrum:VERTical:TYPE / 634
:MEASure:JITTer:SPECtrum:WINDow / 635
:MEASure:JITTer:STATistics / 636

Keysight Infiniium Oscilloscopes Programmer's Guide 19

:MEASure:JITTer:TRENd / 637
:MEASure:JITTer:TRENd:SMOoth / 638
:MEASure:JITTer:TRENd:SMOoth:POINts / 639
:MEASure:JITTer:TRENd:VERTical / 640
:MEASure:JITTer:TRENd:VERTical:OFFSet / 641
:MEASure:JITTer:TRENd:VERTical:RANGe / 642
:MEASure:NAME / 643
:MEASure:NCJitter / 644
:MEASure:NOISe / 646
:MEASure:NOISe:ALL? / 647
:MEASure:NOISe:BANDwidth / 649
:MEASure:NOISe:LOCation / 650
:MEASure:NOISe:METHod / 651
:MEASure:NOISe:REPort / 652
:MEASure:NOISe:RN / 653
:MEASure:NOISe:SCOPe:RN / 654
:MEASure:NOISe:STATe / 655
:MEASure:NOISe:UNITs / 656
:MEASure:NPERiod / 657
:MEASure:NPULses / 658
:MEASure:NUI / 659
:MEASure:NWIDth / 660
:MEASure:OVERshoot / 662
:MEASure:PAMPlitude / 664
:MEASure:PBASe / 665
:MEASure:PERiod / 666
:MEASure:PHASe / 668
:MEASure:PPULses / 670
:MEASure:PREShoot / 671
:MEASure:PTOP / 673
:MEASure:PWIDth / 674
:MEASure:QUALifier<M>:CONDition / 676
:MEASure:QUALifier<M>:SOURce / 677
:MEASure:QUALifier<M>:STATe / 678
:MEASure:RESults? / 679
:MEASure:RISetime / 682
:MEASure:RJDJ:ALL? / 684
:MEASure:RJDJ:APLength? / 686
:MEASure:RJDJ:BANDwidth / 687
:MEASure:RJDJ:BER / 688
:MEASure:RJDJ:CLOCk / 690
:MEASure:RJDJ:EDGE / 691

20 Keysight Infiniium Oscilloscopes Programmer's Guide

:MEASure:RJDJ:INTerpolate / 692
:MEASure:RJDJ:METHod / 693
:MEASure:RJDJ:MODe / 694
:MEASure:RJDJ:PLENgth / 695
:MEASure:RJDJ:REPort / 696
:MEASure:RJDJ:RJ / 697
:MEASure:RJDJ:SCOPe:RJ / 698
:MEASure:RJDJ:SOURce / 699
:MEASure:RJDJ:STATe / 700
:MEASure:RJDJ:TJRJDJ? / 701
:MEASure:RJDJ:UNITs / 702
:MEASure:SCRatch / 703
:MEASure:SENDvalid / 704
:MEASure:SETuptime / 705
:MEASure:SLEWrate / 707
:MEASure:SOURce / 708
:MEASure:STATistics / 709
:MEASure:TEDGe / 710
:MEASure:THResholds:ABSolute / 712
:MEASure:THResholds:GENeral:ABSolute / 714
:MEASure:THResholds:GENeral:HYSTeresis / 716
:MEASure:THResholds:GENeral:METHod / 718
:MEASure:THResholds:GENeral:PERCent / 720
:MEASure:THResholds:GENeral:TOPBase:ABSolute / 722
:MEASure:THResholds:GENeral:TOPBase:METHod / 724
:MEASure:THResholds:HYSTeresis / 726
:MEASure:THResholds:METHod / 728
:MEASure:THResholds:PERCent / 730
:MEASure:THResholds:RFALl:ABSolute / 732
:MEASure:THResholds:RFALl:HYSTeresis / 734
:MEASure:THResholds:RFALl:METHod / 736
:MEASure:THResholds:RFALl:PERCent / 738
:MEASure:THResholds:RFALl:TOPBase:ABSolute / 740
:MEASure:THResholds:RFALl:TOPBase:METHod / 742
:MEASure:THResholds:SERial:ABSolute / 744
:MEASure:THResholds:SERial:HYSTeresis / 746
:MEASure:THResholds:SERial:METHod / 748
:MEASure:THResholds:SERial:PERCent / 750
:MEASure:THResholds:SERial:TOPBase:ABSolute / 752
:MEASure:THResholds:SERial:TOPBase:METHod / 754
:MEASure:THResholds:TOPBase:ABSolute / 756
:MEASure:THResholds:TOPBase:METHod / 758

Keysight Infiniium Oscilloscopes Programmer's Guide 21

:MEASure:TIEClock2 / 759
:MEASure:TIEData / 761
:MEASure:TIEFilter:SHAPe / 763
:MEASure:TIEFilter:STARt / 764
:MEASure:TIEFilter:STATe / 765
:MEASure:TIEFilter:STOP / 766
:MEASure:TIEFilter:TYPE / 767
:MEASure:TMAX / 768
:MEASure:TMIN / 769
:MEASure:TVOLt / 770
:MEASure:UITouijitter / 772
:MEASure:UNITinterval / 773
:MEASure:VAMPlitude / 775
:MEASure:VAVerage / 777
:MEASure:VBASe / 779
:MEASure:VLOWer / 780
:MEASure:VMAX / 781
:MEASure:VMIDdle / 783
:MEASure:VMIN / 784
:MEASure:VOVershoot / 785
:MEASure:VPP / 786
:MEASure:VPReshoot / 787
:MEASure:VRMS / 788
:MEASure:VTIMe / 790
:MEASure:VTOP / 792
:MEASure:VUPPer / 793
:MEASure:WINDow / 795
:MEASurement<N>:NAME / 796
:MEASurement<N>:SOURce / 797

26 Pod Commands

:POD<N>:DISPlay / 800
:POD<N>:PSKew / 801
:POD<N>:THReshold / 802

27 Root Level Commands

:ADER? / 807
:AER? / 808
:ASTate? / 809
:ATER? / 810
:AUToscale / 811

22 Keysight Infiniium Oscilloscopes Programmer's Guide

:AUToscale:CHANnels / 812
:AUToscale:PLACement / 813
:AUToscale:VERTical / 814
:BEEP / 815
:BLANk / 816
:CDISplay / 817
:DIGitize / 818
:DISable DIGital / 820
:ENABle DIGital / 821
:MODel? / 822
:MTEE / 823
:MTER? / 824
:OPEE / 825
:OPER? / 826
:OVLRegister? / 827
:PDER? / 828
:PRINt / 829
:RECall:SETup / 830
:RSTate? / 831
:RUN / 832
:SERial / 833
:SINGle / 834
:STATus? / 835
:STOP / 837
:STORe:JITTer / 838
:STORe:SETup / 839
:STORe:WAVeform / 840
:TER? / 841
:VIEW / 842

28 Serial Bus Commands

General :SBUS<N> Commands / 844
:SBUS<N>[:DISPlay] / 845
:SBUS<N>:MODE / 846

:SBUS<N>:CAN Commands / 847
:SBUS<N>:CAN:SAMPlepoint / 848
:SBUS<N>:CAN:SIGNal:BAUDrate / 849
:SBUS<N>:CAN:SIGNal:DEFinition / 850
:SBUS<N>:CAN:SOURce / 851
:SBUS<N>:CAN:TRIGger / 852
(9000 Series, 9000H Series, S-Series) / 853

Keysight Infiniium Oscilloscopes Programmer's Guide 23

:SBUS<N>:CAN:TRIGger:PATTern:DATA / 855
(9000 Series, 9000H Series, S-Series) / 856
:SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth / 857
(9000 Series, 9000H Series, S-Series) / 858
:SBUS<N>:CAN:TRIGger:PATTern:ID / 859
(9000 Series, 9000H Series, S-Series) / 860
:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE / 861
(9000 Series, 9000H Series, S-Series) / 862

:SBUS<N>:FLEXray Commands / 863
:SBUS<N>:FLEXray:BAUDrate / 864
:SBUS<N>:FLEXray:CHANnel / 865
:SBUS<N>:FLEXray:SOURce / 866
:SBUS<N>:FLEXray:TRIGger / 867
:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE / 868
:SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase / 869
:SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition / 870
:SBUS<N>:FLEXray:TRIGger:FRAMe:ID / 871
:SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE / 872

:SBUS<N>:HS Commands / 873
:SBUS<N>:HS:DESCramble / 874
:SBUS<N>:HS:FORMat / 875
:SBUS<N>:HS:IDLE / 876
:SBUS<N>:HS:SOURce<S> / 877

:SBUS<N>:IIC Commands / 878
:SBUS<N>:IIC:ASIZe / 879
:SBUS<N>:IIC:SOURce:CLOCk / 880
:SBUS<N>:IIC:SOURce:DATA / 881
:SBUS<N>:IIC:TRIGger:PATTern:ADDRess / 882
(9000 Series, 9000H Series, S-Series) / 883
:SBUS<N>:IIC:TRIGger:PATTern:DATA / 884
(9000 Series, 9000H Series, S-Series) / 885
:SBUS<N>:IIC:TRIGger:TYPE / 886
(9000 Series, 9000H Series, S-Series) / 887

:SBUS<N>:LIN Commands / 889
:SBUS<N>:LIN:SAMPlepoint / 890
:SBUS<N>:LIN:SIGNal:BAUDrate / 891
:SBUS<N>:LIN:SOURce / 892
:SBUS<N>:LIN:STANdard / 893
:SBUS<N>:LIN:TRIGger / 894
:SBUS<N>:LIN:TRIGger:ID / 895

24 Keysight Infiniium Oscilloscopes Programmer's Guide

:SBUS<N>:LIN:TRIGger:PATTern:DATA / 896
:SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth / 897

:SBUS<N>:SPI Commands / 898
:SBUS<N>:SPI:BITorder / 899
:SBUS<N>:SPI:CLOCk:SLOPe / 900
:SBUS<N>:SPI:CLOCk:TIMeout / 901
:SBUS<N>:SPI:FRAMe:STATe / 902
:SBUS<N>:SPI:SOURce:CLOCk / 903
:SBUS<N>:SPI:SOURce:DATA / 904
:SBUS<N>:SPI:SOURce:FRAMe / 905
:SBUS<N>:SPI:SOURce:MISO / 906
:SBUS<N>:SPI:SOURce:MOSI / 907
:SBUS<N>:SPI:TRIGger:PATTern:DATA / 908
(9000 Series, 9000H Series, S-Series) / 909
:SBUS<N>:SPI:TRIGger:PATTern:WIDTh / 911
(9000 Series, 9000H Series, S-Series) / 912
:SBUS<N>:SPI:TRIGger:TYPE / 913
(9000 Series, 9000H Series, S-Series) / 914
:SBUS<N>:SPI:TYPE / 915
:SBUS<N>:SPI:WIDTh / 916

29 Self-Test Commands

:SELFtest:CANCel / 918
:SELFtest:SCOPETEST / 919

30 Serial Data Equalization Commands

:SPRocessing:CTLequalizer:DISPlay / 923
:SPRocessing:CTLequalizer:SOURce / 924
:SPRocessing:CTLequalizer:DCGain / 925
:SPRocessing:CTLequalizer:NUMPoles / 926
:SPRocessing:CTLequalizer:P1 / 927
:SPRocessing:CTLequalizer:P2 / 928
:SPRocessing:CTLequalizer:P3 / 929
:SPRocessing:CTLequalizer:RATe / 930
:SPRocessing:CTLequalizer:VERTical / 931
:SPRocessing:CTLequalizer:VERTical:OFFSet / 932
:SPRocessing:CTLequalizer:VERTical:RANGe / 933
:SPRocessing:CTLequalizer:ZERo / 934
:SPRocessing:DFEQualizer:STATe / 935
:SPRocessing:DFEQualizer:SOURce / 936
:SPRocessing:DFEQualizer:NTAPs / 937

Keysight Infiniium Oscilloscopes Programmer's Guide 25

:SPRocessing:DFEQualizer:TAP / 938
:SPRocessing:DFEQualizer:TAP:WIDTh / 939
:SPRocessing:DFEQualizer:TAP:DELay / 940
:SPRocessing:DFEQualizer:TAP:MAX / 941
:SPRocessing:DFEQualizer:TAP:MIN / 942
:SPRocessing:DFEQualizer:TAP:GAIN / 943
:SPRocessing:DFEQualizer:TAP:UTARget / 944
:SPRocessing:DFEQualizer:TAP:LTARget / 945
:SPRocessing:DFEQualizer:TAP:AUTomatic / 946
:SPRocessing:FFEQualizer:DISPlay / 947
:SPRocessing:FFEQualizer:SOURce / 948
:SPRocessing:FFEQualizer:NPRecursor / 949
:SPRocessing:FFEQualizer:NTAPs / 950
:SPRocessing:FFEequalizer:RATe / 951
:SPRocessing:FFEQualizer:TAP / 952
:SPRocessing:FFEQualizer:TAP:PLENgth / 953
:SPRocessing:FFEQualizer:TAP:WIDTh / 954
:SPRocessing:FFEQualizer:TAP:DELay / 955
:SPRocessing:FFEQualizer:TAP:AUTomatic / 956
:SPRocessing:FFEQualizer:TAP:BANDwidth / 957
:SPRocessing:FFEQualizer:TAP:BWMode / 958
:SPRocessing:FFEQualizer:TAP:TDELay / 959
:SPRocessing:FFEQualizer:TAP:TDMode / 960
:SPRocessing:FFEQualizer:VERTical / 961
:SPRocessing:FFEQualizer:VERTical:OFFSet / 962
:SPRocessing:FFEQualizer:VERTical:RANGe / 963

31 System Commands

:SYSTem:DATE / 966
:SYSTem:DEBug / 967
:SYSTem:DSP / 969
:SYSTem:ERRor? / 970
:SYSTem:HEADer / 971
:SYSTem:LOCK / 972
:SYSTem:LONGform / 973
:SYSTem:PERSona / 974
:SYSTem:PRESet / 975
:SYSTem:SETup / 976
:SYSTem:TIME / 978

26 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

:TIMebase:POSition / 980
:TIMebase:RANGe / 981
:TIMebase:REFClock / 982
:TIMebase:REFerence / 983
:TIMebase:REFerence:PERCent / 984
:TIMebase:ROLL:ENABLE / 985
:TIMebase:SCALe / 986
:TIMebase:VIEW / 987
:TIMebase:WINDow:DELay / 988
:TIMebase:WINDow:POSition / 989
:TIMebase:WINDow:RANGe / 990
:TIMebase:WINDow:SCALe / 991

33 Trigger Commands

General Trigger Commands / 995
:TRIGger:AND:ENABle / 996
:TRIGger:AND:SOURce / 997
:TRIGger:HOLDoff / 998
:TRIGger:HOLDoff:MAX / 999
:TRIGger:HOLDoff:MIN / 1000
:TRIGger:HOLDoff:MODE / 1001
:TRIGger:HTHReshold / 1002
:TRIGger:HYSTeresis / 1003
:TRIGger:LEVel / 1004
:TRIGger:LEVel:FIFTy / 1005
:TRIGger:LTHReshold / 1006
:TRIGger:MODE / 1007
:TRIGger:SWEep / 1009

Comm Trigger Commands / 1010
:TRIGger:COMM:BWIDth / 1011
:TRIGger:COMM:ENCode / 1012
:TRIGger:COMM:PATTern / 1013
:TRIGger:COMM:POLarity / 1014
:TRIGger:COMM:SOURce / 1015

Delay Trigger Commands / 1016
:TRIGger:DELay:ARM:SOURce / 1017
:TRIGger:DELay:ARM:SLOPe / 1018
:TRIGger:DELay:EDELay:COUNt / 1019
:TRIGger:DELay:EDELay:SOURce / 1020

Keysight Infiniium Oscilloscopes Programmer's Guide 27

:TRIGger:DELay:EDELay:SLOPe / 1021
:TRIGger:DELay:MODE / 1022
:TRIGger:DELay:TDELay:TIME / 1023
:TRIGger:DELay:TRIGger:SOURce / 1024
:TRIGger:DELay:TRIGger:SLOPe / 1025

Edge Trigger Commands / 1026
:TRIGger:EDGE:COUPling / 1027
(9000 Series, 9000H Series, S-Series) / 1028
:TRIGger:EDGE:SLOPe / 1029
:TRIGger:EDGE:SOURce / 1030

Glitch Trigger Commands / 1031
:TRIGger:GLITch:POLarity / 1032
:TRIGger:GLITch:SOURce / 1033
:TRIGger:GLITch:WIDTh / 1034

Pattern Trigger Commands / 1035
:TRIGger:PATTern:CONDition / 1036
:TRIGger:PATTern:LOGic / 1037

Pulse Width Trigger Commands / 1038
:TRIGger:PWIDth:DIRection / 1039
:TRIGger:PWIDth:POLarity / 1040
:TRIGger:PWIDth:SOURce / 1041
:TRIGger:PWIDth:TPOint / 1042
:TRIGger:PWIDth:WIDTh / 1043

Runt Trigger Commands / 1044
:TRIGger:RUNT:POLarity / 1045
:TRIGger:RUNT:QUALified / 1046
:TRIGger:RUNT:SOURce / 1047
:TRIGger:RUNT:TIME / 1048

Sequence Trigger Commands / 1049
:TRIGger:SEQuence:TERM1 / 1050
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1051
:TRIGger:SEQuence:TERM2 / 1052
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1053
:TRIGger:SEQuence:RESet:ENABle / 1054
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1055
:TRIGger:SEQuence:RESet:TYPE / 1056
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1057
:TRIGger:SEQuence:RESet:EVENt / 1058
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1059

28 Keysight Infiniium Oscilloscopes Programmer's Guide

:TRIGger:SEQuence:RESet:TIME / 1060
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1061
:TRIGger:SEQuence:WAIT:ENABle / 1062
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1063
:TRIGger:SEQuence:WAIT:TIME / 1064
(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series) / 1065

Setup and Hold Trigger Commands / 1066
:TRIGger:SHOLd:CSOurce / 1067
:TRIGger:SHOLd:CSOurce:EDGE / 1068
:TRIGger:SHOLd:DSOurce / 1069
:TRIGger:SHOLd:HoldTIMe (HTIMe) / 1070
:TRIGger:SHOLd:MODE / 1071
:TRIGger:SHOLd:SetupTIMe / 1072

State Trigger Commands / 1073
:TRIGger:STATe:CLOCk / 1074
:TRIGger:STATe:LOGic / 1075
:TRIGger:STATe:LTYPe / 1076
:TRIGger:STATe:SLOPe / 1077

Timeout Trigger Commands / 1078
:TRIGger:TIMeout:CONDition / 1079
:TRIGger:TIMeout:SOURce / 1080
:TRIGger:TIMeout:TIME / 1081

Transition Trigger Commands / 1082
:TRIGger:TRANsition:DIRection / 1083
:TRIGger:TRANsition:SOURce / 1084
:TRIGger:TRANsition:TIME / 1085
:TRIGger:TRANsition:TYPE / 1086

TV Trigger Commands / 1087
:TRIGger:TV:LINE / 1088
:TRIGger:TV:MODE / 1089
:TRIGger:TV:POLarity / 1090
:TRIGger:TV:SOURce / 1091
:TRIGger:TV:STANdard / 1092
:TRIGger:TV:UDTV:ENUMber / 1093
:TRIGger:TV:UDTV:HSYNc / 1094
:TRIGger:TV:UDTV:HTIMe / 1095
:TRIGger:TV:UDTV:PGTHan / 1096
:TRIGger:TV:UDTV:POLarity / 1097

Window Trigger Commands / 1098

Keysight Infiniium Oscilloscopes Programmer's Guide 29

:TRIGger:WINDow:CONDition / 1099
:TRIGger:WINDow:SOURce / 1100
:TRIGger:WINDow:TIME / 1101
:TRIGger:WINDow:TPOint / 1102

Advanced Comm Trigger Commands / 1103
:TRIGger:ADVanced:COMM:BWIDth / 1104
:TRIGger:ADVanced:COMM:ENCode / 1105
:TRIGger:ADVanced:COMM:LEVel / 1106
:TRIGger:ADVanced:COMM:PATTern / 1107
:TRIGger:ADVanced:COMM:POLarity / 1108
:TRIGger:ADVanced:COMM:SOURce / 1109

Advanced Pattern Trigger Commands / 1110
:TRIGger:ADVanced:PATTern:CONDition / 1112
:TRIGger:ADVanced:PATTern:LOGic / 1113
:TRIGger:ADVanced:PATTern:THReshold:LEVel / 1114
:TRIGger:ADVanced:PATTern:THReshold:POD<N> / 1115

Advanced State Trigger Commands / 1116
:TRIGger:ADVanced:STATe:CLOCk / 1117
:TRIGger:ADVanced:STATe:LOGic / 1118
:TRIGger:ADVanced:STATe:LTYPe / 1119
:TRIGger:ADVanced:STATe:SLOPe / 1120
:TRIGger:ADVanced:STATe:THReshold:LEVel / 1121

Advanced Delay By Event Trigger Commands / 1122
:TRIGger:ADVanced:DELay:EDLY:ARM:SOURce / 1124
:TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe / 1125
:TRIGger:ADVanced:DELay:EDLY:EVENt:DELay / 1126
:TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce / 1127
:TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe / 1128
:TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce / 1129
:TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe / 1130

Advanced Delay By Time Trigger Commands / 1131
:TRIGger:ADVanced:DELay:TDLY:ARM:SOURce / 1133
:TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe / 1134
:TRIGger:ADVanced:DELay:TDLY:DELay / 1135
:TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce / 1136
:TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe / 1137

Advanced Standard TV Trigger Commands / 1138
:TRIGger:ADVanced:TV:STV:FIELd / 1140
:TRIGger:ADVanced:TV:STV:LINE / 1141

30 Keysight Infiniium Oscilloscopes Programmer's Guide

:TRIGger:ADVanced:TV:STV:SOURce / 1142
:TRIGger:ADVanced:TV:STV:SPOLarity / 1143

Advanced User Defined TV Mode and Commands / 1144
:TRIGger:ADVanced:TV:UDTV:ENUMber / 1146
:TRIGger:ADVanced:TV:UDTV:PGTHan / 1147
:TRIGger:ADVanced:TV:UDTV:POLarity / 1148
:TRIGger:ADVanced:TV:UDTV:SOURce / 1149

Advanced Violation Trigger Modes / 1150
:TRIGger:ADVanced:VIOLation:MODE / 1151

Advanced Pulse Width Violation Trigger Commands / 1152
:TRIGger:ADVanced:VIOLation:PWIDth:DIRection / 1154
:TRIGger:ADVanced:VIOLation:PWIDth:POLarity / 1155
:TRIGger:ADVanced:VIOLation:PWIDth:SOURce / 1156
:TRIGger:ADVanced:VIOLation:PWIDth:WIDTh / 1157

Advanced Setup Violation Trigger Commands / 1158
:TRIGger:ADVanced:VIOLation:SETup:MODE / 1161
:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce / 1162
:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:LEVel / 1163
:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:EDGE / 1164
:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce / 1165
:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold / 1166
:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold / 1167
:TRIGger:ADVanced:VIOLation:SETup:SETup:TIME / 1168
:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce / 1169
:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel / 1170
:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:EDGE / 1171
:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce / 1172
:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:HTHReshold / 1173
:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:LTHReshold / 1174
:TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME / 1175
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce / 1176
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel / 1177
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE / 1178
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce / 1179
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:HTHReshold / 1180
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:LTHReshold / 1181
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe (STIMe) / 1182
:TRIGger:ADVanced:VIOLation:SETup:SHOLd:HoldTIMe (HTIMe) / 1183

Advanced Transition Violation Trigger Commands / 1184
:TRIGger:ADVanced:VIOLation:TRANsition / 1185

Keysight Infiniium Oscilloscopes Programmer's Guide 31

:TRIGger:ADVanced:VIOLation:TRANsition:SOURce / 1186
:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold / 1187
:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold / 1188
:TRIGger:ADVanced:VIOLation:TRANsition:TYPE / 1189

34 Waveform Commands

:WAVeform:BANDpass? / 1194
:WAVeform:BYTeorder / 1195
:WAVeform:COMPlete? / 1196
:WAVeform:COUNt? / 1197
:WAVeform:COUPling? / 1198
:WAVeform:DATA? / 1199
:WAVeform:FORMat / 1221
:WAVeform:POINts? / 1224
:WAVeform:PREamble? / 1225
:WAVeform:SEGMented:ALL / 1230
:WAVeform:SEGMented:COUNt? / 1231
:WAVeform:SEGMented:TTAG? / 1232
:WAVeform:SEGMented:XLISt? / 1233
:WAVeform:SOURce / 1234
:WAVeform:STReaming / 1236
:WAVeform:TYPE? / 1237
:WAVeform:VIEW / 1238
:WAVeform:XDISplay? / 1240
:WAVeform:XINCrement? / 1241
:WAVeform:XORigin? / 1242
:WAVeform:XRANge? / 1243
:WAVeform:XREFerence? / 1244
:WAVeform:XUNits? / 1245
:WAVeform:YDISplay? / 1246
:WAVeform:YINCrement? / 1247
:WAVeform:YORigin? / 1248
:WAVeform:YRANge? / 1249
:WAVeform:YREFerence? / 1250
:WAVeform:YUNits? / 1251

35 Waveform Memory Commands

:WMEMory<N>:CLEar / 1254
:WMEMory<N>:DISPlay / 1255
:WMEMory<N>:LOAD / 1256
:WMEMory<N>:SAVE / 1257

32 Keysight Infiniium Oscilloscopes Programmer's Guide

:WMEMory<N>:TIETimebase / 1258
:WMEMory<N>:XOFFset / 1259
:WMEMory<N>:XRANge / 1260
:WMEMory<N>:YOFFset / 1261
:WMEMory<N>:YRANge / 1262

36 Obsolete and Discontinued Commands

:DISPlay:COLumn / 1265
:DISPlay:LINE / 1266
:DISPlay:ROW / 1267
:DISPlay:STRing / 1268
:DISPlay:TEXT / 1269
:MEASure:CLOCk:METHod / 1270
(deprecated) / 1271
:MEASure:DDPWS / 1273

37 Error Messages

Error Queue / 1276

Error Numbers / 1277

Command Error / 1278

Execution Error / 1279

Device- or Oscilloscope-Specific Error / 1280

Query Error / 1281

List of Error Messages / 1282

38 Sample Programs

VISA COM Examples / 1288
VISA COM Example in Visual Basic / 1288
VISA COM Example in C# / 1299
VISA COM Example in Visual Basic .NET / 1309
VISA COM Example in Python / 1318

VISA Examples / 1326
VISA Example in C / 1326
VISA Example in Visual Basic / 1335
VISA Example in C# / 1345
VISA Example in Visual Basic .NET / 1357
VISA Example in Python / 1369

Keysight Infiniium Oscilloscopes Programmer's Guide 33

SICL Examples / 1376
SICL Example in C / 1376
SICL Example in Visual Basic / 1385

SCPI.NET Examples / 1395
SCPI.NET Example in C# / 1395
SCPI.NET Example in Visual Basic .NET / 1402
SCPI.NET Example in IronPython / 1409

39 Reference

HDF5 Example / 1416

CSV and TSV Header Format / 1417

BIN Header Format / 1419
File Header / 1419
Waveform Header / 1419
Waveform Data Header / 1421
Example Program for Reading Binary Data / 1421

Index

34 Keysight Infiniium Oscilloscopes Programmer's Guide

35

Keysight Infiniium Oscilloscopes
Programmer's Guide

1 What's New

What's New in Version 5.20 / 36
What's New in Version 5.10 / 38
What's New in Version 5.00 / 39
What's New in Version 4.60 / 43
What's New in Version 4.50 / 44
What's New in Version 4.30 / 45
What's New in Version 4.20 / 46
What's New in Version 4.10 / 47
What's New in Version 4.00 / 48
What's New in Version 3.50 / 49
What's New in Version 3.20 / 51
What's New in Version 3.11 / 52
What's New in Version 3.10 / 53

36 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

What's New in Version 5.20

New command descriptions for Version 5.20 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:ACQuire:BANDwidth:FRAMe?
(see page 167)

Returns the maximum bandwidth associated with oscilloscope
model.

:HISTogram:HORizontal:BINS
(see page 406)

Sets the maximum number of bins used for a horizontal waveform
histogram.

:HISTogram:MEASurement:BIN
S (see page 407)

Sets the maximum number of bins used for a measurement
histogram.

:HISTogram:VERTical:BINS (see
page 410)

Sets the maximum number of bins used for a vertical waveform
histogram.

:MEASure:CLOCk:METHod:SOU
Rce (see page 571)

Clock recovery methods can now be defined for each waveform
source (or for all waveform sources, as before). This command
selects the waveform source (or all sources) to which other clock
recovery method setup commands apply.

:SBUS<N>:FLEXray Commands
(see page 863)

These commands control the FlexRay serial decode bus viewing,
mode, and other options.

:SBUS<N>:LIN Commands (see
page 889)

These commands control the LIN serial decode bus viewing,
mode, and other options.

:SYSTem:PERSona (see
page 974)

Sets the manufacturer string and the model number string
returned by the *IDN? query.

Command Description

:FUNCtion<F>:MHIStogram
(see page 846)

Lets you specify the maximum number of histogram bins along
with the measurement source.

:SBUS<N>:MODE (see
page 846)

Added the FLEXray and LIN mode options.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 37

:SBUS<N>:CAN:SOURce (see
page 851)

Added the NONE parameter to make the previously selected
channel, waveform memory, or math function available for other
decodes (same as selecting "None" for the source in the user
interface).:SBUS<N>:IIC:SOURce:CLOCk

(see page 880)

:SBUS<N>:IIC:SOURce:DATA
(see page 881)

:SBUS<N>:SPI:SOURce:CLOCk
(see page 903)

:SBUS<N>:SPI:SOURce:DATA
(see page 904)

:SBUS<N>:SPI:SOURce:FRAMe
(see page 905)

:SBUS<N>:SPI:SOURce:MISO
(see page 906)

:SBUS<N>:SPI:SOURce:MOSI
(see page 907)

Command Description

38 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

What's New in Version 5.10

New command descriptions for Version 5.10 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:MTESt:FOLDing:TPOSition (see
page 503)

Sets the real-time eye horizontal center position in time.

:MTESt:FOLDing:TSCale (see
page 505)

Sets the real-time eye horizontal scale perdivision in time.

Command Description

:MEASure:CLOCk:METHod (see
page 559)

The PCIE clock recovery method has been removed.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 39

What's New in Version 5.00

Version 5.00 of the Infiniium oscilloscope software introduces the new,
next-generation Infiniium user interface.

The next-generation Infiniium user interface software gives you much more
flexibility in how you can organize data, measurement results, and analysis views.
You can size windows however you like, choose stacked, side by side, or tabbed
window layouts, and you can even undock tabbed windows and place them
anywhere on your monitor(s).

Plus, the next-generation Infiniium user interface software gives you more features
to help you document waveforms and measurements, including visible scale
values on the waveform grids, visible markers delta values, bookmarks with
user-defined callout labels, and measurement values with callout labels. It is easy
to capture screen images with all this information. And, you can save waveform
data, measurements, analysis, settings, window layouts, and other settings, all to
a single composite file. When you open a composite file later, everything is set up
just like it was when you saved the file.

New command descriptions for Version 5.00 of the Infiniium oscilloscope software
appear below.

New Commands
Command Description

:DISPlay:BOOKmark<N>:DELet
e (see page 318)

Deletes a bookmark.

:DISPlay:BOOKmark<N>:SET
(see page 319)

Sets a bookmark.

:DISPlay:BOOKmark<N>:VERTi
cal? (see page 321)

Returns a waveform's vertical value at a bookmark's horizontal
position.

:DISPlay:BOOKmark<N>:XPOSi
tion (see page 322)

Sets the horizontal grid position of a bookmark's callout box.

:DISPlay:BOOKmark<N>:YPOSi
tion (see page 323)

Sets the vertical grid position of a bookmark's callout box.

:DISPlay:GRATicule:AREA<N>:S
TATe (see page 333)

Enables or disables waveform areas 2-8. Waveform area 1 is
always on.

:DISPlay:LAYout (see
page 338)

Sets the window layout.

:DISPlay:MAIN (see page 339) Turns on or off the main window view for the indicated source.

:DISPlay:PROPortion (see
page 341)

Specifies the size of the waveform and plot areas.

:MTESt:FOLDing:COUNt (see
page 496)

Returns the number of waveforms and unit intervals in the
real-time eye.

40 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

Changed
Commands

:MTESt:FOLDing:POSition (see
page 499)

Sets the real-time eye horizontal center position in unit intervals.

:MTESt:FOLDing:SCALe (see
page 501)

Sets the real-time eye horizontal scale, that is, the number of unit
intervals (UIs) shown on screen.

:SBUS<N>:HS:DESCramble
(see page 874)

Turns high-speed descrambling on or off if supported by the
protocol type.

:SBUS<N>:HS:FORMat (see
page 875)

Specifies the high-speed symbol display format.

:SBUS<N>:HS:IDLE (see
page 876)

Specifies whether electrical idles are present in the signal.

:SBUS<N>:HS:SOURce<S>
(see page 877)

Specifies the signal that is the high-speed data source.

:TIMebase:REFerence:PERCent
(see page 984)

Sets the timebase reference (trigger) position as a percent of
screen value.

Command Description

Command Description

:BUS:B<N>:TYPE (see
page 192)

Added support for new protocols.

:DISK:SAVE:LISTing (see
page 310)

Added the <type> parameter for specifying which display window
to save.

:DISPlay:CGRade (see
page 324)

Added the optional <source> parameter for specifying the
waveform on which color grade should be turned on or off.

:DISPlay:CGRade:LEVels (see
page 326)

This query is unchanged but results are returned only when a
single color grade view is on.

:DISPlay:CONNect (see
page 330)

Added the optional <source> parameter for specifying the
waveform on which the setting should be made.

:DISPlay:GRATicule:NUMBer
(see page 335)

Number of grids can be any number between 1 and 16 (not just 1,
2, 4, 8, or 16). You can also specify which waveform area the
number of grids setting is for.

:DISPlay:GRATicule:SETGrat
(see page 336)

In addition to assigning a waveform to a grid, you can now
optionally specify which waveform area the grid is in. Also, you
can specify whether the MAIN or CGRade (color grade) view of the
waveform will be placed.

:DISPlay:PERSistence (see
page 340)

Added the optional <source> parameter for specifying the
waveform on which the persistence setting should be made.

:LISTer:DATA (see page 448) Added the <type> parameter for specifying which display window
to save.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 41

Obsolete

Commands

:MEASure:CGRade:CROSsing
(see page 541)

Added the optional <source> parameter for specifying the
waveform on which the color grade crossing level percent is
measured.

:MEASure:CGRade:DCDistortio
n (see page 543)

Added the optional <source> parameter for specifying the
waveform on which the color grade duty cycle distortion is
measured.

:MEASure:CGRade:EHEight
(see page 545)

Added the optional <source> parameter for specifying the
waveform on which the color grade eye height is measured.

:MEASure:CGRade:EWIDth (see
page 547)

Added the optional <source> parameter for specifying the
waveform on which the color grade eye width is measured.

:MEASure:CGRade:EWINdow
(see page 549)

Added the optional <source> parameter for specifying the
waveform on which the color grade eye window is applied.

:MEASure:CGRade:JITTer (see
page 551)

Added the optional <source> parameter for specifying the
waveform on which the color grade jitter is measured.

:MEASure:CGRade:QFACtor
(see page 553)

Added the optional <source> parameter for specifying the
waveform on which the color grade Q factor is measured.

:MEASure:WINDow (see
page 795)

Added the CGRade (color grade) view as a measurement window
option.

:MTESt:FOLDing (see
page 491)

Added the optional <source> parameter for specifying the
waveform on which to enable/disable the real-time eye.

:MTESt:FOLDing:BITS (see
page 494)

Added the required <source> parameter to specify the waveform
on which to set the real-time eye bit qualification.

:MTESt:FOLDing:FAST (see
page 497)

Added the optional <source> parameter for specifying the
waveform on which to set the fast worst-case option.

:TIMebase:REFerence (see
page 983)

Query can now return PERC when a reference position percent
value is being used.

Command Description

Obsolete Command Current Command Equivalent Behavior Differences

:DISPlay:COLumn (see
page 1265)

:DISPlay:BOOKmark<N>:XPOSi
tion (see page 322)

Bookmarks are now the
method used to place text
strings or annotations on
screen.:DISPlay:LINE (see

page 1266)
:DISPlay:BOOKmark<N>:SET
(see page 319)

:DISPlay:ROW (see
page 1267)

:DISPlay:BOOKmark<N>:YPOSi
tion (see page 323)

:DISPlay:STRing (see
page 1268)

:DISPlay:BOOKmark<N>:SET
(see page 319)

:DISPlay:TEXT (see
page 1269)

:DISPlay:BOOKmark<N>:DELet
e (see page 318)

42 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

Discontinued
Commands Discontinued Command Current Command Equivalent Comments

:DISPlay:GRATicule:SIZE None Graticule sizing is different in
the next-generation Infiniium
user interface software.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 43

What's New in Version 4.60

New command descriptions for Version 4.60 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:ASTate? (see page 809) Returns the acquisition state.

:CHANnel<N>:ISIM:NORMalize
(see page 230)

Lets you normalize the gain of an InfiniiSim transfer function.

:RSTate? (see page 831) Returns the run state.

:SBUS<N>:CAN Commands
(see page 847)

These commands control the CAN serial decode bus viewing,
mode, and other options.

Command Description

:SBUS<N>:MODE (see
page 846)

Added CAN mode option.

44 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

What's New in Version 4.50

New command descriptions for Version 4.50 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:FUNCtion<F>:ADEMod (see
page 353)

Sets the math function to show the amplitude envelope for an
amplitude modulated (AM) input signal.

:MEASurement<N>:NAME (see
page 796)

Lets you give specific names to measurements displayed on the
oscilloscope's screen.

:MEASurement<N>:SOURce
(see page 797)

Changes the source of an existing measurement.

:MTESt:FOLDing:FAST (see
page 497)

Turns the "Fast, Worst Case Only" real-time eye display option ON
or OFF.

Command Description

:DIGital<N>:THReshold (see
page 297)

There is now the DIFFerential parameter for specifying the
threshold voltage.

:DISK:SAVE:WAVeform (see
page 314)

There is now the H5INt format parameter which saves waveform
data as integers within the H5 file.

:POD<N>:THReshold (see
page 802)

There is now the DIFFerential parameter for specifying the
threshold voltage.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 45

What's New in Version 4.30

New command descriptions for Version 4.30 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:FUNCtion<F>:DELay (see
page 356)

Defines a function waveform that is the source waveform delayed
in time.

:FUNCtion<F>:GATing (see
page 368)

Defines a horizontal gating function of another waveform (similar
to horizontal zoom). Measurements on horizontal gating functions
are essentially gated measurements.

:MEASure:CLOCk:METHod:EDG
E (see page 564)

Specifies which edge(s) of the data signal are used to recover a
clock.

:MEASure:RJDJ:CLOCk (see
page 690)

When ON, it forces the pattern to be a clock and sets the jitter for
edges not examined to zero (0).

:TRIGger:LEVel:FIFTy (see
page 1005)

Sets the trigger level to 50%, like pushing the front panel trigger
level knob

Command Description

Function Commands (see
page 347)

You can now define up to 16 functions.

46 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

What's New in Version 4.20

New command descriptions for Version 4.20 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Obsolete
Commands

Command Description

:DISPlay:CGRade:SCHeme (see
page 328)

Lets you set the color grade scheme to CLASsic or TEMP.

:FUNCtion<F>:FFT:TDELay (see
page 363)

Sets the time delay for the FFT phase function.

:MEASure:CHARge (see
page 555)

When N2820A/N2821A high-sensitivity current probes are
connected, this command/query measures the total current
consumption over time with the results listed in ampere-hours
(Ah).

:MEASure:CLOCk:METHod:JTF
(see page 566)

Specifies the clock recovery PLL's response in terms of the Jitter
Transfer Function's (JTF) 3 dB bandwidth.

:MEASure:CLOCk:METHod:OJT
F (see page 568)

Specifies the clock recovery PLL's response in terms of the
Observed Jitter Transfer Function's (OJTF) 3 dB bandwidth.

:MEASure:CLOCk:METHod:PLLT
rack (see page 570)

Turns the Transition Density Dependent setting on or off.

Command Description

:MEASure:CLOCk:METHod (see
page 559)

The command options for specifying clock recovery PLL options
have been moved to the new commands
:MEASure:CLOCk:METHod:JTF and
:MEASure:CLOCk:METHod:OJTF.

Obsolete Command Current Command
Equivalent

Description

:MEASure:DDPWS :MEASure:RJDJ:ALL?
(see page 684)

The :MEASure:RJDJ:ALL? query returns all of the
RJDJ jitter measurements.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 47

What's New in Version 4.10

New command descriptions for Version 4.10 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:MEASure:NOISe:METHod (see
page 651)

Lets you select the method for random noise (RN) analysis, either
the SPECtral method or BOTH the spectral and tail fit methods.

:MEASure:NOISe:REPort (see
page 652)

When BOTH is selected for :MEASure:NOISe:METHod, you can
select SPECtral or TAILfit to specify which method is used for the
reports.

:MEASure:RJDJ:METHod (see
page 693)

Lets you select the method for random jitter (RJ) analysis, either
the SPECtral method or BOTH the spectral and tail fit methods.

:MEASure:RJDJ:REPort (see
page 696)

When BOTH is selected for :MEASure:RJDJ:METHod, you can
select SPECtral or TAILfit to specify which method is used for the
reports.

:MEASure:TIEFilter:SHAPe (see
page 763)

Specifies the shape of the TIE filter edge(s).

Command Description

:MEASure:NOISe:ALL (see
page 647)

New results can be returned depending on the
:MEASure:NOISe:METHod and :MEASure:NOISe:REPort settings.

:MEASure:RJDJ:ALL (see
page 684)

New results can be returned depending on the
:MEASure:RJDJ:METHod and :MEASure:RJDJ:REPort settings.

48 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

What's New in Version 4.00

New command descriptions for Version 4.00 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:ACQuire:REDGe (see
page 179)

For 50 GHz and 63 GHz bandwidth models of the 90000 Q-Series
oscilloscopes, this command enables or disables the RealEdge
channel inputs.

:DISK:SAVE:PRECprobe (see
page 312)

Saves PrecisionProbe/Cable data to a file.

:ISCan:ZONE:HIDE (see
page 433)

Lets you hide or show all InfiniiScan zones on the display.

Command Description

:ACQuire:BANDwidth (see
page 164)

There is now a MAX option for selecting the maximum bandwidth.

:MTESt:FOLDing:BITS (see
page 494)

There is now a PATTern option for specifying bit pattern
qualification for the real-time eye display.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 49

What's New in Version 3.50

New command descriptions for Version 3.50 of the Infiniium oscilloscope software
appear below.

New Commands
Command Description

:CHANnel<N>:PROBe:AUTozer
o (see page 240)

Initiates the N2893A probe's auto degauss/ offset cal.

:CHANnel<N>:PROBe:HEAD:VT
ERm (see page 254)

Sets the termination voltage for the N5444A probe head.

:CHANnel<N>:PROBe:MODE
(see page 256)

Sets the N2750A probe's InfiniiMode configuration.

:FUNCtion<F>:MTRend (see
page 385)

New Meas Trend math function.

:FUNCtion<F>:MHIStogram
(see page 383)

New Meas Histogram math function.

:LISTer Commands (see
page 447)

For displaying and retrieving data from the serial decode listings.

:MEASure:HISTogram:RESoluti
on (see page 621)

The bin width value of one bar in the histogram.

:MEASure:NOISe (see
page 646)

Adds a Noise measurement to the oscilloscope display (like
Measure > Data > Noise from the front panel) or gets the
measured noise value.

:MEASure:NOISe:ALL (see
page 647)

Returns the NOISe measurement results for the "zeros" or "ones"
level.

:MEASure:NOISe:BANDwidth
(see page 649)

Sets the type of filtering used to separate the data dependent
noise from the random noise and the periodic noise.

:MEASure:NOISe:LOCation (see
page 650)

Specifies the noise measurement location within the bit where 0%
is the beginning of the bit, 50% is the middle of the bit, and 100%
is the end of the bit.

:MEASure:NOISe:RN (see
page 653)

Specifies a known amount of random noise.

:MEASure:NOISe:SCOPe:RN
(see page 654)

Specifies the removal of the oscilloscope's calibrated random
noise from the reported RN.

:MEASure:NOISe:STATe (see
page 655)

Enables or disables the NOISe measurements.

:MEASure:NOISe:UNITs (see
page 656)

Sets the unit of measure for NOISe measurements to volts or unit
amplitude.

:MEASure:RJDJ:RJ (see
page 697)

Specifies a known amount of random jitter.

50 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

Changed
Commands

:MEASure:RJDJ:SCOPe:RJ (see
page 698)

Specifies the removal of the oscilloscope's calibrated random
jitter from the reported RJ.

:SBUS<N> Commands (see
page 843)

For setting up IIC and SPI serial decode and triggering.

Command Description

Command Description

:CHANnel<N>:PROBe:HEAD:SE
Lect (see page 252)

Now lets you select probe heads by the labels given with the
:CHANnel<N>:PROBe:HEAD:ADD command.

:MEASure:HISTogram:HITS
(see page 610)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:M1S (see
page 611)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:M2S (see
page 612)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:M3S (see
page 613)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:MAX (see
page 614)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:MEAN
(see page 615)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:MEDian
(see page 616)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:MIN (see
page 617)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:MODE
(see page 618)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:PEAK
(see page 619)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:PP (see
page 620)

Can now use this command with Meas Histogram math functions.

:MEASure:HISTogram:STDDev
(see page 622)

Can now use this command with Meas Histogram math functions.

:MEASure:RJDJ:ALL (see
page 684)

There are two possible additional measurement results, Scope
RN(rms) and DDPWS.

:TRIGger:MODE (see
page 1007)

Added the SBUS1, SBUS2, SBUS3, and SBUS4 selections for
triggering on serial buses.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 51

What's New in Version 3.20

New command descriptions for Version 3.20 of the Infiniium oscilloscope software
appear below.

New Commands
Command Description

:MARKer:MEASurement:MEASu
rement (see page 453)

Specifies which measurement markers track (when the
:MARKer:MODE is set to MEASurement).

:MEASure:CLOCk:METHod:ALIG
n (see page 561)

Lets you specify clock edges either center aligned with data or
edge aligned with data when using an explicit method of clock
recovery.

52 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

What's New in Version 3.11

New command descriptions for Version 3.11 of the Infiniium oscilloscope software
appear below.

New Commands

Changed
Commands

Command Description

:CHANnel<N>:ISIM:PEXTractio
n (see page 231)

Selects a channel's InfiniiSim port extraction.

:MEASure:HISTogram:MODE
(see page 618)

Returns the measurement histogram's Mode value.

Command Description

:BUS:B<N>:TYPE (see
page 192)

The MPHY protocol type has been added for the MIPI M-PHY
serial decode selection.

:FUNCtion<F>:FFT:WINDow
(see page 364)

The HAMMing window mode is now a valid selection.

:MEASure:JITTer:SPECtrum:WI
NDow (see page 635)

The HAMMing window mode is now a valid selection.

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 53

What's New in Version 3.10

New command descriptions for Version 3.10 of the Infiniium oscilloscope software
appear below.

New Commands
Command Description

:ACQuire:BANDwidth (see
page 164)

Changes the bandwidth frequency control for the acquisition
system.

:CHANnel<N>:PROBe:ACCal
(see page 238)

Sets the type of AC response probe calibration to use.

:CHANnel<N>:PROBe:PRECpro
be:BANDwidth (see
page 257)

Specifies how the limit of PrecisionProbe or PrecisionCable
correction/boosting is determined..

:CHANnel<N>:PROBe:PRECpro
be:CALibration (see page 258)

Specifies the name of the PrecisionProbe or PrecisionCable
calibration to use for the specified channel and probe.

:CHANnel<N>:PROBe:PRECpro
be:MODE (see page 260)

Selects between PrecisionProbe or PrecisionCable AC response
probe calibration.

:CHANnel<N>:PROBe:PRECpro
be:ZSRC (see page 261)

Specifies how PrecisionProbe characterizes the time domain and
frequency domain response.

:DISPlay:STATus:COL (see
page 344)

Used to position the real time eye and InfiniiScan Zone Trigger
status labels.

:DISPlay:STATus:ROW (see
page 345)

Used to position the real time eye and InfiniiScan Zone Trigger
status labels.

:MEASure:DDPWS (see
page 1273)

For measuring Data Dependent Pulse Width Shrinkage.

:MEASure:EDGE (see
page 594)

For measuring the edge time relative to the reference location.

:MEASure:JITTer:SPECtrum:VE
RTical:TYPE (see page 634)

Lets you select either a LINear or a LOGarithmic vertical scale for
the jitter spectrum plot.

:MEASure:RJDJ:APLength?
(see page 686)

Returns the determined RjDj pattern length.

:MEASure:THResholds:GENeral
:ABSolute (see page 714)

Sets the upper level, middle level, and lower level voltages for
everything except rise/fall measurements and protocol decode.

:MEASure:THResholds:GENeral
:HYSTeresis (see page 716)

Sets the hysteresis range and level level voltages for everything
except rise/fall measurements and protocol decode.

:MEASure:THResholds:GENeral
:METHod (see page 718)

Specifies the way that the top and base of a waveform are
calculated for everything except rise/fall measurements and
protocol decode.

54 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

:MEASure:THResholds:GENeral
:PERCent (see page 720)

Sets the upper level, middle level, and lower level voltages as a
percentage of the top and base voltages for everything except
rise/fall measurements and protocol decode.

:MEASure:THResholds:GENeral
:TOPBase:ABSolute (see
page 722)

Sets the top level and base level voltages for everything except
rise/fall measurements and protocol decode.

:MEASure:THResholds:GENeral
:TOPBase:METHod (see
page 722)

Determines the way that the top and base of a waveform are
derived for everything except rise/fall measurements and protocol
decode.

:MEASure:THResholds:RFALl:A
BSolute (see page 732)

Sets the upper level, middle level, and lower level voltages for
rise/fall measurements.

:MEASure:THResholds:RFALl:H
YSTeresis (see page 734)

Sets the hysteresis range and level level voltages for rise/fall
measurements.

:MEASure:THResholds:RFALl:M
ETHod (see page 736)

Specifies the way that the top and base of a waveform are
calculated for rise/fall measurements.

:MEASure:THResholds:RFALl:P
ERCent (see page 738)

Sets the upper level, middle level, and lower level voltages as a
percentage of the top and base voltages for rise/fall
measurements.

:MEASure:THResholds:RFALl:T
OPBase:ABSolute (see
page 740)

Sets the top level and base level voltages for rise/fall
measurements.

:MEASure:THResholds:RFALl:T
OPBase:METHod (see
page 740)

Determines the way that the top and base of a waveform are
derived for rise/fall measurements.

:MEASure:THResholds:SERial:A
BSolute (see page 744)

Sets the upper level, middle level, and lower level voltages for
protocol decode.

:MEASure:THResholds:SERial:
HYSTeresis (see page 746)

Sets the hysteresis range and level level voltages for protocol
decode.

:MEASure:THResholds:SERial:
METHod (see page 748)

Specifies the way that the top and base of a waveform are
calculated for protocol decode.

:MEASure:THResholds:SERial:P
ERCent (see page 750)

Sets the upper level, middle level, and lower level voltages as a
percentage of the top and base voltages for protocol decode.

:MEASure:THResholds:SERial:T
OPBase:ABSolute (see
page 752)

Sets the top level and base level voltages for protocol decode.

:MEASure:THResholds:SERial:T
OPBase:METHod (see
page 752)

Determines the way that the top and base of a waveform are
derived for protocol decode.

Command Description

What's New 1

Keysight Infiniium Oscilloscopes Programmer's Guide 55

Changed
Commands

:SPRocessing:CTLequalizer:NU
MPoles (see page 926)

Selects either a 2 Pole or 3 Pole Continuous Time Linear
Equalization.

:SPRocessing:CTLequalizer:P3
(see page 929)

Sets the Pole 3 frequency for the Continuous Time Linear
Equalization.

Command Description

Command Description

:ACQuire:INTerpolate (see
page 172)

The INT1, INT2, INT4, INT8, INT16 options have been added for
specifying the 1, 2, 4, 8, or 16 point Sin(x)/x interpolation ratios.

:MEASure:RJDJ:BER (see
page 688)

You can now set J2 and J9 jitter BER levels.

:MEASure:VRMS (see
page 788)

The VOLT and DBM parameters have been added for specifying
the measurement units.

:MEASure:WINDow (see
page 795)

The short form of the command was changed from :MEAS:WIN to
:MEAS:WIND.

56 Keysight Infiniium Oscilloscopes Programmer's Guide

1 What's New

57

Keysight Infiniium Oscilloscopes
Programmer's Guide

2 Setting Up

Step 1. Install Keysight IO Libraries Suite software / 58
Step 2. Connect and set up the oscilloscope / 59
Step 3. Verify the oscilloscope connection / 60

This chapter explains how to install the Keysight IO Libraries Suite software on a
controller PC, connect the oscilloscope to the controller PC, set up the
oscilloscope, and verify the oscilloscope connection.

Note that Keysight IO Libraries Suite software comes installed on Infiniium
oscilloscopes, and it is possible to control the oscilloscope from programs running
on the instrument.

58 Keysight Infiniium Oscilloscopes Programmer's Guide

2 Setting Up

Step 1. Install Keysight IO Libraries Suite software

To install the Keysight IO Libraries Suite software on a controller PC:

1 Download the Keysight IO Libraries Suite software from the Keysight web site
at:

• "http://www.keysight.com/find/iolib"

2 Run the setup file, and follow its installation instructions.

Note that Keysight IO Libraries Suite software comes installed on Infiniium
oscilloscopes.

http://www.keysight.com/find/iolib

Setting Up 2

Keysight Infiniium Oscilloscopes Programmer's Guide 59

Step 2. Connect and set up the oscilloscope

Infiniium oscilloscopes can have these interfaces for programming the
oscilloscope:

• USB (device port, square connector).

• LAN. To configure the LAN interface, set up the Infiniium oscilloscope on the
network as you would any other computer with the Windows operating system.

• GPIB, when the instrument has a GPIB interface connector or when the N4865A
GPIB-to-LAN adapter is used.

When installed, these interfaces are always active.

Using the USB (Device) Interface

1 Connect a USB cable from the controller PC's USB port to the "USB DEVICE"
port on the back of the oscilloscope.

Some oscilloscopes have a USB 2.0 high-speed port; other more recent models
have a USB 3.0 super-speed port.

Using the LAN Interface

1 If the controller PC is not already connected to the local area network (LAN), do
that first.

2 Contact your network administrator about adding the oscilloscope to the
network.

Setting up an Infiniium oscilloscope on a network is the same as setting up any
other computer with the Windows XP operating system.

3 Connect the oscilloscope to the local area network (LAN) by inserting LAN
cable into the "LAN" port on the oscilloscope.

60 Keysight Infiniium Oscilloscopes Programmer's Guide

2 Setting Up

Step 3. Verify the oscilloscope connection

1 On the controller PC, click on the Keysight IO Control icon in the taskbar and
choose Keysight Connection Expert from the popup menu.

2 In the Keysight Connection Expert application, instruments connected to the
controller's USB and GPIB interfaces should automatically appear. (You can
click Refresh All to update the list of instruments on these interfaces.)

NOTE Make sure the Keysight Infiniium software is running on the oscilloscope. It must be running
before you can make a connection.

Setting Up 2

Keysight Infiniium Oscilloscopes Programmer's Guide 61

You must manually add instruments on LAN interfaces:

a Right-click on the LAN interface, choose Add Instrument from the popup
menu

b Click Add Address.

i In the next dialog, select either Hostname or IP address, and enter the
oscilloscope's hostname or IP address.

ii Select HiSLIP under Optional Connection Information.

HiSLIP (High-Speed LAN Instrument Protocol) is a protocol for
TCP-based instrument control that provides the instrument-like
capabilities of conventional test and measurement protocols with
minimal impact to performance.

For more information on the HiSLIP protocol, see:

• The Keysight IO Libraries Suite documentation.

• "http://www.lxistandard.org/About/LXI-Device-Support-HiSLIP.aspx"

• "http://www.ivifoundation.org/specifications/"

iii Click Test Connection.

http://www.lxistandard.org/About/LXI-Device-Support-HiSLIP.aspx
http://www.ivifoundation.org/specifications/

62 Keysight Infiniium Oscilloscopes Programmer's Guide

2 Setting Up

iv If the connection test is successful, click OK to add the instrument and
close the dialog.

If the connection test is not successful, go back and verify the LAN
connections and the oscilloscope setup.

Setting Up 2

Keysight Infiniium Oscilloscopes Programmer's Guide 63

3 Test some commands on the instrument:

a Right-click on the instrument and choose Send Commands To This Instrument
from the popup menu.

b In the Keysight Interactive IO application, enter commands in the Command
field and press Send Command, Read Response, or Send & Read.

c Choose Connect > Exit from the menu to exit the Keysight Interactive IO
application.

4 In the Keysight Connection Expert application, choose File > Exit from the menu
to exit the application.

64 Keysight Infiniium Oscilloscopes Programmer's Guide

2 Setting Up

65

Keysight Infiniium Oscilloscopes
Programmer's Guide

3 Introduction to Programming

Communicating with the Oscilloscope / 67
Instructions / 68
Instruction Header / 69
White Space (Separator) / 70
Braces / 71
Ellipsis / 72
Square Brackets / 73
Command and Query Sources / 74
Program Data / 75
Header Types / 76
Query Headers / 78
Program Header Options / 79
Character Program Data / 80
Numeric Program Data / 81
Embedded Strings / 82
Program Message Terminator / 83
Common Commands within a Subsystem / 84
Selecting Multiple Subsystems / 85
Programming Getting Started / 86
Referencing the IO Library / 87
Opening the Oscilloscope Connection via the IO Library / 88
Initializing the Interface and the Oscilloscope / 89
Example Program / 91
Using the DIGITIZE Command / 92
Receiving Information from the Oscilloscope / 94
String Variable Example / 95
Numeric Variable Example / 96
Definite-Length Block Response Data / 97
Multiple Queries / 98
Oscilloscope Status / 99

66 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

This chapter introduces the basics for remote programming of an oscilloscope. The
programming commands in this manual conform to the IEEE 488.2 Standard
Digital Interface for Programmable Instrumentation. The programming commands
provide the means of remote control.

Basic operations that you can do with a computer and an oscilloscope include:

• Set up the oscilloscope.

• Make measurements.

• Get data (waveform, measurements, and configuration) from the oscilloscope.

• Send information, such as waveforms and configurations, to the oscilloscope.

You can accomplish other tasks by combining these functions.

NOTE Example Programs are Written in Visual Basic for Applications (VBA) and C

The programming examples for individual commands in this manual are written in Visual Basic
for Applications (VBA) and C.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 67

Communicating with the Oscilloscope

Computers communicate with the oscilloscope by sending and receiving
messages over a remote interface, such as a GPIB card (must order the N4865A
GPIB-to-LAN adapter) or a Local Area Network (LAN) card. Commands for
programming normally appear as ASCII character strings embedded inside the
output statements of a "host" language available on your computer. The input
commands of the host language are used to read responses from the oscilloscope.

For example, the VISA COM library provides the WriteString() method for sending
commands and queries. After a query is sent, the response can be read using the
ReadString() method. The ReadString() method passes the value across the bus to
the computer and places it in the designated variable.

For the GPIB interface, messages are placed on the bus using an output command
and passing the device address, program message, and a terminator. Passing the
device address ensures that the program message is sent to the correct GPIB
interface and GPIB device.

The following WriteString() method sends a command that sets the channel 1
scale value to 500 mV:

myScope.WriteString ":CHANNEL1:SCALE 500E-3"

The VISA COM library setup is explained on the following pages.

NOTE Use the Suffix Mul tipl ier Instead

Using "mV" or "V" following the numeric voltage value in some commands will cause
Error 138 - Suffix not allowed. Instead, use the convention for the suffix multiplier as
described in Chapter 5, “Message Communication and System Functions,” starting on page
113.

68 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Instructions

Instructions, both commands and queries, normally appear as strings embedded
in a statement of your host language, such as Visual Basic for Applications (VBA),
Visual Basic .NET, C#, C, etc.

The only time a parameter is not meant to be expressed as a string is when the
instruction's syntax definition specifies <block data>, such as with the
:SYSTem:SETup command. There are only a few instructions that use block data.

Instructions are composed of two main parts:

• The header, which specifies the command or query to be sent.

• The program data, which provides additional information to clarify the meaning
of the instruction.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 69

Instruction Header

The instruction header is one or more command mnemonics separated by colons
(:). They represent the operation to be performed by the oscilloscope. See
Chapter 8, “Programming Conventions,” starting on page 151 for more
information.

Queries are formed by adding a question mark (?) to the end of the header. Many
instructions can be used as either commands or queries, depending on whether or
not you include the question mark. The command and query forms of an
instruction usually have different program data. Many queries do not use any
program data.

70 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

White Space (Separator)

White space is used to separate the instruction header from the program data. If
the instruction does not require any program data parameters, you do not need to
include any white space. In this manual, white space is defined as one or more
spaces. ASCII defines a space to be character 32 in decimal.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 71

Braces

When several items are enclosed by braces, { }, only one of these elements may be
selected. Vertical line (|) indicates "or". For example, {ON | OFF} indicates that
only ON or OFF may be selected, not both.

72 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Ellipsis

... An ellipsis (trailing dots) indicates that the preceding element may be repeated
one or more times.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 73

Square Brackets

Items enclosed in square brackets, [], are optional.

74 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Command and Query Sources

Many commands and queries require that a source be specified. Depending on the
command or query and the model number of Infiniium oscilloscope being used,
some of the sources are not available. The following is a list of sources:

CHANnel1 FUNCtion1 WMEMory1 COMMonmode{1|2}

CHANnel2 FUNCtion2 WMEMory2 DIFFerential{1|2}

CHANnel3 FUNCtion3 WMEMory3 EQUalized

CHANnel4 FUNCtion4 WMEMory4 DIGital0 - DIGital15

CLOCk MTRend MSPectrum HISTogram

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 75

Program Data

Program data is used to clarify the meaning of the command or query. It provides
necessary information, such as whether a function should be on or off, or which
waveform is to be displayed. Each instruction's syntax definition shows the
program data and the values they accept.

When there is more than one data parameter, they are separated by commas (,).
You can add spaces around the commas to improve readability.

76 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Header Types

There are three types of headers:

• "Simple Command Header" on page 76

• "Compound Command Header" on page 76

• "Common Command Header" on page 77

See Also • "Combining Commands in the Same Subsystem" on page 77

• "Duplicate Mnemonics" on page 77

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and DIGITIZE
are examples of simple command headers typically used in this oscilloscope. The
syntax is:

<program mnemonic><terminator>

For example:

":AUTOSCALE"

When program data must be included with the simple command header (for
example, :DIGITIZE CHAN1), white space is added to separate the data from the
header. The syntax is:

<program mnemonic><separator><program data><terminator>

For example:

":DIGITIZE CHANNEL1,FUNCTION2"

Compound Command Header

Compound command headers are a combination of two program mnemonics. The
first mnemonic selects the subsystem, and the second mnemonic selects the
function within that subsystem. The mnemonics within the compound message
are separated by colons. For example:

To execute a single function within a subsystem:

:<subsystem>:<function><separator><program data><terminator>

For example:

":CHANNEL1:BWLIMIT ON"

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 77

Combining Commands in the Same Subsystem

To execute more than one command within the same subsystem, use a semi-colon
(;) to separate the commands:

:<subsystem>:<command><separator><data>;<command><separator>
<data><terminator>

For example:

:CHANNEL1:INPUT DC;BWLIMIT ON

Common Command Header

Common command headers, such as clear status, control the IEEE 488.2 functions
within the oscilloscope. The syntax is:

*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command
header. *CLS is an example of a common command header.

Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For
example, you can use the function mnemonic RANGE to change both the vertical
range and horizontal range:

To set the vertical range of channel 1 to 0.4 volts full scale:

:CHANNEL1:RANGE .4

To set the horizontal time base to 1 second full scale:

:TIMEBASE:RANGE 1

In these examples, CHANNEL1 and TIMEBASE are subsystem selectors, and
determine the range type being modified.

78 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Query Headers

A command header immediately followed by a question mark (?) is a query. After
receiving a query, the oscilloscope interrogates the requested subsystem and
places the answer in its output queue. The answer remains in the output queue
until it is read or until another command is issued. When read, the answer is
transmitted across the bus to the designated listener (typically a computer).

For example, with VISA COM library and Visual Basic for Applications (VBA)
language, the query:

myScope.WriteString ":TIMEBASE:RANGE?"

places the current time base setting in the output queue.

The computer input statement:

varRange = myScope.ReadNumber

passes the value across the bus to the computer and places it in the variablevar
Range.

You can use queries to find out how the oscilloscope is currently configured and to
get results of measurements made by the oscilloscope. For example, the query:

:MEASURE:RISETIME?

tells the oscilloscope to measure the rise time of your waveform and place the
result in the output queue.

The output queue must be read before the next program message is sent. For
example, when you send the query :MEASURE:RISETIME?, you must follow it with
an input statement.

With the VISA COM library and Visual Basic for Applications (VBA) language, this
is usually done with a ReadString() or ReadNumber() method. These methods read
the result of the query and place the result in a specified variable.

NOTE Handle Queries Properly

If you send another command or query before reading the result of a query, the output buffer
is cleared and the current response is lost. This also generates a query-interrupted error in the
error queue. If you execute an input statement before you send a query, it will cause the
computer to wait indefinitely.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 79

Program Header Options

You can send program headers using any combination of uppercase or
lowercaseASCII characters. Oscilloscope responses, however, are always returned
in uppercase.

You may send program command and query headers in either long form (complete
spelling), short form (abbreviated spelling), or any combination of long form and
short form. For example:

":TIMebase:DELay 1E-6" is the long form.

":TIM:DEL 1E-6" is the short form.

The command descriptions in this reference show upper and lowercase characters.
For example, ":AUToscale" indicates that the entire command name is
":AUTOSCALE". The short form, ":AUT", is also accepted by the oscilloscope.

The rules for the short form syntax are described in Chapter 8, “Programming
Conventions,” starting on page 151.

NOTE Using Long Form or Short Form

Programs written in long form are easily read and are almost self-documenting. The short
form syntax conserves the amount of computer memory needed for program storage and
reduces I/O activity.

80 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:REFERENCE command can be
set to left, center, or right. The character program data in this case may be LEFT,
CENTER, or RIGHT. The command :TIMEBASE:REFERENCE RIGHT sets the time
base reference to right.

The available mnemonics for character program data are always included with the
instruction's syntax definition. You may send either the long form of commands, or
the short form (if one exists). You may mix uppercase and lowercase letters freely.
When receiving responses, uppercase letters are used exclusively.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 81

Numeric Program Data

Some command headers require program data to be expressed numerically. For
example, :TIMEBASE:RANGE requires the desired full-scale range to be expressed
numerically.

For numeric program data, you can use exponential notation or suffix multipliers to
indicate the numeric value. The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, it means that the
number should be whole. Any fractional part is ignored and truncated. Numeric
data parameters that accept fractional values are called real numbers.

All numbers are expected to be strings of ASCII characters.

• When sending the number 9, you would send a byte representing the ASCII
code for the character "9" (which is 57).

• A three-digit number like 102 would take up three bytes (ASCII codes 49, 48,
and 50). The number of bytes is figured automatically when you include the
entire instruction in a string.

82 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Embedded Strings

Embedded strings contain groups of alphanumeric characters which are treated as
a unit of data by the oscilloscope. An example of this is the line of text written to
the advisory line of the oscilloscope with the :SYSTEM:DSP command:

:SYSTEM:DSP ""This is a message.""

You may delimit embedded strings with either single (') or double (") quotation
marks. These strings are case-sensitive, and spaces are also legal characters.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 83

Program Message Terminator

The program instructions within a data message are executed after the program
message terminator is received. The terminator may be either an NL (New Line)
character, an EOI (End-Or-Identify) asserted in the GPIB interface, or a
combination of the two. Asserting the EOI sets the EOI control line low on the last
byte of the data message. The NL character is an ASCII linefeed (decimal 10).

NOTE New Line Terminator Functions Like EOS and EOT

The NL (New Line) terminator has the same function as an EOS (End Of String) and EOT (End Of
Text) terminator.

84 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Common Commands within a Subsystem

Common commands can be received and processed by the oscilloscope whether
they are sent over the bus as separate program messages or within other program
messages. If you have selected a subsystem, and a common command is received
by the oscilloscope, the oscilloscope remains in the selected subsystem. For
example, if the program message

":ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the oscilloscope, the oscilloscope turns averaging on, then clears
the status information without leaving the selected subsystem.

If some other type of command is received within a program message, you must
re-enter the original subsystem after the command. For example, the program
message

":ACQUIRE:AVERAGE ON;:AUTOSCALE;:ACQUIRE:AVERAGE:COUNT 1024"

turns averaging on, completes the autoscale operation, then sets the acquire
average count. Here, :ACQUIRE must be sent again after AUTOSCALE to re-enter
the ACQUIRE subsystem and set the count.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 85

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon. The
colon following the semicolon lets you enter a new subsystem. For example:

<program mnemonic><data>;:<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

NOTE You can Combine Compound and Simple Commands

Multiple program commands may be any combination of compound and simple commands.

86 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Programming Getting Started

The remainder of this chapter explains how to set up the oscilloscope, how to
retrieve setup information and measurement results, how to digitize a waveform,
and how to pass data to the computer. Chapter 25, “Measure Commands,”
starting on page 527 describes getting measurement data from the oscilloscope.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 87

Referencing the IO Library

No matter which instrument programming library you use (SICL, VISA, or VISA
COM), you must reference the library from your program.

In C/C++, you must tell the compiler where to find the include and library files (see
the Keysight IO Libraries Suite documentation for more information).

To reference the Keysight VISA COM library in Visual Basic for Applications (VBA,
which comes with Microsoft Office products like Excel):

1 Choose Tools > References... from the main menu.

2 In the References dialog, check the "VISA COM 3.0 Type Library".

3 Click OK.

To reference the Keysight VISA COM library in Microsoft Visual Basic 6.0:

1 Choose Project > References... from the main menu.

2 In the References dialog, check the "VISA COM 3.0 Type Library".

3 Click OK.

88 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Opening the Oscilloscope Connection via the IO Library

PC controllers communicate with the oscilloscope by sending and receiving
messages over a remote interface. Once you have opened a connection to the
oscilloscope over the remote interface, programming instructions normally appear
as ASCII character strings embedded inside write statements of the programing
language. Read statements are used to read query responses from the
oscilloscope.

For example, when using the Keysight VISA COM library in Visual Basic (after
opening the connection to the instrument using the ResourceManager object's
Open method), the FormattedIO488 object's WriteString, WriteNumber, WriteList,
or WriteIEEEBlock methods are used for sending commands and queries. After a
query is sent, the response is read using the ReadString, ReadNumber, ReadList,
or ReadIEEEBlock methods.

The following Visual Basic statements open the connection and send a command
that turns on the oscilloscope's label display.

Dim myMgr As VisaComLib.ResourceManager
Dim myScope As VisaComLib.FormattedIO488

Set myMgr = New VisaComLib.ResourceManager
Set myScope = New VisaComLib.FormattedIO488

' Open the connection to the oscilloscope. Get the VISA Address from the
' Keysight Connection Expert (installed with Keysight IO Libraries Suite
).
Set myScope.IO = myMgr.Open("<VISA Address>")

' Send a command.
myScope.WriteString ":DISPlay:LABel ON"

The ":DISPLAY:LABEL ON" in the above example is called a program message.
Program messages are explained in more detail in "Instructions" on page 68.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 89

Initializing the Interface and the Oscilloscope

To make sure the bus and all appropriate interfaces are in a known state, begin
every program with an initialization statement. When using the Keysight VISA
COM library, you can use the resource session object's Clear method to clears the
interface buffer:

Dim myMgr As VisaComLib.ResourceManager
Dim myScope As VisaComLib.FormattedIO488

Set myMgr = New VisaComLib.ResourceManager
Set myScope = New VisaComLib.FormattedIO488

' Open the connection to the oscilloscope. Get the VISA Address from the
' Keysight Connection Expert (installed with Keysight IO Libraries Suite
).
Set myScope.IO = myMgr.Open("<VISA Address>")

' Clear the interface buffer and set the interface timeout to 10 seconds
.
myScope.IO.Clear
myScope.IO.Timeout = 10000

When you are using GPIB, CLEAR also resets the oscilloscope's parser. The parser
is the program which reads in the instructions which you send it.

After clearing the interface, initialize the instrument to a preset state:

myScope.WriteString "*RST"

See Also • "Autoscale" on page 89

• "Setting Up the Oscilloscope" on page 90

Autoscale

The AUTOSCALE feature of Keysight Technologies digitizing oscilloscopes
performs a very useful function on unknown waveforms by automatically setting
up the vertical channel, time base, and trigger level of the oscilloscope.

The syntax for the autoscale function is:

:AUTOSCALE<terminator>

NOTE Information for Initial izing the Instrument

The actual commands and syntax for initializing the instrument are discussed in Chapter 13,
“Common Commands,” starting on page 269.

Refer to the Keysight IO Libraries Suite documentation for information on initializing the
interface.

90 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Setting Up the Oscilloscope

A typical oscilloscope setup configures the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and
slope.

A typical example of the commands sent to the oscilloscope are:

:CHANNEL1:PROBE 10; RANGE 16;OFFSET 1.00<terminator>

:SYSTEM:HEADER OFF<terminator>

:TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 μs/div), with delay of
100 μs. Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V, and
probe attenuation of 10.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 91

Example Program

This program demonstrates the basic command structure used to program the
oscilloscope.

' Initialize the instrument interface to a known state.
myScope.IO.Clear
myScope.IO.Timeout = 15000 ' Set interface timeout to 15 seconds.

' Initialize the instrument to a preset state.
myScope.WriteString "*RST"

' Set the time base mode to normal with the horizontal time at
' 50 ms/div with 0 s of delay referenced at the center of the
' graticule.
myScope.WriteString ":TIMebase:RANGe 5E-4" ' Time base to 500 us/div.
myScope.WriteString ":TIMebase:DELay 0" ' Delay to zero.
myScope.WriteString ":TIMebase:REFerence CENTer" ' Display ref. at

' center.

' Set the vertical range to 1.6 volts full scale with center screen
' at -0.4 volts with 10:1 probe attenuation and DC coupling.
myScope.WriteString ":CHANnel1:PROBe 1.0" ' Probe attenuation

' to 1:1.
myScope.WriteString ":CHANnel1:RANGe 1.6" ' Vertical range

' 1.6 V full scale.
myScope.WriteString ":CHANnel1:OFFSet -0.4" ' Offset to -0.4.
myScope.WriteString ":CHANnel1:INPut DC" ' Coupling to DC.

' Configure the instrument to trigger at -0.4 volts with normal
' triggering.
myScope.WriteString ":TRIGger:SWEep NORMal" ' Normal triggering.
myScope.WriteString ":TRIGger:LEVel CHAN1,-0.4" ' Trigger level to -0.
4.
myScope.WriteString ":TRIGger:MODE EDGE" ' Edge triggering
myScope.WriteString ":TRIGger:EDGE:SLOPe POSitive" ' Trigger on pos. slo
pe.

' Configure the instrument for normal acquisition.
myScope.WriteString ":ACQuire:MODE RTIMe" ' Normal acquisition.
myScope.WriteString ":SYSTem:HEADer OFF" ' Turn system headers off.
myScope.WriteString ":DISPlay:GRATicule FRAMe" ' Grid off.

92 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Using the DIGITIZE Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition is
stopped. You can measure the captured data by using the oscilloscope or by
transferring the data to a computer for further analysis. The captured data consists
of two parts: the preamble and the waveform data record.

After changing the oscilloscope configuration, the waveform buffers are cleared.
Before doing a measurement, you should send the DIGITIZE command to ensure
new data has been collected.

You can send the DIGITIZE command with no parameters for a higher throughput.
Refer to the DIGITIZE command in Chapter 27, “Root Level Commands,” starting
on page 805 for details.

When the DIGITIZE command is sent to an oscilloscope, the specified channel's
waveform is digitized using the current ACQUIRE parameters. Before sending the
:WAVEFORM:DATA? query to download waveform data to your computer, you
should specify the WAVEFORM parameters.

The number of data points comprising a waveform varies according to the number
requested in the ACQUIRE subsystem. The ACQUIRE subsystem determines the
number of data points, type of acquisition, and number of averages used by the
DIGITIZE command. This lets you specify exactly what the digitized information
contains. The following program example shows a typical setup:

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":ACQUIRE:MODE RTIME"
myScope.WriteString ":ACQUIRE:COMPLETE 100"
myScope.WriteString ":WAVEFORM:SOURCE CHANNEL1"
myScope.WriteString ":WAVEFORM:FORMAT BYTE"
myScope.WriteString ":ACQUIRE:COUNT 8"
myScope.WriteString ":ACQUIRE:POINTS 500"
myScope.WriteString ":DIGITIZE CHANNEL1"
myScope.WriteString ":WAVEFORM:DATA?"

This setup places the oscilloscope into the real time sampling mode using eight
averages. This means that when the DIGITIZE command is received, the command
will execute until the waveform has been averaged at least eight times.

After receiving the :WAVEFORM:DATA? query, the oscilloscope will start
downloading the waveform information.

Digitized waveforms are passed from the oscilloscope to the computer by sending
a numerical representation of each digitized point. The format of the numerical
representation is controlled by using the :WAVEFORM:FORMAT command and
may be selected as BYTE, WORD, or ASCII.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 93

The easiest method of receiving a digitized waveform depends on data structures,
available formatting, and I/O capabilities. You must convert the data values to
determine the voltage value of each point. These data values are passed starting
with the left most point on the oscilloscope's display. For more information, refer
to the chapter, "Waveform Commands."

When using GPIB, you may abort a digitize operation by sending a Device Clear
over the bus.

94 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Receiving Information from the Oscilloscope

After receiving a query (a command header followed by a question mark), the
oscilloscope places the answer in its output queue. The answer remains in the
output queue until it is read or until another command is issued. When read, the
answer is transmitted across the interface to the computer.

The input statement for receiving a response message from an oscilloscope's
output queue typically has two parameters; the device address and a format
specification for handling the response message. For example, with the VISA COM
library, to read the result of the query command :CHANNEL1:INPUT? you would
use the ReadString() method:

Dim strSetting As String
myScope.WriteString ":CHANnel1:INPut?"
strSetting = myScope.ReadString

This would enter the current setting for the channel 1 coupling in the string
variable strSetting.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MEASURE:RISETIME?, you must follow that query with an input statement.

The format specification for handling response messages depends on both the
computer and the programming language.

NOTE Handle Queries Properly

If you send another command or query before reading the result of a query, the output buffer
will be cleared and the current response will be lost. This will also generate a
query-interrupted error in the error queue. If you execute an input statement before you send a
query, it will cause the computer to wait indefinitely.

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 95

String Variable Example

The output of the oscilloscope may be numeric or character data depending on
what is queried. Refer to the specific commands for the formats and types of data
returned from queries.

This example shows the data being returned to a string variable:

Dim strRang As String
myScope.WriteString ":CHANNEL1:RANGE?"
strRang = myScope.ReadString
Debug.Print strRang

After running this program, the computer displays:

+8.00000E-01

NOTE Express String Variables Using Exact Syntax

In Visual Basic, string variables are case sensitive and must be expressed exactly the same
each time they are used.

96 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Numeric Variable Example

This example shows the data being returned to a numeric variable:

Dim varRang As Variant
myScope.WriteString ":CHANnel1:RANGe?"
varRang = myScope.ReadNumber
Debug.Print "Channel 1 range: " + FormatNumber(varRang, 0)

After running this program, the computer displays:

.8

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 97

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data to
be transmitted over the system interface as a series of 8-bit binary data bytes. This
is particularly useful for sending large quantities of data or 8-bit extended ASCII
codes. The syntax is a pound sign (#) followed by a non-zero digit representing
the number of digits in the decimal integer. After the non-zero digit is the decimal
integer that states the number of 8-bit data bytes being sent. This is followed by
the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:

#44000 <4000 bytes of data> <terminator>

The "4" following the pound sign represents the number of digits in the number of
bytes, and "4000" represents the number of bytes to be transmitted.

98 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

Multiple Queries

You can send multiple queries to the instrument within a single command string,
but you must also read them back as a single query result. This can be
accomplished by reading them back into a single string variable, multiple string
variables, or multiple numeric variables.

For example, to read the :TIMebase:RANGe?;DELay? query result into a single
string variable, you could use the commands:

myScope.WriteString ":TIMebase:RANGe?;DELay?"
Dim strQueryResult As String
strQueryResult = myScope.ReadString
MsgBox "Timebase range; delay:" + strQueryResult

When you read the result of multiple queries into a single string variable, each
response is separated by a semicolon. For example, the output of the previous
example would be:

Timebase range; delay: <range_value>;<delay_value>

To read the :TIMebase:RANGe?;DELay? query result into multiple string variables,
you could use the ReadList method to read the query results into a string array
variable using the commands:

myScope.WriteString ":TIMebase:RANGe?;DELay?"
Dim strResults() As String
strResults() = myScope.ReadList(ASCIIType_BSTR)
MsgBox "Timebase range: " + strResults(0) + ", delay: " + strResults(1)

To read the :TIMebase:RANGe?;DELay? query result into multiple numeric
variables, you could use the ReadList method to read the query results into a
variant array variable using the commands:

myScope.WriteString ":TIMebase:RANGe?;DELay?"
Dim varResults() As Variant
varResults() = myScope.ReadList
MsgBox "Timebase range: " + FormatNumber(varResults(0) * 1000, 4) + _

" ms, delay: " + FormatNumber(varResults(1) * 1000000, 4) + " us"

Introduction to Programming 3

Keysight Infiniium Oscilloscopes Programmer's Guide 99

Oscilloscope Status

Status registers track the current status of the oscilloscope. By checking the
oscilloscope status, you can find out whether an operation has completed and is
receiving triggers. Chapter 6, “Status Reporting,” starting on page 117 explains
how to check the status of the oscilloscope.

100 Keysight Infiniium Oscilloscopes Programmer's Guide

3 Introduction to Programming

101

Keysight Infiniium Oscilloscopes
Programmer's Guide

4 LAN, USB, and GPIB
Interfaces

LAN Interface Connector / 102
GPIB Interface Connector / 103
Default Startup Conditions / 104
Interface Capabilities / 105
GPIB Command and Data Concepts / 106
Communicating Over the GPIB Interface / 107
Communicating Over the LAN Interface / 108
Communicating via Telnet and Sockets / 109
Bus Commands / 111

There are several types of interfaces that can be used to remotely program the
Infiniium oscilloscope including Local Area Network (LAN) interface and GPIB
interface. Telnet and sockets can also be used to connect to the oscilloscope.

102 Keysight Infiniium Oscilloscopes Programmer's Guide

4 LAN, USB, and GPIB Interfaces

LAN Interface Connector

The oscilloscope is equipped with a LAN interface RJ-45 connector on the rear
panel. This allows direct connect to your network. However, before you can use
the LAN interface to program the oscilloscope, the network properties must be
configured. Unless you are a Network Administrator, you should contact your
Network Administrator to add the appropriate client, protocols, and configuration
information for your LAN. This information is different for every company.

LAN, USB, and GPIB Interfaces 4

Keysight Infiniium Oscilloscopes Programmer's Guide 103

GPIB Interface Connector

The oscilloscope is not equipped with a GPIB interface connector. You can,
however, order the N4865A GPIB-to-LAN adapter for the 9000A Series
oscilloscope.

104 Keysight Infiniium Oscilloscopes Programmer's Guide

4 LAN, USB, and GPIB Interfaces

Default Startup Conditions

The following default conditions are established during power-up:

• The Request Service (RQS) bit in the status byte register is set to zero.

• All of the event registers are cleared.

• The Standard Event Status Enable Register is set to 0xFF hex.

• Service Request Enable Register is set to 0x80 hex.

• The Operation Status Enable Register is set to 0xFFFF hex.

• The Overload Event Enable Register is set to 0xFF hex.

• The Mask Test Event Enable Register is set to 0xFF hex.

You can change the default conditions using the *PSC command with a parameter
of 1 (one). When set to 1, the Standard Event Status Enable Register is set 0x00
hex and the Service Request Enable Register is set to 0x00 hex. This prevents the
Power On (PON) event from setting the SRQ interrupt when the oscilloscope is
ready to receive commands.

LAN, USB, and GPIB Interfaces 4

Keysight Infiniium Oscilloscopes Programmer's Guide 105

Interface Capabilities

The interface capabilities of this oscilloscope, as defined by IEEE 488.1 and IEEE
488.2, are listed in Table 1.

Table 1 Interface Capabilities

Code Interface Function Capabil ity

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only
Mode/ Unaddress if Listen Address
(MLA)

L4 Listener Basic Listener/ Unaddresses if Talk
Address (MTA)

SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PP0 Parallel Poll No Capability

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

C0 Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)

106 Keysight Infiniium Oscilloscopes Programmer's Guide

4 LAN, USB, and GPIB Interfaces

GPIB Command and Data Concepts

The GPIB interface has two modes of operation: command mode and data mode.
The interface is in the command mode when the Attention (ATN) control line is
true. The command mode is used to send talk and listen addresses and various
interface commands such as group execute trigger (GET).

The interface is in the data mode when the ATN line is false. The data mode is used
to convey device-dependent messages across the bus. The device-dependent
messages include all of the oscilloscope-specific commands, queries, and
responses found in this manual, including oscilloscope status information.

LAN, USB, and GPIB Interfaces 4

Keysight Infiniium Oscilloscopes Programmer's Guide 107

Communicating Over the GPIB Interface

Device addresses are sent by the computer in the command mode to specify who
talks and who listens. Because GPIB can address multiple devices through the
same interface card, the device address passed with the program message must
include the correct interface select code and the correct oscilloscope address.

Device Address = (Interface Select Code * 100) + Oscilloscope Address

See Also • "Interface Select Code" on page 107

• "Oscilloscope Address" on page 107

Interface Select Code

Each interface card has a unique interface select code. This code is used by the
computer to direct commands and communications to the proper interface. The
default is typically "7" for the GPIB interface cards.

Oscilloscope Address

Each oscilloscope on the GPIB must have a unique oscilloscope address between
decimal 0 and 30. This oscilloscope address is used by the computer to direct
commands and communications to the proper oscilloscope on an interface. The
default is typically "7" for this oscilloscope. You can change the oscilloscope
address in the Utilities, Remote Interface dialog box.

NOTE Do Not Use Address 21 for an Oscilloscope Address

Address 21 is usually reserved for the Computer interface Talk/Listen address, and should not
be used as an oscilloscope address.

108 Keysight Infiniium Oscilloscopes Programmer's Guide

4 LAN, USB, and GPIB Interfaces

Communicating Over the LAN Interface

The device address used to send commands and receive data using the LAN
interface is located in the Remote Setup dialog box (Util ities > Remote Setup).

The following C example program shows how to communicate with the
oscilloscope using the LAN interface and the Keysight Standard Instrument
Control Library (SICL).

#include <sicl.h>

#define BUFFER_SIZE 1024

main()
{
INST Bus;
int reason;
unsigned long actualcnt;
char buffer[BUFFER_SIZE];

/* Open the LAN interface */
Bus = iopen("lan[130.29.71.143]:hpib7,7");
if(Bus != 0) {

/* Bus timeout set to 20 seconds */
itimeout(Bus, 20000);

/* Clear the interface */
iclear(Bus);
/* Query and print the oscilloscope's Id */
iwrite(Bus, "*IDN?", 5, 1, &actualcnt);
iread(Bus, buffer, BUFFER_SIZE, &reason, &actualcnt);
buffer[actualcnt - 1] = 0;

printf("%s\\n", buffer);
iclose(Bus);

}
}

LAN, USB, and GPIB Interfaces 4

Keysight Infiniium Oscilloscopes Programmer's Guide 109

Communicating via Telnet and Sockets

• "Telnet" on page 109

• "Sockets" on page 109

Telnet

To open a connection to the oscilloscope via a telnet connection, use the following
syntax in a command prompt:

telnet Oscilloscope_IP_Address 5024

5024 is the port number and the name of the oscilloscope can be used in place of
the IP address if desired.

After typing the above command line, press enter and a SCPI command line
interface will open. You can then use this as you typically would use a command
line.

Sockets

Sockets can be used to connect to your oscilloscope on either a Windows or Unix
machine.

The sockets are located on port 5025 on your oscilloscope. Between ports 5024
and 5025, only six socket ports can be opened simultaneously. It is, therefore,
important that you use a proper close routine to close the connection to the
oscilloscope. If you forget this, the connection will remain open and you may end
up exceeding the limit of six socket ports.

Some basic commands used in communicating to your oscilloscope include:

• The receive command is: recv

• The send command is: send

Below is a programming example (for a Windows-based machine) for opening and
closing a connection to your oscilloscope via sockets.

#include <winsock2.h>

void main ()
{

WSADATA wsaData;
SOCKET mysocket = NULL;
char* ipAddress = "130.29.70.70";
const int ipPort = 5025;

//Initialize Winsock
int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
if(iResult != NO_ERROR)
{

printf("Error at WSAStartup()\\n");

110 Keysight Infiniium Oscilloscopes Programmer's Guide

4 LAN, USB, and GPIB Interfaces

return NULL;
}

//Create the socket
mySocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCOP);
if(mySocket == INVALID_SOCKET)
{

printf("Error at socket(): %ld\\n", WSAGetLastError());
WSACleanup();
return NULL;

}

sockaddr_in clientService;
clientService.sin_family = AF_INET;
clientService.sin.addr.s_addr = inet_addr(ipAddress);
clientService.sin_port = htons(ipPort);

if(connect(mySocket, (SOCKADDR*) &clientService, sizeof(clientService
)))

{
printf("Failed to connect.\\n");
WSACleanup();
return NULL;

}

//Do some work here

//Close socket when finished
closesocket(mySocket);

}

LAN, USB, and GPIB Interfaces 4

Keysight Infiniium Oscilloscopes Programmer's Guide 111

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE 488.2
defines many of the actions that are taken when these commands are received by
the oscilloscope.

Device Clear

The device clear (DCL) and selected device clear (SDC) commands clear the input
buffer and output queue, reset the parser, and clear any pending commands. If
either of these commands is sent during a digitize operation, the digitize operation
is aborted.

Group Execute Trigger

The group execute trigger (GET) command arms the trigger. This is the same
action produced by sending the RUN command.

Interface Clear

The interface clear (IFC) command halts all bus activity. This includes
unaddressing all listeners and the talker, disabling serial poll on all devices, and
returning control to the system computer.

112 Keysight Infiniium Oscilloscopes Programmer's Guide

4 LAN, USB, and GPIB Interfaces

113

Keysight Infiniium Oscilloscopes
Programmer's Guide

5 Message Communication and
System Functions

Protocols / 114

This chapter describes the operation of oscilloscopes that operate in compliance
with the IEEE 488.2 (syntax) standard. It is intended to give you enough basic
information about the IEEE 488.2 standard to successfully program the
oscilloscope. You can find additional detailed information about the IEEE 488.2
standard in ANSI/IEEE Std 488.2-1987, "IEEE Standard Codes, Formats, Protocols,
and Common Commands."

This oscilloscope series is designed to be compatible with other Keysight
Technologies IEEE 488.2 compatible instruments. Oscilloscopes that are
compatible with IEEE 488.2 must also be compatible with IEEE 488.1 (GPIB bus
standard); however, IEEE 488.1 compatible oscilloscopes may or may not conform
to the IEEE 488.2 standard. The IEEE 488.2 standard defines the message
exchange protocols by which the oscilloscope and the computer will
communicate. It also defines some common capabilities that are found in all IEEE
488.2 oscilloscopes. This chapter also contains some information about the
message communication and system functions not specifically defined by
IEEE 488.2.

114 Keysight Infiniium Oscilloscopes Programmer's Guide

5 Message Communication and System Functions

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme used by
the computer and the oscilloscope to communicate. This includes defining when it
is appropriate for devices to talk or listen, and what happens when the protocol is
not followed.

• "Functional Elements" on page 114

• "Protocol Overview" on page 114

• "Protocol Operation" on page 115

• "Protocol Exceptions" on page 115

• "Suffix Multiplier" on page 115

• "Suffix Unit" on page 116

Functional Elements

Before proceeding with the description of the protocol, you should understand a
few system components, as described here.

Input Buffer The input buffer of the oscilloscope is the memory area where commands and
queries are stored prior to being parsed and executed. It allows a computer to
send a string of commands, which could take some time to execute, to the
oscilloscope, then proceed to talk to another oscilloscope while the first
oscilloscope is parsing and executing commands.

Output Queue The output queue of the oscilloscope is the memory area where all output data or
response messages are stored until read by the computer.

Parser The oscilloscope's parser is the component that interprets the commands sent to
the oscilloscope and decides what actions should be taken. "Parsing" refers to the
action taken by the parser to achieve this goal. Parsing and execution of
commands begins when either the oscilloscope recognizes a program message
terminator, or the input buffer becomes full. If you want to send a long sequence
of commands to be executed, then talk to another oscilloscope while they are
executing, you should send all of the commands before sending the program
message terminator.

Protocol Overview

The oscilloscope and computer communicate using program messages and
response messages. These messages serve as the containers into which sets of
program commands or oscilloscope responses are placed.

A program message is sent by the computer to the oscilloscope, and a response
message is sent from the oscilloscope to the computer in response to a query
message. A query message is defined as being a program message that contains
one or more queries. The oscilloscope will only talk when it has received a valid

Message Communication and System Functions 5

Keysight Infiniium Oscilloscopes Programmer's Guide 115

query message, and therefore has something to say. The computer should only
attempt to read a response after sending a complete query message, but before
sending another program message.

Protocol Operation

When you turn the oscilloscope on, the input buffer and output queue are cleared,
and the parser is reset to the root level of the command tree.

The oscilloscope and the computer communicate by exchanging complete
program messages and response messages. This means that the computer should
always terminate a program message before attempting to read a response. The
oscilloscope will terminate response messages except during a hard copy output.

After you send a query message, the next message should be the response
message. The computer should always read the complete response message
associated with a query message before sending another program message to the
same oscilloscope.

The oscilloscope allows the computer to send multiple queries in one query
message. This is called sending a "compound query". Multiple queries in a query
message are separated by semicolons. The responses to each of the queries in a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner.

Suffix Multiplier

The suffix multipliers that the oscilloscope will accept are shown in Table 2.

NOTE Remember this Rule of Oscilloscope Communication

The basic rule to remember is that the oscilloscope will only talk when prompted to, and it
then expects to talk before being told to do something else.

Table 2 <suffix mult>

Value Mnemonic Value Mnemonic

1E18 EX 1E-3 M

1E15 PE 1E-6 U

1E12 T 1E-9 N

116 Keysight Infiniium Oscilloscopes Programmer's Guide

5 Message Communication and System Functions

Suffix Unit

The suffix units that the oscilloscope will accept are shown in Table 3.

1E9 G 1E-12 P

1E6 MA 1E-15 F

1E3 K 1E-18 A

Table 2 <suffix mult> (continued)

Value Mnemonic Value Mnemonic

Table 3 <suffix unit>

Suffix Referenced Unit

V Volt

S Second

117

Keysight Infiniium Oscilloscopes
Programmer's Guide

6 Status Reporting

Status Reporting Data Structures / 120
Status Byte Register / 122
Service Request Enable Register / 124
Message Event Register / 125
Trigger Event Register / 126
Standard Event Status Register / 127
Standard Event Status Enable Register / 128
Operation Status Register / 129
Operation Status Enable Register / 130
Mask Test Event Register / 131
Mask Test Event Enable Register / 132
Acquisition Done Event Register / 133
Process Done Event Register / 134
Trigger Armed Event Register / 135
Auto Trigger Event Register / 136
Error Queue / 1276
Output Queue / 138
Message Queue / 139
Clearing Registers and Queues / 140

An overview of the oscilloscope's status reporting structure is shown in Figure 1.
The status reporting structure shows you how to monitor specific events in the
oscilloscope. Monitoring these events lets you determine the status of an
operation, the availability and reliability of the measured data, and more.

• To monitor an event, first clear the event, then enable the event. All of the
events are cleared when you initialize the oscilloscope.

• To generate a service request (SRQ) interrupt to an external computer, enable
at least one bit in the Status Byte Register.

118 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

The Status Byte Register, the Standard Event Status Register group, and the
Output Queue are defined as the Standard Status Data Structure Model in IEEE
488.2-1987. IEEE 488.2 defines data structures, commands, and common bit
definitions for status reporting. There are also oscilloscope-defined structures and
bits.

The status reporting structure consists of the registers shown here.

Table 4 lists the bit definitions for each bit in the status reporting data structure.

Figure 1 Status Reporting Overview Block Diagram

Table 4 Status Reporting Bit Definition

Bit Description Definition

PON Power On Indicates power is turned on.

URQ User Request Not Used. Permanently set to zero.

CME Command Error Indicates if the parser detected an error.

EXE Execution Error Indicates if a parameter was out of range or was
inconsistent with the current settings.

DDE Device Dependent Error Indicates if the device was unable to complete
an operation for device-dependent reasons.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 119

QYE Query Error Indicates if the protocol for queries has been
violated.

RQL Request Control Indicates if the device is requesting control.

OPC Operation Complete Indicates if the device has completed all
pending operations.

OPER Operation Status Register Indicates if any of the enabled conditions in the
Operation Status Register have occurred.

RQS Request Service Indicates that the device is requesting service.

MSS Master Summary Status Indicates if a device has a reason for requesting
service.

ESB Event Status Bit Indicates if any of the enabled conditions in the
Standard Event Status Register have occurred.

MAV Message Available Indicates if there is a response in the output
queue.

MSG Message Indicates if an advisory has been displayed.

USR User Event Register Indicates if any of the enabled conditions have
occurred in the User Event Register.

TRG Trigger Indicates if a trigger has been received.

WAIT TRIG Wait for Trigger Indicates the oscilloscope is armed and ready for
trigger.

Table 4 Status Reporting Bit Definition (continued)

Bit Description Definition

120 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Status Reporting Data Structures

The different status reporting data structures, descriptions, and interactions are
shown in Figure 2. To make it possible for any of the Standard Event Status
Register bits to generate a summary bit, you must enable the corresponding bits.
These bits are enabled by using the *ESE common command to set the
corresponding bit in the Standard Event Status Enable Register.

To generate a service request (SRQ) interrupt to the computer, you must enable at
least one bit in the Status Byte Register. These bits are enabled by using the *SRE
common command to set the corresponding bit in the Service Request Enable
Register. These enabled bits can then set RQS and MSS (bit 6) in the Status Byte
Register.

For more information about common commands, see the "Common Commands"
chapter.

Figure 2 Status Reporting Data Structures

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 121

Figure 3 Status Reporting Data Structures (Continued)

122 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Status Byte Register

The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status
registers and queues. The Status Byte Register is a live register. That is, its
summary bits are set and cleared by the presence and absence of a summary bit
from other event registers or queues.

If the Status Byte Register is to be used with the Service Request Enable Register
to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the summary bits
must be enabled, then set. Also, event bits in all other status registers must be
specifically enabled to generate the summary bit that sets the associated
summary bit in the Status Byte Register.

You can read the Status Byte Register using either the *STB? common command
query or the GPIB serial poll command. Both commands return the
decimal-weighted sum of all set bits in the register. The difference between the
two methods is that the serial poll command reads bit 6 as the Request Service
(RQS) bit and clears the bit which clears the SRQ interrupt. The *STB? query reads
bit 6 as the Master Summary Status (MSS) and does not clear the bit or have any
effect on the SRQ interrupt. The value returned is the total bit weights of all of the
bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible
computer interfaces, including a computer that could not do a serial poll. The
important point to remember is that if you are using an SRQ interrupt to an
external computer, the serial poll command clears bit 6. Clearing bit 6 allows the
oscilloscope to generate another SRQ interrupt when another enabled event
occurs.

The only other bit in the Status Byte Register affected by the *STB? query is the
Message Available bit (bit 4). If there are no other messages in the Output Queue,
bit 4 (MAV) can be cleared as a result of reading the response to the *STB? query.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the sum
of the two weights. Since these bits were not enabled to generate an SRQ, bit 6
(weight = 64) is not set.

Example 1 This example uses the *STB? query to read the contents of the oscilloscope's
Status Byte Register when none of the register's summary bits are enabled to
generate an SRQ interrupt.

Dim varStbValue As Variant
myScope.WriteString ":SYSTEM:HEADER OFF;*STB?" 'Turn headers off
varStbValue = myScope.ReadNumber
Debug.Print "Status Byte Register, Read: 0x" + Hex(varStbValue)

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 123

The next program prints "0x84" and clears bit 6 (RQS) of the Status Byte Register.
The difference in the decimal value between this example and the previous one is
the value of bit 6 (weight = 64). Bit 6 is set when the first enabled summary bit is
set, and is cleared when the Status Byte Register is read by the serial poll
command.

Example 2 The following example uses the resource session object's ReadSTB method to read
the contents of the oscilloscope's Status Byte Register.

varStbValue = myScope.IO.ReadSTB
Debug.Print "Status Byte Register, Serial Poll: 0x" + Hex(varStbValue)

NOTE Use Serial Poll ing to Read the Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte Register because
it resets bit 6 and allows the next enabled event that occurs to generate a new SRQ interrupt.

124 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in the
Status Byte Register. These enabled bits can then set RQS and MSS (bit 6) in the
Status Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command, and
the bits that are set are read with the *SRE? query. Bit 6 always returns 0. Refer to
the Status Reporting Data Structures shown in Figure 2.

Example The following example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request
Enable Register.

myScope.WriteString "*SRE " + CStr(CInt("&H30"))

This example uses the decimal parameter value of 48, the string returned by
CStr(CInt("&H30")), to enable the oscilloscope to generate an SRQ interrupt under
the following conditions:

• When one or more bytes in the Output Queue set bit 4 (MAV).

• When an enabled event in the Standard Event Status Register generates a
summary bit that sets bit 5 (ESB).

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 125

Message Event Register

This register sets the MSG bit in the status byte register when an internally
generated message is written to the advisory line on the oscilloscope. The
message is read using the :SYSTEM:DSP? query. Note that messages written to
the advisory line on the oscilloscope using the :SYSTEM:DSP command does not
set the MSG status bit.

126 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Trigger Event Register

This register sets the TRG bit in the status byte register when a trigger event
occurs.

The trigger event register stays set until it is cleared by reading the register with
the TER? query or by using the *CLS (clear status) command. If your application
needs to detect multiple triggers, the trigger event register must be cleared after
each one.

If you are using the Service Request to interrupt a computer operation when the
trigger bit is set, you must clear the event register after each time it is set.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 127

Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following oscilloscope
status events:

• PON - Power On

• CME - Command Error

• EXE - Execution Error

• DDE - Device Dependent Error

• QYE - Query Error

• RQC - Request Control

• OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register. If the
corresponding bit is also enabled in the Standard Event Status Enable Register, a
summary bit (ESB) in the Status Byte Register is set.

You can read the contents of the Standard Event Status Register and clear the
register by sending the *ESR? query. The value returned is the total bit weights of
all bits set at the present time.

Example The following example uses the *ESR query to read the contents of the Standard
Event Status Register.

myScope.WriteString ":SYSTEM:HEADER OFF" 'Turn headers off
myScope.WriteString "*ESR?"
varQueryResult = myScope.ReadNumber
Debug.print "Standard Event Status Register: 0x" + Hex(varQueryResult)

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the sum of
the two weights.

128 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Standard Event Status Enable Register

For any of the Standard Event Status Register bits to generate a summary bit, you
must first enable the bit. Use the *ESE (Event Status Enable) common command to
set the corresponding bit in the Standard Event Status Enable Register. Set bits
are read with the *ESE? query.

Example Suppose your application requires an interrupt whenever any type of error occurs.
The error related bits in the (Standard) Event Status Register are bits 2 through 5
(hexadecimal value 0x3C). Therefore, you can enable any of these bits to generate
the summary bit by sending:

myScope.WriteString "*ESE " + CStr(CInt("&H3C"))

Whenever an error occurs, it sets one of these bits in the (Standard) Event Status
Register. Because all the error related bits are enabled, a summary bit is generated
to set bit 5 (ESB) in the Status Byte Register.

If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the controller PC.

NOTE Disabled Standard Event Status Register Bits Respond, but Do Not Generate a
Summary Bit

Standard Event Status Register bits that are not enabled still respond to their corresponding
conditions (that is, they are set if the corresponding event occurs). However, because they are
not enabled, they do not generate a summary bit in the Status Byte Register.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 129

Operation Status Register

This register hosts the following bits:

• ACQ DONE bit 0

• PROC DONE bit 1

• WAIT TRIG bit 5

• MASK bit 9

• AUTO TRIG bit 11

• OVLR bit 12

The ACQ DONE done bit is set by the Acquisition Done Event Register.

The PROC DONE bit is set by the Process Done Event Register and indicates that
all functions and all math processes are done.

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates the
trigger is armed.

The MASK bit is set whenever at least one of the Mask Test Event Register bits is
enabled.

The AUTO TRIG bit is set by the Auto Trigger Event Register.

The OVLR bit is set whenever at least one of the Overload Event Register bits is
enabled.

If any of these bits are set, the OPER bit (bit 7) of the Status Byte Register is set.
The Operation Status Register is read and cleared with the OPER? query. The
register output is enabled or disabled using the mask value supplied with the
OPEE command.

130 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Operation Status Enable Register

For any of the Operation Status Register bits to generate a summary bit, you must
first enable the bit. Use the OPEE (Operation Event Status Enable) command to set
the corresponding bit in the Operation Status Enable Register. Set bits are read
with the OPEE? query.

Example Suppose your application requires an interrupt whenever any event occurs in the
mask test register. The error status bit in the Operation Status Register is bit 9.
Therefore, you can enable this bit to generate the summary bit by sending:

myScope.WriteString ":OPEE " + CStr(CInt("&H200"))

Whenever an error occurs, the oscilloscope sets this bit in the Mask Test Event
Register. Because this bit is enabled, a summary bit is generated to set bit 9
(OPER) in the Operation Status Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

NOTE Disabled Operation Status Register Bits Respond, but Do Not Generate a Summary
Bit

Operation Status Register bits that are not enabled still respond to their corresponding
conditions (that is, they are set if the corresponding event occurs). However, because they are
not enabled, they do not generate a summary bit in the Status Byte Register.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 131

Mask Test Event Register

This register hosts the following bits:

• Mask Test Complete bit (bit 0)

• Mask Test Fail bit (bit 1)

• Mask Low Amplitude bit (bit 2)

• Mask High Amplitude bit (bit 3)

• Mask Align Complete bit (bit 4)

• Mask Align Fail bit (bit 5)

The Mask Test Complete bit is set whenever the mask test is complete.

The Mask Test Fail bit is set whenever the mask test failed.

The Mask Low Amplitude bit is set whenever the signal is below the mask
amplitude.

The Mask High Amplitude bit is set whenever the signal is above the mask
amplitude.

The Mask Align Complete bit is set whenever the mask align is complete.

The Mask Align Fail bit is set whenever the mask align failed.

If any of these bits are set, the MASK bit (bit 9) of the Operation Status Register is
set. The Mask Test Event Register is read and cleared with the MTER? query. The
register output is enabled or disabled using the mask value supplied with the
MTEE command.

132 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Mask Test Event Enable Register

For any of the Mask Test Event Register bits to generate a summary bit, you must
first enable the bit. Use the MTEE (Mask Test Event Enable) command to set the
corresponding bit in the Mask Test Event Enable Register. Set bits are read with
the MTEE? query.

Example Suppose your application requires an interrupt whenever a Mask Test Fail occurs
in the mask test register. You can enable this bit to generate the summary bit by
sending:

myScope.WriteString ":MTEE " + CStr(CInt("&H2"))

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation
Status Register. Because the bits in the Operation Status Enable Register are all
enabled, a summary bit is generated to set bit 7 (OPER) in the Status Byte
Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

NOTE Disabled Mask Test Event Register Bits Respond, but Do Not Generate a Summary
Bit

Mask Test Event Register bits that are not enabled still respond to their corresponding
conditions (that is, they are set if the corresponding event occurs). However, because they are
not enabled, they do not generate a summary bit in the Operation Status Register.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 133

Acquisition Done Event Register

The Acquisition Done Event Register (ACQ DONE) sets bit 0 (ACQ DONE bit) in the
Operation Status Register when the oscilloscope acquisition is completed.

The ACQ DONE event register stays set until it is cleared by reading the register by
a ADER? query. If your application needs to detect multiple acquisitions, the ACQ
DONE event register must be cleared after each acquisition.

134 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Process Done Event Register

The Process Done Event Register (PDER) sets bit 1 (PROC DONE) of the Operation
Status Register when all functions and all math operations are completed. The
PDER bit stays set until cleared by a PDER? query.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 135

Trigger Armed Event Register

The Trigger Armed Event Register (TDER) sets bit 5 (WAIT TRIG) in the Operation
Status Register when the oscilloscope becomes armed.

The ARM event register stays set until it is cleared by reading the register with the
AER? query. If your application needs to detect multiple triggers, the ARM event
register must be cleared after each one.

136 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Auto Trigger Event Register

The Auto Trigger Event Register (AUTO TRIG) sets bit 11 (AUTO TRIG) in the
Operation Status Register when an auto trigger event occurs. The AUTO TRIG
register stays set until it is cleared by reading the register with the ATER? query. If
the application needs to detect multiple auto trigger events, the AUT TRIG register
must be cleared after each one.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 137

Error Queue

As errors are detected, they are placed in an error queue. This queue is a first-in,
first-out queue. If the error queue overflows, the last error in the queue is replaced
with error -350, "Queue overflow." Any time the queue overflows, the oldest errors
remain in the queue, and the most recent error is discarded. The length of the
oscilloscope's error queue is 30 (29 positions for the error messages, and 1
position for the "Queue overflow" message).

The error queue is read with the :SYSTEM:ERROR? query. Executing this query
reads and removes the oldest error from the head of the queue, which opens a
position at the tail of the queue for a new error. When all the errors have been read
from the queue, subsequent error queries return 0, "No error."

The error queue is cleared when any of these events occur:

• When the oscilloscope is powered up.

• When the oscilloscope receives the *CLS common command.

• When the last item is read from the error queue.

For more information on reading the error queue, refer to the :SYSTEM:ERROR?
query in the System Commands chapter. For a complete list of error messages,
refer to the chapter, "Error Messages."

138 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Output Queue

The output queue stores the oscilloscope-to-controller responses that are
generated by certain oscilloscope commands and queries. The output queue
generates the Message Available summary bit when the output queue contains
one or more bytes. This summary bit sets the MAV bit (bit 4) in the Status Byte
Register.

When using the Keysight VISA COM library, the output queue may be read with
the FormattedIO488 object's ReadString, ReadNumber, ReadList, or
ReadIEEEBlock methods.

Status Reporting 6

Keysight Infiniium Oscilloscopes Programmer's Guide 139

Message Queue

The message queue contains the text of the last message written to the advisory
line on the screen of the oscilloscope. The queue is read with the :SYSTEM:DSP?
query. Note that messages sent with the :SYSTEM:DSP command do not set the
MSG status bit in the Status Byte Register.

140 Keysight Infiniium Oscilloscopes Programmer's Guide

6 Status Reporting

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except the
output queue. If *CLS is sent immediately following a program message
terminator, the output queue is also cleared.

Figure 4 Status Reporting Decision Chart

yes

no Do you want
to do status
reporting?

Do you want to
send a Service Request
(SRQ) interrupt to the

controller?

Do you want to
report events monitored by
the Standard Event Status

Register?

yes

no (Your programs can read the status registers instead.)

yes

no

Reset the instrument and
clear the status registers:

myScope.WriteString "*RST"
myScope.WriteString "*CLS"

Use the *ESE common command
to enable the bits you want to
use to generate the ESB summary
bit in the Status Byte Register.

Use the *ESE common command
to enable the bits you want to
generate the RQS/MSS bit to set
bit 6 in the Status Byte Register
and send SRQ to the computer.
If events are monitored by the
Standard Event Status Register,
also enable ESB with the *SRE
command.

Activate the instrument function
that you want to monitor.

When an interrupt occurs, interrupt
handler should serial poll STB with:

varR = myScope.IO.ReadSTB

END

To read the Status Byte Register,
use the following:

myScope.WriteString "*STB?"
varR = myScope.ReadNumber
MsgBox "STB: 0x" + Hex(varR)

This displays the hexadecmal value
of the Status Byte Register.

Determine which bits in the
Status Byte Register are set.

Use the following to read the
contents of the status byte:

myScope.WriteString "*STB?"
varR = myScope.ReadNumber
MsgBox "STB: 0x" + Hex(varR)

Use the following to see if an
operation is complete:

myScope.WriteString "*OPC?"
varR = myScope.ReadNumber
MsgBox "OPC: 0x" + Hex(varR)

Use the following to read the
Standard Event Status Register:

myScope.WriteString "*ESR?"
varR = myScope.ReadNumber
MsgBox "ESR: 0x" + Hex(varR)

141

Keysight Infiniium Oscilloscopes
Programmer's Guide

7 Remote Acquisition
Synchronization

Programming Flow / 142
Setting Up the Oscilloscope / 143
Acquiring a Waveform / 144
Retrieving Results / 145
Acquisition Synchronization / 146
Single Shot Device Under Test (DUT) / 148
Averaging Acquisition Synchronization / 149

When remotely controlling an oscilloscope with SCPI commands, it is often
necessary to know when the oscilloscope has finished the previous operation and
is ready for the next SCPI command. The most common example is when an
acquisition is started using the :DIG, :RUN, or :SINGLE commands. Before a
measurement result can be queried, the acquisition must complete. Too often,
fixed delays are used to accomplish this wait, but fixed delays often use excessive
time or the time may not be long enough. A better solution is to use synchronous
commands and status to know when the oscilloscope is ready for the next request.

142 Keysight Infiniium Oscilloscopes Programmer's Guide

7 Remote Acquisition Synchronization

Programming Flow

Most remote programming follows these three general steps:

1 Setup the oscilloscope and device under test

2 Acquire a waveform

3 Retrieve results

Remote Acquisition Synchronization 7

Keysight Infiniium Oscilloscopes Programmer's Guide 143

Setting Up the Oscilloscope

Before making changes to the oscilloscope setup, it is best to make sure it is
stopped using the :STOP command followed by the *OPC? command.

After the oscilloscope is configured, it is ready for an acquisition.

NOTE It is not necessary to use the *OPC? command, hard coded waits, or status checking when
setting up the oscilloscope.

144 Keysight Infiniium Oscilloscopes Programmer's Guide

7 Remote Acquisition Synchronization

Acquiring a Waveform

When acquiring a waveform, there are two possible methods used to wait for the
acquisition to complete. These methods are blocking and polling. The table below
details when each method should be chosen and why.

Blocking Wait Poll ing Wait

Use When You know the oscilloscope will trigger
based on the oscilloscope setup and
device under test.

You know the oscilloscope may or may
not trigger based on the oscilloscope
setup and device under test.

Advantages • No need for polling
• Fast method

• Remote interface will not timeout
• No need for device clear if no

trigger

Disadvantages • Remote interface may timeout
• Device clear only way to get control

of oscilloscope if there is no trigger

• Slower method
• Required polling loop
• Required known maximum wait

time

Remote Acquisition Synchronization 7

Keysight Infiniium Oscilloscopes Programmer's Guide 145

Retrieving Results

Once the acquisition is complete, it is safe to retrieve measurements and statistics.

146 Keysight Infiniium Oscilloscopes Programmer's Guide

7 Remote Acquisition Synchronization

Acquisition Synchronization

• "Blocking Synchronization" on page 146

• "Polling Synchronization With Timeout" on page 146

Blocking Synchronization

Use the :DIGitize command to start the acquisition. This blocks subsequent
queries until the acquisition and processing is complete.

Example // Setup
:TRIGGER:MODE EDGE
:TIMEBASE:SCALE 5e-9

//Acquire
:DIG

//Get results
:MEASURE:RISETIME?

Polling Synchronization With Timeout

This example requires a timeout value so the operation can abort if an acquisition
does not occur within the timeout period.

Example TIMEOUT = 1000ms
currentTime = 0ms

// Setup
:STOP; *OPC? // if not stopped
:ADER? // clear ADER event

// Acquire
:SINGLE

while(currentTime <= TIMEOUT)
{

if (:ADER? == 1)
{

break;
}
else
{

// Use small wait to prevent excessive
// queries to the oscilloscope
wait (100ms)
currentTime += 100ms

}
}

//Get results
if (currentTime < TIMEOUT)
{

Remote Acquisition Synchronization 7

Keysight Infiniium Oscilloscopes Programmer's Guide 147

:MEASURE:RISETIME?
}

148 Keysight Infiniium Oscilloscopes Programmer's Guide

7 Remote Acquisition Synchronization

Single Shot Device Under Test (DUT)

The examples in the previous section (Acquisition Synchronization) assumed the
DUT is continually running and, therefore, the oscilloscope will have more than
one opportunity to trigger. With a single shot DUT, there is only one opportunity
for the oscilloscope to trigger so it is necessary for the oscilloscope to be armed
and ready before the DUT is enabled.

This example is the same as the previous example with the addition of checking for
the armed event status.

Example TIMEOUT = 1000ms
currentTime = 0ms

// Setup
:STOP; *OPC? // if not stopped
:ADER? // clear ADER event

// Acquire
:SINGLE

while(AER? == 0)
{

wait(100ms)
}

//oscilloscope is armed and ready, enable DUT here

while(currentTime <= TIMEOUT)
{

if (:ADER? == 1)
{

break;
}
else
{

// Use small wait to prevent excessive
// queries to the oscilloscope
wait (100ms)
currentTime += 100ms

}
}

//Get results
if (currentTime < TIMEOUT)
{

:MEASURE:RISETIME?
}

NOTE The blocking :DIGitize command cannot be used for a single shot DUT because once the
:DIGitize command is issued, the oscilloscope is blocked from any further commands until the
acquisition is complete.

Remote Acquisition Synchronization 7

Keysight Infiniium Oscilloscopes Programmer's Guide 149

Averaging Acquisition Synchronization

When averaging, it is necessary to know when the average count has been
reached. Since an ADER/PDER event occurs for every acquisition in the average
count, these commands cannot be used. The :SINGle command does not average.

If it is known that a trigger will occur, a :DIG will acquire the complete number of
averages, but if the number of averages is large, it may cause a timeout on the
connection.

The example below acquires the desired number of averages and then stops
running.

Example AVERAGE_COUNT = 256

:STOP;*OPC?
:TER?
:ACQ:AVERage:COUNt AVERAGE_COUNT
:ACQ:AVERage ON
:RUN

//Assume the oscilloscope will trigger, if not put a check here

while (:WAV:COUNT? < AVERAGE_COUNT)
{

wait(100ms)
}

:STOP;*OPC?

// Get results

150 Keysight Infiniium Oscilloscopes Programmer's Guide

7 Remote Acquisition Synchronization

151

Keysight Infiniium Oscilloscopes
Programmer's Guide

8 Programming Conventions

Truncation Rule / 152
The Command Tree / 153
Infinity Representation / 156
Sequential and Overlapped Commands / 157
Response Generation / 158
EOI / 159

This chapter describes conventions used to program the Infiniium-Series
Oscilloscopes, and conventions used throughout this manual. A description of the
command tree and command tree traversal is also included.

152 Keysight Infiniium Oscilloscopes Programmer's Guide

8 Programming Conventions

Truncation Rule

The truncation rule is used to produce the short form (abbreviated spelling) for the
mnemonics used in the programming headers and parameter arguments.

This document's command descriptions shows how the truncation rule is applied
to commands.

NOTE Command Truncation Rule

The mnemonic is the first four characters of the keyword, unless the fourth character is a
vowel. Then the mnemonic is the first three characters of the keyword. If the length of the
keyword is four characters or less, this rule does not apply, and the short form is the same as
the long form.

Table 5 Mnemonic Truncation

Long Form Short Form How the Rule is Applied

RANGe RANG Short form is the first four characters of the
keyword.

PATTern PATT Short form is the first four characters of the
keyword.

DISK DISK Short form is the same as the long form.

DELay DEL Fourth character is a vowel; short form is the
first three characters.

Programming Conventions 8

Keysight Infiniium Oscilloscopes Programmer's Guide 153

The Command Tree

The command tree in this document's table of contents shows all of the
commands in the Infiniium-Series Oscilloscopes and the relationship of the
commands to each other. The IEEE 488.2 common commands are not part of the
command tree because they do not affect the position of the parser within the
tree.

When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a
leading colon (:) is sent to the oscilloscope, the parser is set to the "root" of the
command tree.

• "Command Types" on page 153

• "Tree Traversal Rules" on page 153

• "Tree Traversal Examples" on page 154

Command Types

The commands in this oscilloscope can be viewed as three types: common
commands, root level commands, and subsystem commands.

• Common commands are commands defined by IEEE 488.2 and control some
functions that are common to all IEEE 488.2 instruments. These commands are
independent of the tree and do not affect the position of the parser within the
tree. *RST is an example of a common command.

• Root level commands control many of the basic functions of the oscilloscope.
These commands reside at the root of the command tree. They can always be
parsed if they occur at the beginning of a program message or are preceded by
a colon. Unlike common commands, root level commands place the parser
back at the root of the command tree. AUTOSCALE is an example of a root level
command.

• Subsystem commands are grouped together under a common node of the
command tree, such as the TIMEBASE commands. You may select only one
subsystem at a given time. When you turn on the oscilloscope initially, the
command parser is set to the root of the command tree and no subsystem is
selected.

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :TIMEBASE:RANGE. This is
referred to as a compound header. A compound header is a header made up of
two or more mnemonics separated by colons. The compound header contains no
spaces. The following rules apply to traversing the tree.

154 Keysight Infiniium Oscilloscopes Programmer's Guide

8 Programming Conventions

In the command tree, use the last mnemonic in the compound header as a
reference point (for example, RANGE). Then find the last colon above that
mnemonic (TIMEBASE:). That is the point where the parser resides. You can send
any command below this point within the current program message without
sending the mnemonics which appear above them (for example, REFERENCE).

Tree Traversal Examples

The WriteString() methods in the following examples are written using Visual Basic
for Application (VBA) with the VISA COM library.

Example 1 Consider the following command:

myScope.WriteString ":CHANNEL1:RANGE 0.5;OFFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
:CHANNEL1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is required to separate the two
commands or operations. The OFFSET command does not need :CHANNEL1
preceding it because the :CHANNEL1:RANGE command sets the parser to the
CHANNEL1 node in the tree.

Example 2 Consider the following commands:

myScope.WriteString ":TIMEBASE:REFERENCE CENTER;POSITION 0.00001"

or

myScope.WriteString ":TIMEBASE:REFERENCE CENTER"
myScope.WriteString ":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the "subsystem selector" is implied for the POSITION
command in the compound command.

A second way to send these commands is shown in the second part of the
example. Because the program message terminator places the parser back at the
root of the command tree, you must reselect TIMEBASE to re-enter the TIMEBASE
node before sending the POSITION command.

Example 3 Consider the following command:

myScope.WriteString ":TIMEBASE:REFERENCE CENTER;:CHANNEL1:OFFSET 0"

NOTE Tree Traversal Rules

A leading colon or a program message terminator (<NL> or EOI true on the last byte) places
the parser at the root of the command tree. A leading colon is a colon that is the first character
of a program header. Executing a subsystem command places the oscilloscope in that
subsystem until a leading colon or a program message terminator is found.

Programming Conventions 8

Keysight Infiniium Oscilloscopes Programmer's Guide 155

In this example, the leading colon before CHANNEL1 tells the parser to go back to
the root of the command tree. The parser can then recognize the
:CHANNEL1:OFFSET command and enter the correct node.

156 Keysight Infiniium Oscilloscopes Programmer's Guide

8 Programming Conventions

Infinity Representation

The representation for infinity for this oscilloscope is 9.99999E+37. This is also the
value returned when a measurement cannot be made.

Programming Conventions 8

Keysight Infiniium Oscilloscopes Programmer's Guide 157

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands.
Sequential commands finish their task before the execution of the next command
starts. Overlapped commands run concurrently. Commands following an
overlapped command may be started before the overlapped command is
completed.

158 Keysight Infiniium Oscilloscopes Programmer's Guide

8 Programming Conventions

Response Generation

As defined by IEEE 488.2, query responses may be buffered for these reasons:

• When the query is parsed by the oscilloscope.

• When the computer addresses the oscilloscope to talk so that it may read the
response.

This oscilloscope buffers responses to a query when the query is parsed.

Programming Conventions 8

Keysight Infiniium Oscilloscopes Programmer's Guide 159

EOI

The EOI bus control line follows the IEEE 488.2 standard without exception.

160 Keysight Infiniium Oscilloscopes Programmer's Guide

8 Programming Conventions

161

Keysight Infiniium Oscilloscopes
Programmer's Guide

9 Acquire Commands

:ACQuire:AVERage / 162
:ACQuire[:AVERage]:COUNt / 163
:ACQuire:BANDwidth / 164
:ACQuire:BANDwidth:FRAMe / 167
:ACQuire:COMPlete / 168
:ACQuire:COMPlete:STATe / 170
:ACQuire:HRESolution / 171
:ACQuire:INTerpolate / 172
:ACQuire:MODE / 173
:ACQuire:POINts[:ANALog] / 175
:ACQuire:POINts:AUTO / 177
:ACQuire:POINts:DIGital? / 178
:ACQuire:REDGe / 179
:ACQuire:RESPonse / 181
:ACQuire:SEGMented:COUNt / 183
:ACQuire:SEGMented:INDex / 184
:ACQuire:SEGMented:TTAGs / 185
:ACQuire:SRATe[:ANALog] / 186
:ACQuire:SRATe[:ANALog]:AUTO / 187
:ACQuire:SRATe:DIGital / 188
:ACQuire:SRATe:DIGital:AUTO / 189

The ACQuire subsystem commands set up conditions for executing a :DIGitize root
level command to acquire waveform data. The commands in this subsystem select
the type of data, the number of averages, and the number of data points.

162 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:AVERage

Command :ACQuire:AVERage {{ON|1} | {OFF|0}}

The :ACQuire:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages
them. When OFF, averaging is disabled. To set the number of averages, use the
:ACQuire:AVERage:COUNt command described next.

Averaging is not available in PDETect mode.

The :MTESt:AVERage command performs the same function as this command.

Example This example turns averaging on.

myScope.WriteString ":ACQUIRE:AVERAGE ON"

Query :ACQuire:AVERage?

The :ACQuire:AVERage? query returns the current setting for averaging.

Returned Format [:ACQuire:AVERAGE] {1|0}<NL>

Example This example places the current settings for averaging into the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":ACQUIRE:AVERAGE?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 163

:ACQuire[:AVERage]:COUNt

Command :ACQuire[:AVERage]:COUNt <count_value>

The :ACQuire[:AVERage]:COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :ACQuire[:AVERage]:COUNt command
specifies the number of data values to be averaged for each time bucket before
the acquisition is considered complete for that time bucket.

The :MTESt:AVERage:COUNt command performs the same function as this
command.

<count_value> An integer, 2 to 65,534, specifying the number of data values to be averaged.

Example This example specifies that 16 data values must be averaged for each time bucket
to be considered complete. The number of time buckets that must be complete for
the acquisition to be considered complete is specified by the :ACQuire:COMPlete
command.

myScope.WriteString ":ACQuire:COUNt 16"

Query :ACQuire[:AVERage]:COUNt?

The :ACQuire[:AVERage]:COUNt? query returns the currently selected count value.

Returned Format [:ACQuire[:AVERage]:COUNt] <value><NL>

<value> An integer, 2 to 65,534, specifying the number of data values to be averaged.

Example This example checks the currently selected count value and places that value in
the string variable, strResult. The program then prints the contents of the variable
to the computer's screen.

Dim strResult As String
myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":ACQuire:AVERage:COUNt?"
strResult = myScope.ReadString
Debug.Print strResult

History Legacy command (existed before version 3.10).

164 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:BANDwidth

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 165

(Enhanced bandwidth or noise reduction option only)

Command

:ACQuire:BANDwidth {AUTO | MAX | <bandwidth>}

The :ACQuire:BANDwidth command changes the bandwidth frequency control for
the acquisition system.

• AUTO — The bandwidth is automatically selected based on the sample rate
setting in order to make a good a trade-off between bandwidth, noise, and
aliasing.

• MAX — Sets the oscilloscope to the hardware bandwidth limit and disables the
bandwidth filter.

• <bandwidth> — a real number representing the bandwidth of the bandwidth
filter whose range of values depends on the model number of your
oscilloscope.

NOTE This command is only available with Enhanced Bandwidth or Noise Reduction options.

Model Band wid th Fil ter Values

DSOX/DSAX96204Q,
DSAZ/DSOZ634A

The maximum bandwidth down to 1 GHz in 1 GHz increments.

DSOX/DSAX95004Q,
DSAZ/DSOZ504A

DSOX/DSAX93304Q,
DSAZ/DSOZ334A

DSOX/DSAX92504Q,
DSAZ/DSOZ254A

DSOX/DSAX92004Q,
DSAZ/DSOZ204A

DSOX/DSAX93204A The maximum bandwidth down to 1 GHz in 1 GHz increments.

DSOX/DSAX92804A

DSOX/DSAX92504A

DSOX/DSAX92004A

DSOX/DSAX91604A

DSO/DSA91304A 13E09, 12E09, 10E09, 8E09, 6E09, 4E09, 3E09, 2.5E09, 2E09, 1E09

DSO/DSA91204A 12E09, 10E09, 8E09, 6E09, 4E09, 3E09, 2.5E09, 2E09, 1E09

DSO/DSA90804A 8E09, 6E09, 4E09, 3E09, 2.5E09, 2E09, 1E09

DSO/DSA90604A 6E09, 4E09, 3E09, 2.5E09, 2E09, 1E09

166 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

Query :ACQuire:BANDwidth?

The :ACQuire:BANDwidth? query returns the bandwidth setting of the bandwidth
control.

Returned Format [:ACQuire:BANDwidth] <bandwidth><NL>

History New in version 3.10.

Version 4.00: Added a MAX option for selecting the maximum bandwidth.

DSO/DSA90404A 4E09, 3E09, 2.5E09, 2E09, 1E09

DSO/DSA90254A 2.5E09, 2E09, 1E09

DSOS/MSOS804A The maximum bandwidth down to 500 MHz in 500 MHz increments,
250 MHz.

DSOS/MSOS604A

DSOS/MSOS404A

DSOS/MSOS254A

DSOS/MSOS204A

DSOS/MSOS104A

DSOS/MSOS054A

DSO/MSO9404A 4E09, 3.5E09, 3E09, 2.5E09, 2E09, 1.5E09, 1E09, 5E08

DSO/MSO9254A 2.5E09, 2E09, 1.5E09, 1E09, 5E08

DSO/MSO9104A 1E09, 5E08

DSO/MSO9064A The command is not valid for this model oscilloscope.

Model Band wid th Fil ter Values

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 167

:ACQuire:BANDwidth:FRAMe

Query :ACQuire:BANDwidth:FRAMe?

The :ACQuire:BANDwidth:FRAMe? query returns the maximum bandwidth
associated with oscilloscope model.

Returned Format <bandwidth><NL>

<bandwidth> ::= max. BW of oscilloscope model

History New in version 5.20.

168 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:COMPlete

Command :ACQuire:COMPlete <percent>

The :ACQuire:COMPlete command specifies how many of the data point storage
bins (time buckets) in the waveform record must contain a waveform sample
before a measurement will be made. For example, if the command
:ACQuire:COMPlete 60 has been sent, 60% of the storage bins in the waveform
record must contain a waveform data sample before a measurement is made.

• If :ACQuire:AVERage is set to OFF, the oscilloscope only needs one value per
time bucket for that time bucket to be considered full.

• If :ACQuire:AVERage is set to ON, each time bucket must have n hits for it to be
considered full, where n is the value set by :ACQuire:AVERage:COUNt.

Due to the nature of real time acquisition, 100% of the waveform record bins are
filled after each trigger event, and all of the previous data in the record is replaced
by new data when :ACQuire:AVERage is off. Hence, the complete mode really has
no effect, and the behavior of the oscilloscope is the same as when the completion
criteria is set to 100% (this is the same as in PDETect mode). When
:ACQuire:AVERage is on, all of the previous data in the record is replaced by new
data.

The range of the :ACQuire:COMPlete command is 0 to 100 and indicates the
percentage of time buckets that must be full before the acquisition is considered
complete. If the complete value is set to 100%, all time buckets must contain data
for the acquisition to be considered complete. If the complete value is set to 0,
then one acquisition cycle will take place. Completion is set by default setup or
*RST to 90%. Autoscale changes it to 100%.

<percent> An integer, 0 to 100, representing the percentage of storage bins (time buckets)
that must be full before an acquisition is considered complete.

Example This example sets the completion criteria for the next acquisition to 90%.

myScope.WriteString ":ACQUIRE:COMPLETE 90"

Query :ACQuire:COMPlete?

The :ACQuire:COMPlete? query returns the completion criteria.

Returned Format [:ACQuire:COMPlete] <percent><NL>

<percent> An integer, 0 to 100, representing the percentage of time buckets that must be full
before an acquisition is considered complete.

Example This example reads the completion criteria and places the result in the variable,
varPercent. Then, it prints the content of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":ACQUIRE:COMPLETE?"

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 169

varPercent = myScope.ReadNumber
Debug.Print FormatNumber(varPercent, 0)

History Legacy command (existed before version 3.10).

170 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:COMPlete:STATe

Command :ACQuire:COMPlete:STATe {{ON | 1} | {OFF | 0}}

The :ACQuire:COMPlete:STATe command specifies the state of the
:ACQuire:COMPlete mode. This mode is used to make a tradeoff between how
often equivalent time waveforms are measured, and how much new data is
included in the waveform record when a measurement is made. This command has
no effect when the oscilloscope is in real time mode because the entire record is
filled on every trigger. However, in equivalent time mode, as few as 0 new data
points will be placed in the waveform record as the result of any given trigger
event. You set the acquire mode of the oscilloscope by using the :ACQuire:MODE
command.

ON Turns the COMPlete mode on. Then you can specify the completion percent.

OFF When off, the oscilloscope makes measurements on waveforms after each
acquisition cycle, regardless of how complete they are. The waveform record is not
cleared after each measurement. Instead, previous data points will be replaced by
new samples as they are acquired.

Query :ACQuire:COMPlete:STATe?

The :ACQuire:COMPlete:STATe? query returns the state of the
:ACQuire:COMPlete:STATe mode.

History Legacy command (existed before version 3.10).

NOTE The :ACQuire:COMPlete:STATe command is used only when the oscilloscope is operating in
equivalent time mode and a digitize operation is not being performed. The :DIGitize command
temporarily overrides the setting of this mode and forces it to ON.

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 171

:ACQuire:HRESolution

Command :ACQuire:HRESolution {AUTO | BITS9 | BITS10 | BITS11 | BITS12}

When :ACQuire:MODE is set to HRESolution or SEGHres, the
:ACQuire:HRESolution command sets the desired minimum bit resolution.

• AUTO — the number of bits of vertical resolution is determined by the sampling
rate, which can be controlled manually by the :ACQuire:SRATe:ANALog
command or automatically when adjusting :TIMebase:SCALe (or
:TIMebase:RANGe).

• BITS9, BITS10, BITS11, BITS12 — selects the desired minimum number of bits
of vertical resolution (which can affect the sampling rate).

Example This example sets the bit resolution setting to a minimum of 11 bits.

myScope.WriteString ":ACQuire:HRESolution BITS11"

Query :ACQuire:HRESolution?

The :ACQuire:HRESolution? query returns the bit resolution setting.

Returned Format [:ACQuire:HRESolution] {AUTO | BITS9 | BITS10 | BITS11 | BITS12}<NL>

Example This example places the current bit resolution setting in the string variable,
strBitRes, then prints the contents of the variable to the computer's screen.

Dim strBitRes As String ' Dimension variable.
myScope.WriteString ":ACQuire:HRESolution?"
strBitRes = myScope.ReadString
Debug.Print strBitRes

See Also • ":ACQuire:MODE" on page 173

• ":ACQuire:SRATe[:ANALog]" on page 186

• ":TIMebase:SCALe" on page 986

• ":TIMebase:RANGe" on page 981

History Legacy command (existed before version 3.10).

NOTE Some of the BITS settings may not be valid in certain 9000H Series models.

172 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:INTerpolate

Command :ACQuire:INTerpolate {{ON | 1} | {OFF | 0} | INT1 | INT2 | INT4 | INT8
| INT16}

The :ACQuire:INTerpolate command turns the sin(x)/x interpolation filter on or off
when the oscilloscope is in one of the real time sampling modes. You can also
specify the 1, 2, 4, 8, or 16 point Sin(x)/x interpolation ratios using INT1, INT2,
INT4, INT8, or INT16. When ON, the number of interpolation points is
automatically determined.

Query :ACQuire:INTerpolate?

The :ACQuire:INTerpolate? query returns the current state of the sin(x)/x
interpolation filter control.

Returned Format [:ACQuire:INTerpolate] {1 | 0 | INT1 | INT2 | INT4 | INT8 | INT16}<NL>

History Legacy command (existed before version 3.10).

Version 3.10: Added the INT1, INT2, INT4, INT8, INT16 options for specifying the 1,
2, 4, 8, or 16 point Sin(x)/x interpolation ratios.

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 173

:ACQuire:MODE

Command :ACQuire:MODE {ETIMe | RTIMe | PDETect | HRESolution | SEGMented
| SEGPdetect | SEGHres}

The :ACQuire:MODE command sets the sampling/acquisition mode of the
oscilloscope.

ETIMe In Equivalent Time mode (available on 9000 Series, S-Series, and 90000A Series
oscilloscopes), the data record is acquired over multiple trigger events.

RTIMe In Real Time Normal mode, the complete data record is acquired on a single
trigger event.

PDETect In Real Time Peak Detect mode, the oscilloscope acquires all of the waveform data
points during one trigger event. The data is acquired at the fastest sample rate of
the oscilloscope regardless of the horizontal scale setting. The sampling rate
control then shows the storage rate into the channel memory rather than the
sampling rate. The storage rate determines the number of data points per data
region. From each data region, four sample points are chosen to be displayed for
each time column. The four sample points chosen from each data region are:

• the minimum voltage value sample

• the maximum voltage value sample

• a randomly selected sample

• an equally spaced sample

The number of samples per data region is calculated using the equation:

The remainder of the samples are not used for display purposes.

HRESolution In Real Time High Resolution mode, the oscilloscope acquires all the waveform
data points during one trigger event and averages them thus reducing noise and
improving voltage resolution. The data is acquired at the fastest sample rate of the
oscilloscope regardless of the horizontal scale setting. The sampling rate control
then shows the storage rate into the channel memory rather than the sampling
rate. The number of samples that are averaged together per data region is
calculated using the equation

NOTE In the 9000H Series oscilloscopes, HRESolution and SEGHres are the only valid options.

Number of Samples =
Sampling Rate
Storage Rate

174 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

This number determines how many samples are averaged together to form the
16-bit samples that are stored into the channel memories.

To set the desired bits of vertical resolution, see ":ACQuire:HRESolution" on
page 171.

SEGMented In this sampling mode you can view waveform events that are separated by long
periods of time without capturing waveform events that are not of interest to you.

SEGPdetect Enables Peak Detect Segmented mode.

SEGHres Enables High Resolution Segmented mode.

To set the desired bits of vertical resolution, see ":ACQuire:HRESolution" on
page 171.

Example This example sets the acquisition mode to Real Time Normal.

myScope.WriteString ":ACQuire:MODE RTIMe"

Query :ACQuire:MODE?

The :ACQuire:MODE? query returns the current acquisition sampling mode.

Returned Format [:ACQuire:MODE] {RTIMe | PDETect | HRESolution | SEGMented}<NL>

Example This example places the current acquisition mode in the string variable, strMode,
then prints the contents of the variable to the computer's screen.

Dim strMode As String ' Dimension variable.
myScope.WriteString ":ACQuire:MODE?"
strMode = myScope.ReadString
Debug.Print strMode

History Legacy command (existed before version 3.10).

Number of Samples =
Sampling Rate
Storage Rate

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 175

:ACQuire:POINts[:ANALog]

Memory depth

Command :ACQuire:POINts[:ANALog] {AUTO | <points_value>}

The :ACQuire:POINts[:ANALog] command sets the requested analog memory
depth for an acquisition. Before you download data from the oscilloscope to your
computer, always query the points value with the :WAVeform:POINts? query or
:WAVeform:PREamble? query to determine the actual number of acquired points.

You can set the points value to AUTO, which allows the oscilloscope to select the
optimum memory depth and display update rate.

<points_value> An integer representing the memory depth.

The range of points available for a channel depends on the oscilloscope settings of
sampling mode, sampling rate, and trigger sweep.

Interaction
between

:ACQuire:SRATe[:A
NALog] and

:ACQuire:POINts[:A
NALog]

If you assign a sample rate value with :ACQuire:SRATe[:ANALog] or a points value
using :ACQuire:POINts[:ANALog] the following interactions will occur. "Manual"
means you are setting a non-AUTO value for SRATe or POINts.

Example This example sets the memory depth to 500 points.

myScope.WriteString ":ACQuire:POINts:ANALog 500"

Query :ACQuire:POINts[:ANALog]?

The :ACQuire:POINts[:ANALog]? query returns the value of the analog memory
depth control.

Returned Format [:ACQuire:POINts:ANALog] <points_value><NL>

Example This example checks the current setting for memory depth and places the result in
the variable, varLength. Then the program prints the contents of the variable to
the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":ACQuire:POINts:ANALog?"
varLength = myScope.ReadNumber
Debug.Print FormatNumber(varLength, 0)

SRATe POINts Resul t

AUTO Manual POINts value takes precedence
(sample rate is limited)

Manual AUTO SRATe value takes precedence
(memory depth is limited)

Manual Manual SRATe value takes precedence
(memory depth is limited)

176 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

See Also • ":WAVeform:DATA?" on page 1199

History Legacy command (existed before version 3.10).

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 177

:ACQuire:POINts:AUTO

Command :ACQuire:POINts:AUTO {{ON | 1} |{OFF | 0}}

The :ACQuire:POINts:AUTO command enables (automatic) or disables (manual)
the automatic memory depth selection control. When enabled, the oscilloscope
chooses a memory depth that optimizes the amount of waveform data and the
display update rate. When disabled, you can select the amount of memory using
the :ACQuire:POINts command.

Example This example sets the automatic memory depth control to off.

myScope.WriteString ":ACQUIRE:POINTS:AUTO OFF"

Query :ACQuire:POINts:AUTO?

The :ACQuire:POINts:AUTO? query returns the automatic memory depth control
state.

Returned Format [:ACQuire:POINts:AUTO] {1 | 0}<NL>

Example This example checks the current setting for automatic memory depth control and
places the result in the variable, varState. Then the program prints the contents of
the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":ACQUIRE:POINTS:AUTO?"
varState = myScope.ReadNumber
Debug.Print FormatNumber(varState, 0)

See Also :WAVeform:DATA?

History Legacy command (existed before version 3.10).

178 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:POINts:DIGital?

Query :ACQuire:POINts:DIGital?

The :ACQuire:POINts:DIGital query returns the current memory depth for the
digital channels (MSO models only).

History Legacy command (existed before version 3.10).

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 179

:ACQuire:REDGe

RealEdge Channel Inputs

180 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

(90000 Q-Series, Z-Series)

Command

:ACQuire:REDGe {{ON | 1} | {OFF | 0}}

The :ACQuire:REDGe command enables or disables the RealEdge channel inputs.

When RealEdge channel inputs are enabled, the :CHANnel1 and :CHANnel3
commands/queries work for the oscilloscope's 1R and 3R channel inputs, and the
:CHANnel2 and :CHANnel4 commands give "hardware missing" or "undefined
header" messages.

Also when RealEdge channel inputs are enabled:

• The sampling rate is fixed at 160 GSa/s.

• Real Time Normal is the only acquisition mode available.

Example This example enables the RealEdge channel inputs.

myScope.WriteString ":ACQuire:REDGe ON"

Query :ACQuire:REDGe?

The :ACQuire:REDGe? query returns the current setting for RealEdge channel
inputs.

Returned Format [:ACQuire:REDGe] {1 | 0}<NL>

Example This example places the current setting for RealEdge channel inputs in the string
variable, strRealEdge, then prints the contents of the variable to the computer's
screen.

Dim strRealEdge As String ' Dimension variable.
myScope.WriteString ":ACQuire:REDGe?"
strSample = myScope.ReadString
Debug.Print strRealEdge

History New in version 4.00.

NOTE This command is available for the 90000 Q-Series and Z-Series models whose bandwidths
are greater than 33 GHz.

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 181

:ACQuire:RESPonse

182 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :ACQuire:RESPonse {FLATmag | GAUSsianmag}

The Flat Magnitude filter is the default one and is the filter typically used on
Infiniium oscilloscopes. The Gaussian Magnitude filter eliminates all ringing
(preshoot or overshoot) caused by the oscilloscope's response. Therefore, any
ringing you see in the displayed signal is actually in your signal and is not caused
by the oscilloscope. The main drawback to using the Gaussian Magnitude Filter is
the decrease in bandwidth. Please consult the Flat Magnitude / Magnitude
Magnitude Filters topic in the help system for specific information regarding the
decrease in bandwidth.

Example This example turns on the Gaussian Magnitude filter.

myScope.WriteString ":ACQUIRE:RESPonse GAUSsianmag"

Query :ACQuire:RESPonse?

The :ACQuire:RESPonse? query returns the current filter being used.

Returned Format [:ACQuire:POINts:AUTO] {FLATmag | NGAUSsianmag}<NL>

Example This example checks the current filter setting and places the result in the variable,
state. Then the program prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":ACQUIRE:RESPonse?"
varState = myScope.ReadNumber
Debug.Print FormatNumber(varState, 0)

History Legacy command (existed before version 3.10).

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 183

:ACQuire:SEGMented:COUNt

Command :ACQuire:SEGMented:COUNt <#segments>

The :ACQuire:SEGMented:COUNt command sets the number of segments to
acquire in the segmented memory mode.

<#segments> An integer representing the number of segments to acquire.

Example This example sets the segmented memory count control to 1000.

myScope.WriteString ":ACQUIRE:SEGMented:COUNt 1000"

Query :ACQuire:SEGMented:COUNt?

The :ACQuire:SEGMented:COUNT? query returns the number of segments control
value.

Returned Format [:ACQuire:SEGMented:COUNt] <#segments><NL>

Example This example checks the current setting for segmented memory count control and
places the result in the variable, varSegments. Then the program prints the
contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":ACQUIRE:SEGMents:COUNt?"
varSegments = myScope.ReadNumber
Debug.Print FormatNumber(varSegments, 0)

History Legacy command (existed before version 3.10).

184 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:SEGMented:INDex

Command :ACQuire:SEGMented:INDex <index#>

The :ACQuire:SEGMented:INDex command sets the index number for the segment
that you want to display on screen in the segmented memory mode. If an index
value larger than the total number of acquired segments is sent, an error occurs
indicating that the data is out of range and the segment index is set to the
maximum segment number.

<index#> An integer representing the index number of the segment that you want to display.

Example This example sets the segmented memory index number control to 1000.

myScope.WriteString ":ACQUIRE:SEGMented:INDex 1000"

Query :ACQuire:SEGMented:INDex?

The :ACQuire:SEGMented:INDex? query returns the segmented memory index
number control value.

Returned Format [:ACQuire:SEGMented:INDex] <index#><NL>

Example This example checks the current setting for segmented memory index number
control and places the result in the variable, varIndex. Then the program prints the
contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":ACQUIRE:SEGMents:INDex?"
varIndex = myScope.ReadNumber
Debug.Print FormatNumber(varIndex, 0)

History Legacy command (existed before version 3.10).

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 185

:ACQuire:SEGMented:TTAGs

Command :ACQuire:SEGMented:TTAGs {{ON | 1} | {OFF | 0}}

The :ACQuire:SEGMented:TTAGs command turns the time tags feature on or off for
the segmented memory sampling mode.

Example This example turns the time tags on for segmented memory.

myScope.WriteString ":ACQUIRE:SEGMented:TTAGs ON"

Query :ACQuire:SEGMented:TTAGs?

The :ACQuire:SEGMented:TTAGs? query returns the segmented memory time tags
control value.

Returned Format [:ACQuire:SEGMented:TTAGs] {1 | 0}<NL>

Example This example checks the current setting for segmented memory time tags control
and places the result in the variable, varTimeTags. Then the program prints the
contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":ACQUIRE:SEGMents:TTAGs?"
varTimeTags = myScope.ReadNumber
Debug.Print FormatNumber(varTimeTags, 0)

History Legacy command (existed before version 3.10).

186 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:SRATe[:ANALog]

Analog Sample Rate

Command :ACQuire:SRATe[:ANALog] {AUTO | MAX | <rate>}

The :ACQuire:SRATe[:ANALog] command sets the analog acquisition sampling
rate.

AUTO The AUTO rate allows the oscilloscope to select a sample rate that best
accommodates the selected memory depth and horizontal scale.

MAX The MAX rate enables the oscilloscope to select maximum available sample rate.

<rate> A real number representing the sample rate. You can send any value, but the value
is rounded to the next fastest sample rate.

Interaction
between

:ACQuire:SRATe[:A
NALog] and

:ACQuire:POINts[:A
NALog]

If you assign a sample rate value with :ACQuire:SRATe[:ANALog] or a points value
using :ACQuire:POINts[:ANALog] the following interactions will occur. "Manual"
means you are setting a non-AUTO value for SRATe or POINts.

Example This example sets the sample rate to 250 MSa/s.

myScope.WriteString ":ACQuire:SRATe:ANALog 250E+6"

Query :ACQuire:SRATe[:ANALog]?

The :ACQuire:SRATe[:ANALog]? query returns the current analog acquisition
sample rate.

Returned Format [:ACQuire:SRATe:ANALog] {<rate>}<NL>

Example This example places the current sample rate in the string variable, strSample, then
prints the contents of the variable to the computer's screen.

Dim strSample As String ' Dimension variable.
myScope.WriteString ":ACQuire:SRATe:ANALog?"
strSample = myScope.ReadString
Debug.Print strSample

History Legacy command (existed before version 3.10).

SRATe POINts Resul t

AUTO Manual POINts value takes precedence
(sample rate is limited)

Manual AUTO SRATe value takes precedence
(memory depth is limited)

Manual Manual SRATe value takes precedence
(memory depth is limited)

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 187

:ACQuire:SRATe[:ANALog]:AUTO

Command :ACQuire:SRATe[:ANALog]:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe[:ANALog]:AUTO command enables (ON) or disables (OFF) the
automatic analog sampling rate selection control. On the oscilloscope front-panel
interface, ON is equivalent to Automatic and OFF is equivalent to Manual.

Example This example changes the sampling rate to manual.

myScope.WriteString ":ACQuire:SRATe:ANALog:AUTO OFF"

Query :ACQuire:SRATe[:ANALog]:AUTO?

The :ACQuire:SRATe[:ANALog]:AUTO? query returns the current acquisition sample
rate.

Returned Format [:ACQuire:SRATe:ANALog:AUTO] {1 | 0}<NL>

Example This example places the current analog sample rate in the variable, varSample,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":ACQuire:SRATe:ANALog:AUTO?"
varSample = myScope.ReadNumber
Debug.Print FormatNumber(varSample, 0)

History Legacy command (existed before version 3.10).

188 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

:ACQuire:SRATe:DIGital

Digital Channels Sample Rate

Command :ACQuire:SRATe:DIGital {AUTO | MAX | <rate>}

The :ACQuire:SRATe:DIGital command sets the digital acquisition sampling rate.

AUTO The AUTO rate allows the oscilloscope to select a sample rate that best
accommodates the selected memory depth and horizontal scale.

MAX The MAX rate enables the oscilloscope to select maximum available sample rate.

<rate> A real number representing the digital sample rate. You can send any value, but
the value is rounded to the next fastest sample rate.

Interaction
between

:ACQuire:SRATe:DI
Gital and

:ACQuire:POINts:DI
Gital?

If you assign a sample rate value with :ACQuire:SRATe:DIGital, the digital memory
depth is automatically adjusted and can be seen by using the
:ACQuire:POINts:DIGital? query.

Query :ACQuire:SRATe:DIGital?

The :ACQuire:SRATe:DIGital? query returns the current digital acquisition sample
rate.

Returned Format [:ACQuire:SRATe:DIGital] {<rate>}<NL>

Example This example places the current digital channel sample rate in the string variable,
strSample, then prints the contents of the variable to the computer's screen.

Dim strSample As String ' Dimension variable.
myScope.WriteString ":ACQuire:SRATe:DIGital?"
strSample = myScope.ReadString
Debug.Print strSample

History Legacy command (existed before version 3.10).

Acquire Commands 9

Keysight Infiniium Oscilloscopes Programmer's Guide 189

:ACQuire:SRATe:DIGital:AUTO

Command :ACQuire:SRATe:DIGital:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:DIGital:AUTO command enables (ON) or disables (OFF) the
automatic digital channel sampling rate selection control.

Example This example changes the digital channel sampling rate to manual.

myScope.WriteString ":ACQuire:SRATe:DIGital:AUTO OFF"

Query :ACQuire:SRATe:DIGital:AUTO?

The :ACQuire:SRATe:DIGital:AUTO? query returns the current digital channel
acquisition sample rate.

Returned Format [:ACQuire:SRATe:DIGital:AUTO] {1 | 0}<NL>

Example This example places the current digital channel sample rate in the variable,
varSample, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":ACQuire:SRATe:DIGital:AUTO?"
varSample = myScope.ReadNumber
Debug.Print FormatNumber(varSample, 0)

History Legacy command (existed before version 3.10).

190 Keysight Infiniium Oscilloscopes Programmer's Guide

9 Acquire Commands

191

Keysight Infiniium Oscilloscopes
Programmer's Guide

10 Bus Commands

:BUS:B<N>:TYPE / 192
:BUS<N>:BIT<M> / 193
:BUS<N>:BITS / 194
:BUS<N>:CLEar / 195
:BUS<N>:CLOCk / 196
:BUS<N>:CLOCk:SLOPe / 197
:BUS<N>:DISPlay / 198
:BUS<N>:LABel / 199
:BUS<N>:READout / 200

NOTE The :BUS:B<N>:TYPE command applies to oscilloscopes with the serial data analysis option
installed. The other :BUS<N> commands apply to mixed-signal oscilloscopes (MSOs).

192 Keysight Infiniium Oscilloscopes Programmer's Guide

10 Bus Commands

:BUS:B<N>:TYPE

Command :BUS:B<N>:TYPE {<protocol> | <hs_protocol>}

The :BUS:B<N>:TYPE command sets the type of protocol being analyzed for a
serial bus waveform.

<protocol> {CAN | DDR | E10GBASEKR | FLEXray | IIC | JTAG | LIN | MIPI | RFFE | SPI | SVID |
UART | USB2 | XAUI}

<hs_protocol> {CSI3 | DIGRf | DVI | FIBRechannel | {GEN8B10B | GENeric} | HOTLink | INFiniband |
JESD204B | LLI | PCI3 | PCIexpress | SAS | SATA | SSIC | UFS | UNIPro | USB3}

<N> An integer, 1-4.

Example This example sets the serial bus waveform number one protocol type to FLEXray.

myScope.WriteString ":BUS:B1:TYPE FLEXray"

Query :BUS:B<N>:TYPE?

The :BUS:B<N>:TYPE? query returns the name of the protocol being used for the
serial bus.

Returned Format [:BUS:B<N>:TYPE] {<protocol> | <hs_protocol>}<NL>

<protocol> {CAN | DDR | E10GBASEKR | FLEX | IIC | JTAG | LIN | MIPI | RFFE | SPI | SVID | UART
| USB2 | XAUI}

<hs_protocol> {CSI3 | DIGR | DVI | FC | {USER | USER} | HOTL | INF | JESD204B | LLI | PCI3 | PCIE |
SAS | SATA | SSIC | UFS | UNIP | USB3}

See Also • ":SBUS<N>:HS Commands" on page 873

History Legacy command (existed before version 3.10).

Version 3.11: Added the MPHY protocol type for the MIPI M-PHY serial decode
selection.

Version 5.00: Added support for new protocols.

NOTE This BUS command only applies to oscilloscopes with the serial data analysis option installed.

Bus Commands 10

Keysight Infiniium Oscilloscopes Programmer's Guide 193

:BUS<N>:BIT<M>

Command :BUS<N>:BIT<M> {ON | OFF | 1 | 0}

The :BUS<N>:BIT<M> command includes or excludes the selected bit as part of
the definition for the selected bus. If the parameter is a 1 (ON) then the bit is
included in the definition. If the parameter is a 0 (OFF) then the bit is excluded
from the definition. The digital subsystem must be enabled for this command will
work. See ENABle command in the root subsystem.

<M> An integer, 0-15.

<N> An integer, 1-4.

Example This example includes bit 1 as part of the bus 1 definition.

myScope.WriteString ":ENABLE DIGITAL"
myScope.WriteString ":BUS1:BIT1 ON"

Query :BUS<N>:BIT<M>?

The :BUS<N>:BIT<M>? query returns the value indicating whether the specified bit
is included or excluded from the specified bus definition.

Returned Format [:BUS<N>:BIT<M>] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

194 Keysight Infiniium Oscilloscopes Programmer's Guide

10 Bus Commands

:BUS<N>:BITS

Command :BUS<N>:BITS <channel_list>,{ON | OFF| 1 | 0}

The :BUS<N>:BITS command includes or excludes the selected bits in the channel
list in the definition of the selected bus. If the parameter is a 1 (ON) then the bits in
the channel list are included as part of the selected bus definition. If the parameter
is a 0 (OFF) then the bits in the channel list are excluded from the definition of the
selected bus. The digital subsystem must be enabled for this command will work.
See ENABle command in the root subsystem.

<N> An integer, 1- 4.

<channel_list> The channel range is from 0 to 15 in the following format.

Example This example includes bits 1, 2, 4, 5, 6, 7, 8, and 9 as part of the bus 1 definition.

myScope.WriteString ":ENABLE DIGITAL"
myScope.WriteString ":BUS1:BITS (@1,2,4:9),ON"

Query :BUS<N>:BITS?

The :BUS<N>:BITS? query returns the definition for the specified bus.

Returned Format [:BUS<N>:BITS] <channel_list>,{1 | 0}<NL>

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14
are turned on.

NOTE The parenthesizes are part of the expression and are necessary.

Bus Commands 10

Keysight Infiniium Oscilloscopes Programmer's Guide 195

:BUS<N>:CLEar

Command :BUS<N>:CLEar

The :BUS<N>:CLEar command excludes all of the digital channels from the
selected bus definition.

<N> An integer, 1-4.

Example This example excludes all the digital channels from the bus 1 definition.

myScope.WriteString ":BUS1:CLEAR"

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

196 Keysight Infiniium Oscilloscopes Programmer's Guide

10 Bus Commands

:BUS<N>:CLOCk

Command :BUS<N>:CLOCk {CHANnel<N> | DIGital<M> | NONE}

The :BUS<N>:CLOCk command sets the digital or analog channel used as the
clock for decoding the bus values.

<M> An integer, 0-15.

<N> An integer, 1-4.

<O> An integer, 1-4.

Example This example sets the clock to channel 1 for bus 1.

myScope.WriteString ":ENABLE DIGITAL"
myScope.WriteString ":BUS1:CLOCK CHANNEL1"

Query :BUS<N>:CLOCK?

The :BUS<N>:CLOCk query returns the channel being used for the specified bus.

Returned Format [:BUS<N>:CLOCk] {CHANnel<O> | DIGital<M> | NONE}<NL>

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

Bus Commands 10

Keysight Infiniium Oscilloscopes Programmer's Guide 197

:BUS<N>:CLOCk:SLOPe

Command :BUS<N>:CLOCk:SLOPe {RISing | FALLing | EITHer}

The :BUS<N>:CLOCk:SLOPe command sets the clock edge used for decoding the
bus values.

<O> An integer, 1-4.

Example This example sets the clock edge to falling for bus 1.

myScope.WriteString ":ENABLE DIGITAL"
myScope.WriteString ":BUS1:CLOCk:SLOPE FALLING"

Query :BUS<N>:CLOCK:SLOPe?

The :BUS<N>:CLOCk:SLOPe query returns the clock edge being used for the
specified bus.

Returned Format [:BUS<N>:CLOCk:SLOPe] {RISing | FALLing | EITHer}<NL>

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

198 Keysight Infiniium Oscilloscopes Programmer's Guide

10 Bus Commands

:BUS<N>:DISPlay

Command :BUS<N>[:DISPlay] {ON | OFF | 1 | 0}

The :BUS<N>:DISPlay command enables or disables the view of the selected bus.
The digital subsystem must be enabled before this command will work. See the
ENABle command in the root subsystem.

<N> An integer, 1- 4.

Example This example enables the viewing of bus 1.

myScope.WriteString ":ENABLE DIGITAL"
myScope.WriteString ":BUS1 ON"

Query :BUS<N>[:DISPlay]?

The :BUS<N>[:DISPlay]? query returns the display value of the selected bus.

Returned Format [:BUS<N>] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

Bus Commands 10

Keysight Infiniium Oscilloscopes Programmer's Guide 199

:BUS<N>:LABel

Command :BUS<N>:LABel <quoted_string>

The :BUS<N>:LABel command sets the bus label to the quoted string. Setting a
label for a bus will also result in the name being added to the label list.

<N> An integer, 1- 4.

<quoted_string> A series of 6 or less characters as a quoted ASCII string.

Example This example sets the bus 1 label to Data.

myScope.WriteString ":BUS1:LABEL ""Data"""

Query :BUS<N>:LABel?

The :BUS<N>:LABel? query returns the name of the specified bus.

Returned Format [:BUS<N>:LABel] <quoted_string><NL>

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

NOTE Label strings are 16 characters or less, and may contain any commonly used ASCII characters.
Labels with more than 16 characters are truncated to 16 characters.

200 Keysight Infiniium Oscilloscopes Programmer's Guide

10 Bus Commands

:BUS<N>:READout

Command :BUS<N>:READout {NONE | BINary | DECimal | HEX | OCTal | SIGNed | SYMBol

The :BUS<N>:READout command changes the format of the numbers displayed in
the bus waveform.

<N> An integer, 1-4.

Example This example sets the bus read out to decimal.

myScope.WriteString ":BUS1:READOUT DECIMAL"

Query :BUS<N>:READout?

The :BUS<N>:READout? query returns the format of the readout control.

Returned Format [:BUS<N>:READout] {NONE | BINary | DECimal | HEX | OCTal | SIGNed | SYMB
ol}<NL>

History Legacy command (existed before version 3.10).

NOTE The BUS commands only apply to the MSO oscilloscopes.

201

Keysight Infiniium Oscilloscopes
Programmer's Guide

11 Calibration Commands

:CALibrate:DATE? / 203
:CALibrate:OUTPut / 204
:CALibrate:SKEW / 205
:CALibrate:STATus? / 206
:CALibrate:TEMP? / 207

This chapter briefly explains the calibration of the oscilloscope. It is intended to
give you and the calibration lab personnel an understanding of the calibration
procedure and how the calibration subsystem is intended to be used.

The commands in the CALibration subsystem allow you to change the output of
the front-panel Aux Out connector, adjust the skew of channels, and check the
status of calibration.

These CALibration commands and queries are implemented in the Infiniium
oscilloscopes:

This chapter briefly explains the calibration of the oscilloscope. It is intended to
give you and the calibration lab personnel an understanding of the calibration
procedure and how the calibration subsystem is intended to be used.

Oscilloscope
Calibration

Oscilloscope calibration establishes calibration factors for the oscilloscope. These
factors are stored on the oscilloscope's hard disk.

• Initiate the calibration from the "Utilities Calibration" menu.

You should calibrate the oscilloscope periodically (at least annually), or if the
ambient temperature since the last calibration has changed more than ±5 °C. The
temperature change since the last calibration is shown on the calibration status
screen which is found under the "Utilities Calibration" dialog. It is the line labeled
"Calibration Δ Temp: _ °C."

See also the oscilloscope's Service Guide has more details about the calibration.

Probe Calibration Probe calibration establishes the gain and offset of a probe that is connected to a
channel of the oscilloscope, and applies these factors to the calibration of that
channel.

202 Keysight Infiniium Oscilloscopes Programmer's Guide

11 Calibration Commands

• Initiate probe calibration from the "Setup > Channel > Probes > Calibrate Probe"
menu.

To achieve the specified accuracy (±2%) with a probe connected to a channel,
make sure the oscilloscope is calibrated.

• For probes that the oscilloscope can identify through the probe power
connector, like the 1158A, the oscilloscope automatically adjusts the
vertical scale factors for that channel even if a probe calibration is not
performed.

• For nonidentified probes, the oscilloscope adjusts the vertical scale factors
only if a probe calibration is performed.

• If you do not perform a probe calibration but want to use an unidentified probe,
enter the attenuation factor in the "Setup > Channel > Probes > Configure
Probing System > User Defined Probe" menu.

• If the probe being calibrated has an attenuation factor that allows the
oscilloscope to adjust the gain (in hardware) to produce even steps in the
vertical scale factors, the oscilloscope will do so.

• If the probe being calibrated has an unusual attenuation, like 3.75, the
oscilloscope may have to adjust the vertical scale factors to an unusual
number, like 3.75 V/div.

Typically, probes have standard attenuation factors such as divide by 10, divide
by 20, or divide by 100.

Calibration Commands 11

Keysight Infiniium Oscilloscopes Programmer's Guide 203

:CALibrate:DATE?

Query :CALibrate:DATE? CHANnel<N>

The :CALibrate:DATE? query returns the date and time of the last time scale and
regular user calibration.

The :CALibrate:DATE? query returns two calibration dates and times:

• The date and time of the last time scale calibration.

• The date and time of the last regular user calibration.

Returned Format [:CALibrate:DATE] <ts_date_time>,<user_date_time><NL>

The string returned is formatted like "<day> <month> <year>
<hours>:<minutes>:<seconds>,<day> <month> <year>
<hours>:<minutes>:<seconds>", for example "31 MAY 2013 12:52:45,4 DEC 2012
10:59:52".

History Legacy command (existed before version 3.10).

204 Keysight Infiniium Oscilloscopes Programmer's Guide

11 Calibration Commands

:CALibrate:OUTPut

Command :CALibrate:OUTPut {AC | TRIGOUT | DC,<dc_value> | ZERO | ONE | DPULse
| SOSC | HFOSC}

The :CALibrate:OUTPut command sets the coupling frequency, trigger output
pulse, and dc level of the calibrator waveform output through the front-panel Aux
Out connector.

Options on all oscilloscopes:

• AC — sets the Aux Out to be the probe compensation square wave
(approximately 750 Hz).

• TRIGOUT — outputs a pulse when the trigger event occurs. Use this to trigger
other instruments.

• DC,<dc_value> — a DC level value in volts. The <dc_value> is a real number
from -2.4 V to +2.4 V dc.

Options on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes:

• ZERO — a -450 mV DV level.

• ONE — a -150 mV DC level.

• DPULse — A double-pulse signal.

• SOSC — The 100 MHz reference clock output.

• HFOSC — A high-frequency oscillator output.

Example This example puts a DC voltage of 2.0 volts on the oscilloscope front-panel
Aux Out connector.

myScope.WriteString ":CALibrate:OUTPut DC,2.0"

Query :CALibrate:OUTPut?

The :CALibrate:OUTPut? query returns the current setup.

Returned Format [:CALibrate:OUTPut] {AC | TRIGOUT | DC,<dc_value> | ZERO | ONE | DPULse
| SOSC | HFOSC}

Example This example places the current selection for the DC calibration to be printed in
the string variable, strSelection, then prints the contents of the variable to the
computer's screen.

Dim strSelection As String 'Dimension variable
myScope.WriteString ":CALibrate:OUTPut?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Calibration Commands 11

Keysight Infiniium Oscilloscopes Programmer's Guide 205

:CALibrate:SKEW

Command :CALibrate:SKEW CHANnel<N>,<skew_value>

The :CALibrate:SKEW command sets the channel-to-channel skew factor for a
channel. The numeric argument is a real number in seconds, which is added to the
current time base position to shift the position of the channel's data in time. Use
this command to compensate for differences in the electrical lengths of input
paths due to cabling and probes.

<N> An integer, 1-4.

<skew_value> A real number, in seconds.

Example This example sets the oscilloscope channel 1 skew to 1 μs.

myScope.WriteString ":CALIBRATE:SKEW CHANNEL1,1E-6"

Query :CALibrate:SKEW? CHANnel<N>

The :CALibrate:SKEW? query returns the current skew value.

Returned Format [:CALibrate:SKEW] <skew_value><NL>

History Legacy command (existed before version 3.10).

206 Keysight Infiniium Oscilloscopes Programmer's Guide

11 Calibration Commands

:CALibrate:STATus?

Query :CALibrate:STATus?

The :CALibrate:STATus? query returns the calibration status of the oscilloscope.
These are ten, comma-separated integers, with 1, 0, or -1. A "1" indicates pass, a
"0" indicates fail and a "-1" indicates unused. This matches the status in the
Calibration dialog box in the Utilities menu.

Returned Format [:CALibrate:STATus] <status>

<status> <Oscilloscope Frame Status>, <Channel1 Vertical>, <Channel1 Trigger>,
<Channel2 Vertical>, <Channel2 Trigger>, <Channel3 Vertical>, <Channel3
Trigger>, <Channel4 Vertical>, <Channel4 Trigger>, <Aux Trigger>

History Legacy command (existed before version 3.10).

Calibration Commands 11

Keysight Infiniium Oscilloscopes Programmer's Guide 207

:CALibrate:TEMP?

Query :CALibrate:TEMP? CHANnel<N>

The :CALibrate:TEMP? query returns two delta temperature values in Celsius:

• Between the current temp and the temp of the last time scale calibration.

• Between the current temp and the temp of the last regular user calibration.

Returned Format [:CALibrate:TEMP] <ts_delta_temp>,<user_delta_temp><NL>

For example, the string returned could be "-1,0". A difference in the two delta
values of one degree is not uncommon.

History Legacy command (existed before version 3.10).

208 Keysight Infiniium Oscilloscopes Programmer's Guide

11 Calibration Commands

209

Keysight Infiniium Oscilloscopes
Programmer's Guide

12 Channel Commands

:CHANnel<N>:BWLimit / 211
:CHANnel<N>:COMMonmode / 213
:CHANnel<N>:DIFFerential / 214
:CHANnel<N>:DIFFerential:SKEW / 215
:CHANnel<N>:DISPlay / 216
:CHANnel<N>:DISPlay:AUTO / 217
:CHANnel<N>:DISPlay:OFFSet / 218
:CHANnel<N>:DISPlay:RANGe / 219
:CHANnel<N>:DISPlay:SCALe / 220
:CHANnel<N>:INPut / 221
:CHANnel<N>:ISIM:APPLy / 222
:CHANnel<N>:ISIM:BANDwidth / 223
:CHANnel<N>:ISIM:BWLimit / 224
:CHANnel<N>:ISIM:CONVolve / 225
:CHANnel<N>:ISIM:CORRection / 226
:CHANnel<N>:ISIM:DEConvolve / 228
:CHANnel<N>:ISIM:DELay / 229
:CHANnel<N>:ISIM:NORMalize / 230
:CHANnel<N>:ISIM:PEXTraction / 231
:CHANnel<N>:ISIM:SPAN / 233
:CHANnel<N>:ISIM:STATe / 234
:CHANnel<N>:LABel / 235
:CHANnel<N>:OFFSet / 236
:CHANnel<N>:PROBe / 237
:CHANnel<N>:PROBe:ACCAL / 238
:CHANnel<N>:PROBe:ATTenuation / 239
:CHANnel<N>:PROBe:AUTozero / 240
:CHANnel<N>:PROBe:COUPling / 241
:CHANnel<N>:PROBe:EADapter / 242
:CHANnel<N>:PROBe:ECOupling / 244
:CHANnel<N>:PROBe:EXTernal / 245
:CHANnel<N>:PROBe:EXTernal:GAIN / 246

210 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:EXTernal:OFFSet / 247
:CHANnel<N>:PROBe:EXTernal:UNITs / 248
:CHANnel<N>:PROBe:GAIN / 249
:CHANnel<N>:PROBe:HEAD:ADD / 250
:CHANnel<N>:PROBe:HEAD:DELete ALL / 251
:CHANnel<N>:PROBe:HEAD:SELect / 252
:CHANnel<N>:PROBe:HEAD:VTERm / 254
:CHANnel<N>:PROBe:ID? / 255
:CHANnel<N>:PROBe:MODE / 256
:CHANnel<N>:PROBe:PRECprobe:BANDwidth / 257
:CHANnel<N>:PROBe:PRECprobe:CALibration / 258
:CHANnel<N>:PROBe:PRECprobe:DELay / 259
:CHANnel<N>:PROBe:PRECprobe:MODE / 260
:CHANnel<N>:PROBe:PRECprobe:ZSRC / 261
:CHANnel<N>:PROBe:SKEW / 263
:CHANnel<N>:PROBe:STYPe / 264
:CHANnel<N>:RANGe / 265
:CHANnel<N>:SCALe / 266
:CHANnel<N>:UNITs / 267

The CHANnel subsystem commands control all vertical (Y axis) functions of the
oscilloscope. You may toggle the channel displays on and off with the root level
commands :VIEW and :BLANk, or with :CHANnel:DISPlay.

NOTE In this section, you can specify differential and/or common mode channels using the following
convention. If you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 211

:CHANnel<N>:BWLimit

212 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

(9000 Series, 9000H Series, S-Series)

Command :CHANnel<N>:BWLimit {{ON | 1} | {OFF | 0}} for 9000, 9000H Series

:CHANnel<N>:BWLimit {{OFF | 0} | 20e6 | 200e6} for S-Series

The :CHANnel<N>:BWLimit command controls the low-pass filter. When ON, the
bandwidth of the specified channel is limited. The bandwidth filter can be used
with either AC or DC coupling.

<N> An integer, 1-4.

Example This example sets the internal low-pass filter to "ON" for channel 1.

myScope.WriteString ":CHANnel1:BWLimit ON"

Query :CHANnel<N>:BWLimit?

The :CHANnel<N>:BWLimit? query returns the current state of the low-pass filter
for the specified channel.

Returned Format [:CHANnel<N>:BWLimit] {1 | 0}<NL> for 9000, 9000H Series

[:CHANnel<N>:BWLimit] {0 | 20e6 | 200e6}<NL> for S-Series

Example This example places the current setting of the low-pass filter in the variable
varLimit, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANnel1:BWLimit?"
varLimit = myScope.ReadNumber
Debug.Print FormatNumber(varLimit, 0)

History Legacy command (existed before version 3.10).

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 213

:CHANnel<N>:COMMonmode

Command :CHANnel<N>:COMMonmode {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:COMMonmode command turns on/off common mode for the
channel. Channels 2 and 4 may form a common mode channel and Channels 1
and 3 may form a common mode channel.

<N> An integer, 1-4.

Example This example turns channel 1 common mode channel on (channel 1 + channel 3).

myScope.WriteString ":CHANnel1:COMMonmode ON"

Query :CHANnel<N>:COMMonmode?

The :CHANnel<N>:COMMonmode? query returns whether the channel is in
commonmode or not.

Returned Format [:CHANnel<N>:COMMonmode] {1 | 0}<NL>

Example This example places the current common mode setting of the channel 1 display in
the variable varComm, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANnel1:COMMonmode?"
varComm = myScope.ReadNumber
Debug.Print FormatNumber(varComm, 0)

History Legacy command (existed before version 3.10).

214 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:DIFFerential

Command :CHANnel<N>:DIFFerential {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:DIFFerential command turns on/off differential mode for the
channel. Channels 1 and 3 may form a differential channel and Channels 2 and 4
may form a differential channel.

<N> An integer, 1-4.

Example This example turns channel 1 differential on (channel 1 - channel 3).

myScope.WriteString ":CHANNEL1:DIFFerential ON"

Query :CHANnel<N>:DIFFerential?

The :CHANnel<N>:DIFFerential? query returns whether the channel is in
differential mode or not.

Returned Format [:CHANnel<N>:DIFFerential] {1 | 0}<NL>

Example This example places the current differential setting of the channel 1 display in the
variable varDiff, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:DIFFerential?"
varDiff = myScope.ReadNumber
Debug.Print FormatNumber(varDiff, 0)

History Legacy command (existed before version 3.10).

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 215

:CHANnel<N>:DIFFerential:SKEW

Command :CHANnel<N>:DIFFerential:SKEW <skew>

The :CHANnel<N>:DIFFerential:SKEW <skew> command sets the skew that is
applied to the differential or common mode pair of channels.

<skew> A real number for the skew value

Example This example sets the skew applied to the channel 1 - channel 3 differential
channel to 10 μs.

myScope.WriteString ":CHANNEL1:DIFFerential:SKEW 10E-6"

Query :CHANnel<N>:DIFFerential:SKEW?

The :CHANnel<N>:DIFFerential:SKEW? query returns the skew that is applied to
the differential or common mode pair of channels.

Returned Format [:CHANnel<N>:DIFFerential:SKEW] <skew_value><NL>

Example This example places the current skew setting of the channel 1 - channel 3
differential channel in the variable varSkew, then prints the contents of the
variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:DIFFerential:SKEW?"
varSkew = myScope.ReadNumber
Debug.Print FormatNumber(varSkew, 0)

History Legacy command (existed before version 3.10).

216 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:DISPlay

Command :CHANnel<N>:DISPlay {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:DISPlay command turns the display of the specified channel on
or off.

<N> An integer, 1-4.

Example This example sets channel 1 display to on.

myScope.WriteString ":CHANNEL1:DISPLAY ON"

Query :CHANnel<N>:DISPlay?

The :CHANnel<N>:DISPlay? query returns the current display condition for the
specified channel.

Returned Format [:CHANnel<N>:DISPlay] {1 | 0}<NL>

Example This example places the current setting of the channel 1 display in the variable
varDisplay, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:DISPLAY?"
varDisplay = myScope.ReadNumber
Debug.Print FormatNumber(varDisplay, 0)

History Legacy command (existed before version 3.10).

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 217

:CHANnel<N>:DISPlay:AUTO

Command :CHANnel<N>:DISPlay:AUTO {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:DISPlay:AUTO command sets the differential and common
mode display scale and offset to track the acquisition scale and offset.

<N> An integer, 1-4.

Example This example sets the channel 1 - channel 3 differential channel display scale and
offset to track the acquisition scale and offset.

myScope.WriteString ":CHANNEL1:DISPLAY:AUTO ON"

Query :CHANnel<N>:DISPlay:AUTO?

The :CHANnel<N>:DISPlay:AUTO? query returns whether or not the differential or
common mode display scale and offset are tracking the acquisition scale and
offset.

Returned Format [:CHANnel<N>:DISPlay:AUTO] {1 | 0}<NL>

Example This example places whether or not the channel 1 - channel 3 differential channel
display scale and offset is tracking the acquisition scale and offset in the variable
varAuto, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:DISPLAY:AUTO?"
varAuto = myScope.ReadNumber
Debug.Print FormatNumber(varAuto, 0)

History Legacy command (existed before version 3.10).

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

218 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:DISPlay:OFFSet

Command :CHANnel<N>:DISPlay:OFFSet <value>

The :CHANnel<N>:DISPlay:OFFSet command sets the displayed offset of the
selected channel. Setting the display range turns off display auto.

<value> A real number for the value variable

Example This example sets the displayed offset of channel 1 to

myScope.WriteString ":CHANNEL1:DISPLAY:RANGe 10e-6"

Query :CHANnel<N>:DISPlay:OFFSet?

The :CHANnel<N>:DISPlay:OFFSet? query returns the displayed offset for the
selected channel.

Returned Format [:CHANnel<N>:DISPlay:OFFSet] <value><NL>

Example This example places the displayed offset of channel 1 in the variable varOffset,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:DISPLAY:OFFSet?"
varOffset = myScope.ReadNumber
Debug.Print FormatNumber(varOffset, 0)

History Legacy command (existed before version 3.10).

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 219

:CHANnel<N>:DISPlay:RANGe

Command :CHANnel<N>:DISPlay:RANGe <range>

The :CHANnel<N>:DISPlay:RANGe command sets the full scale vertical range of
the display of the selected channel. Setting the display range turns off display
auto.

<range> A real number for the range value

Example This example sets the display range of the display of channel 1 to

myScope.WriteString ":CHANNEL1:DISPLAY:RANGe 10e-6"

Query :CHANnel<N>:DISPlay:RANGe?

The :CHANnel<N>:DISPlay:RANGe? query returns the full scale vertical range of
the display for the selected channel.

Returned Format [:CHANnel<N>:DISPlay:RANGe] <range><NL>

Example This example places the range of channel 1 in the variable varRange, then prints
the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":CHANNEL1:DISPLAY:RANGe?"
varRange = myScope.ReadNumber
Debug.Print FormatNumber(varRange, 0)

History Legacy command (existed before version 3.10).

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

220 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:DISPlay:SCALe

Command :CHANnel<N>:DISPlay:SCALe <scale>

The :CHANnel<N>:DISPlay:SCALe command sets the displayed scale of the
selected channel per division. Setting the display range turns off display auto.

<scale> A real number for the scale value

Example This example sets the display scale of channel 1 per division to

myScope.WriteString ":CHANNEL1:DISPLAY:SCALe 10e-6"

Query :CHANnel<N>:DISPlay:SCALe?

The :CHANnel<N>:DISPlay:SCALe? query returns the displayed scale of the
selected channel per division.

Returned Format [:CHANnel<N>:DISPlay:SCALe] <scale><NL>

Example This example places the display scale of channel 1 in the variable varScale, then
prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:DISPLAY:SCALe?"
varScale = myScope.ReadNumber
Debug.Print FormatNumber(varScale, 0)

History Legacy command (existed before version 3.10).

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 221

:CHANnel<N>:INPut

Command :CHANnel<N>:INPut <parameter>

The :CHANnel<N>:INPut command selects the input coupling, impedance, and
LF/HF reject for the specified channel.

<N> An integer, 1-4.

<parameter> On 9000 Series, 9000H Series, and S-Series oscilloscopes:

• DC — DC coupling, 1 MΩ impedance.

• DC50 | DCFifty — DC coupling, 50Ω impedance.

• AC — AC coupling, 1 MΩ impedance.

• LFR1 | LFR2 — AC 1 MΩ input impedance.

When no probe is attached, the coupling for each channel can be AC, DC,
DC50, or DCFifty.

If you have an 1153A probe attached, the valid parameters are DC, LFR1, and
LFR2 (low-frequency reject).

On 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series oscilloscopes:

• DC50 | DCFifty — DC coupling, 50Ω impedance.

Example This example sets the channel 1 input to DC50.

myScope.WriteString ":CHANnel1:INPut DC50"

Query :CHANnel<N>:INPut?

The :CHANnel<N>:INPut? query returns the selected channel input parameter.

Returned Format [CHANnel<N>:INPut] <parameter><NL>

Example This example puts the current input for channel 1 in the string variable, strInput.
The program then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANnel1:INPut?"
strInput = myScope.ReadString
Debug.Print strInput

History Legacy command (existed before version 3.10).

222 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:ISIM:APPLy

Command :CHANnel<N>:ISIM:APPLy "<transfer_funct_file>"

The :CHANnel<N>:ISIM:APPLy command applies a pre-computed transfer
function to the waveform. If InfiniiSim is in 2 port mode, the file must be a .tf2 file.
If in 4 port mode, the file must be a .tf4 file. Use the ISIM:STATe command to
enable InfiniiSim before issuing the APPLy command.

<N> An integer, 1-4.

<transfer_funct_fil
e>

The full path to the .tf2 file name (if in 2 port mode) or the .tf4 file (if in 4 port
mode).

Example This example applies the example.tf4 file to the waveform on channel 1.

myScope.WriteString _
":CHANNEL1:ISIM:APPLy " + _
"""C:\Users\Public\Documents\Infiniium\Filters\example.tf4"""

Query :CHANnel<N>:ISIM:APPLy?

The :CHANnel<N>:ISIM:APPLy? query returns the currently selected function file
name when 2 port or 4 port mode is enabled.

Returned Format [CHANnel<N>:ISIM:APPLy] <file_name><NL>

Example This example puts the current transfer function file name in the variable strFile. The
program then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":CHANNEL1:ISIM:APPLy?"
strFile = myScope.ReadString
Debug.Print strFile

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 223

:CHANnel<N>:ISIM:BANDwidth

Command :CHANnel<N>:ISIM:BANDwidth <bw_value>

The :CHANnel<N>:ISIM:BANDwidth command sets the Bandwidth Limit field in
the InfiniiSim GUI to a desired value (sets the bandwidth limit cutoff frequency).
The CHANnel<N>:ISIM:BWLimit command turns this feature on or off. Please refer
to the InfiniiSim User's Guide on your oscilloscope or on Keysight.com for more
explanation regarding this field.

<N> An integer, 1-4.

<bw_value> The maximum value is the sample rate / 2. The minimum value is 1000 Hz.

Example This example sets the channel 1 input bandwidth limit cutoff frequency to 2 GHz.

myScope.WriteString ":CHANNEL1:ISIM:BANDwidth 2e9"

Query :CHANnel<N>:ISIM:BANDwidth?

The :CHANnel<N>:ISIM:BANDwidth? query returns the selected channel input's
bandwidth limit cutoff frequency.

Returned Format [CHANnel<N>:ISIM:BANDwidth] <parameter><NL>

Example This example puts the current input for channel 1 in the string variable,
varBwLimit. The program then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:ISIM:BANDwidth?"
varBwLimit = myScope.ReadNumber
Debug.Print FormatNumber(varBwLimit, 0)

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

224 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:ISIM:BWLimit

Command :CHANnel<N>:ISIM:BWLimit {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:ISIM:BWLimit command activates or deactivates the
Bandwidth Limit field in the InfiniiSim GUI. This field sets the bandwidth limit
cutoff frequency. The CHANnel<N>:ISIM:BANDwidth command sets the value to
be used when this field is activated. Please refer to the InfiniiSim User's Guide on
your oscilloscope or on Keysight.com for more explanation regarding this field.

<N> An integer, 1-4.

Example This example turns on the InfiniiSim bandwidth limit feature for channel 1.

myScope.WriteString ":CHANNEL1:ISIM:BWLimit ON"

Query :CHANnel<N>:ISIM:BWLimit?

The :CHANnel<N>:ISIM:BWLimit? query returns the current state of the
corresponding channel's InfiniiSim bandwidth limiting feature.

Returned Format [CHANnel<N>:ISIM:BWLimit] {1 | 0}<NL>

Example This example puts the current InfiniiSim bandwidth limit state for channel 1 in the
string variable, varLimit. The program then prints the contents of the variable to
the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:ISIM:BWLimit?"
varLimit = myScope.ReadNumber
Debug.Print FormatNumber(varLimit, 0)

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 225

:CHANnel<N>:ISIM:CONVolve

Command :CHANnel<N>:ISIM:CONVolve <s_parameter_file>, {OFF | ON}

The :CHANnel<N>:ISIM:CONVolve command convolves the indicated S-parameter
file with the waveform. This command only uses a single S21 component block. If a
.s4p file is indicated, ports 1 and 2 are used assuming a 1-2, 3-4 port numbering
for 4 port files. Optionally, include ON to flip the port numbering when reading the
s-parameter file.

<N> An integer, 1-4.

<s_parameter_
file>

The name of the s-parameter file.

Example This example convolves the s-parameter file example.s2p with the waveform on
channel 1.

myScope.WriteString ":CHANNEL1:ISIM:CONVolve example.s2p"

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

226 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:ISIM:CORRection

Command :CHANnel<N>:ISIM:CORRection <percent>

The :CHANnel<N>:ISIM:CORRection command sets the amount of linearly scaled
correction applied to the non-DC frequency components of the measured signal.
This lets you trade off the amount of correction to apply via the transformation
function versus the increase in noise it may create at higher frequencies. In other
words, you can fine-tune the amount of high-frequency noise versus the sharpness
of the step response edge.

<N> An integer, 1-4.

<percent> If you are making averaged mode measurements or applying a transfer function
that does not magnify the noise, use the full correction by setting this field to
100%.

However, if you are working with eye diagrams or making jitter measurements and
the transfer function is magnifying the noise, you may want to limit the correction
by selecting a lower percentage.

Example This example sets the channel 1 InfiniiSim correction factor to 80%.

myScope.WriteString ":CHANnel1:ISIM:CORRection 80"

Query :CHANnel<N>:ISIM:CORRection?

The :CHANnel<N>:ISIM:CORRection? query returns the selected input channel's
percent correction factor.

Returned Format [CHANnel<N>:ISIM:CORRection] <percent><NL>

Example This example gets the current channel 1 InfiniiSim correction percentage and
places it in the numeric variable, varIsimCorrection. The program then prints the
contents of the variable to the computer's screen.

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 227

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANnel1:ISIM:CORRection?"
varIsimCorrection = myScope.ReadNumber
Debug.Print FormatNumber(varBwLimit, 0)

History Legacy command (existed before version 3.10).

228 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:ISIM:DEConvolve

Command :CHANnel<N>:ISIM:DEConvolve <s_parameter_file>, {OFF | ON}

The :CHANnel<N>:ISIM:DEConvolve command deconvolves the indicated
S-parameter file with the waveform. This command only uses a single S21
component block. If a .s4p file is indicated, ports 1 and 2 are used assuming a 1-2,
3-4 port numbering for 4 port files. Optionally, include ON to flip the port
numbering when reading the s-parameter file.

<N> An integer, 1-4.

<s_parameter_
file>

The name of the s-parameter file.

Example This example deconvolves the s-parameter file example.s2p with the waveform on
channel 1.

myScope.WriteString ":CHANNEL1:ISIM:DEConvolve example.s2p"

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 229

:CHANnel<N>:ISIM:DELay

Command :CHANnel<N>:ISIM:DElay {OFF | ON}

If the :CHANnel<N>:ISIM:DELay command is turned on, the transfer function delay
is included in the resultant waveform. Consult the InfiniiSim User's Guide in the
Manuals section of the GUI help system for more information.

<N> An integer, 1-4.

Example This example applies the transfer function delay in the resultant waveform.

myScope.WriteString ":CHANNEL1:ISIM:DELay ON"

Query :CHANnel<N>:ISIM:DELay?

The :CHANnel<N>:ISIM:DELay? query returns the current state of the transfer
function delay feature on the corresponding input channel.

Returned Format [CHANnel<N>:ISIM:DELay] {OFF | ON}<NL>

Example This example puts whether or not the transfer function delay is included in the
resultant waveform for channel 1 in the string variable, strDelay. The program then
prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:ISIM:DELay?"
strDelay = myScope.ReadString
Debug.Print strDelay

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

230 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:ISIM:NORMalize

Command :CHANnel<N>:ISIM:NORMalize {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:ISIM:NORMalize command activates or deactivates the
"Normalize Gain" option. The InfiniiSim normalize gain option removes any DC
gain of the transfer function and can be used when modeling probes.

<N> An integer, 1-4.

Example This example turns on the InfiniiSim normalize gain option for channel 1.

myScope.WriteString ":CHANnel1:ISIM:NORMalize ON"

Query :CHANnel<N>:ISIM:NORMalize?

The :CHANnel<N>:ISIM:NORMalize? query returns the current state of the
corresponding channel's InfiniiSim normalize gain option.

Returned Format [CHANnel<N>:ISIM:NORMalize] {1 | 0}<NL>

Example This example puts the current InfiniiSim normalize gain state for channel 1 in the
string variable, varNormalizeGain. The program then prints the contents of the
variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANnel1:ISIM:NORMalize?"
varNormalizeGain = myScope.ReadNumber
Debug.Print FormatNumber(varLimit, 0)

See Also • ":CHANnel<N>:ISIM:DELay" on page 229

History New in version 4.60.

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 231

:CHANnel<N>:ISIM:PEXTraction

Command :CHANnel<N>:ISIM:PEXTraction {P12 | P32 | P34 | P14 | DIFFerential
| COMMonmode}

The :CHANnel<N>:ISIM:PEXTraction command selects the InfiniiSim port
extraction. The selections are:

• P12 — Use ports 1 -> 2, only valid for channels 1 and 2.

• P32 — Use ports 3 -> 2, only valid for channels 1 and 2.

• P34 — Use ports 3 -> 4, only valid for channels 3 and 4.

• P14 — Use ports 1 -> 4, only valid for channels 3 and 4.

• DIFFerential — valid for all channels.

• COMMonmode — valid for all channels.

<N> An integer, 1-4.

Example This example selects the channel 1 InfiniiSim differential port extraction.

myScope.WriteString ":CHANNEL1:ISIM:PEXTraction DIFFerential"

Query :CHANnel<N>:ISIM:PEXTraction?

The :CHANnel<N>:ISIM:PEXTraction? query returns the current InfiniiSim port
extraction selection.

Returned Format [CHANnel<N>:ISIM:PEXTraction] {P12 | P32 | P34 | P14 | DIFF | COMM}<NL>

Example This example puts the current InfiniiSim port extraction selection for channel 1 in
the string variable, strMode. The program then prints the contents of the variable
to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:ISIM:PEXTraction?"

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

232 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

strMode = myScope.ReadString
Debug.Print strMode

History New in version 3.11.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 233

:CHANnel<N>:ISIM:SPAN

Command :CHANnel<N>:ISIM:SPAN <max_time_span>

The :CHANnel<N>:ISIM:SPAN command sets the maximum time span control in
the InfiniiSim Setup dialog box.

<N> An integer, 1-4.

<max_time_span> A real number.

Example This example sets the maximum time span control to 100e-9.

myScope.WriteString ":CHANNEL1:ISIM:SPAN 100e-9"

Query :CHANnel<N>:ISIM:SPAN?

The :CHANnel<N>:ISIM:SPAN? query returns the current InfiniiSim filter maximum
time span on the corresponding input channel.

Returned Format [CHANnel<N>:ISIM:SPAN] <max_time_span><NL>

Example This example puts the InfiniiSim filter's maximum time span value in the variable
varTspan. The program then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:ISIM:SPAN?"
varTspan = myScope.ReadNumber
Debug.Print FormatNumber(varTspan, 0)

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

234 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:ISIM:STATe

Command :CHANnel<N>:ISIM:STATe {OFF | PORT2 | PORT4 | PORT41}

The :CHANnel<N>:ISIM:STATe command turns InfiniiSim on or off and sets
whether 2 port, 4 port (Channels 1&3), or 4 port (Channel 1) mode is being used (if
it is turned on).

<N> An integer, 1-4.

Example This example turns on InfiniiSim for channel 1 and puts it in 2 port mode.

myScope.WriteString ":CHANNEL1:ISIM:STATe PORT2"

Query :CHANnel<N>:ISIM:STATe?

The :CHANnel<N>:ISIM:STATe? query returns the current state of InfiniiSim on the
corresponding input channel.

Returned Format [CHANnel<N>:ISIM:STATe] {OFF | PORT2 | PORT4 | PORT41}<NL>

Example This example puts the current InfiniiSim state for channel 1 in the string variable,
strMode. The program then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:ISIM:STATe?"
strMode = myScope.ReadString
Debug.Print strMode

History Legacy command (existed before version 3.10).

NOTE This CHANnel command only applies if you have purchased the InfiniiSim software
application.

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 235

:CHANnel<N>:LABel

Command :CHANnel<N>:LABel <string>

The :CHANnel<N>:LABel command sets the channel label to the quoted strin
g.

<N> An integer, 1-4.

<string> A series of 16 or less characters as a quoted ASCII string

Example This example sets the channel 1 label to Data.

myScope.WriteString ":CHANNEL1:LABel ""Data"""

Query :CHANnel<N>:LABel?

The :CHANnel<N>:LABel? query returns the label of the specified channel.

Returned Format [CHANnel<N>:LABel] <string><NL>

History Legacy command (existed before version 3.10).

NOTE You can specify differential and/or common mode channels using the following convention. If
you have differential or common mode channels enabled (using either the
:CHANnel<N>:DIFFerential or :CHANnel<N>:COMMonmode commands) then:

• :CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
• :CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
• :CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
• :CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

236 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:OFFSet

Command :CHANnel<N>:OFFSet <offset_value>

The :CHANnel<N>:OFFSet command sets the vertical value that is represented at
the center of the display for the selected channel. Offset parameters are probe and
vertical scale dependent.

<N> An integer, 1-4.

<offset_value> A real number for the offset value at center screen. Usually expressed in volts, but
it can also be in other measurement units, such as amperes, if you have specified
other units using the :CHANnel<N>:UNITs command or the
CHANnel<N>:PROBe:EXTernal:UNITs command.

Example This example sets the offset for channel 1 to 0.125 in the current measurement
units:

myScope.WriteString ":CHANNEL1:OFFSET 125E-3"

Query :CHANnel<N>:OFFSet?

The :CHANnel<N>:OFFSet? query returns the current offset value for the specified
channel.

Returned Format [CHANnel<N>:OFFSet] <offset_value><NL>

Example This example places the offset value of the specified channel in the variable,
varOffset, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:OFFSET?"
varOffset = myScope.ReadNumber
Debug.Print FormatNumber(varOffset, "Scientific")

History Legacy command (existed before version 3.10).

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 237

:CHANnel<N>:PROBe

Command :CHANnel<N>:PROBe <attenuation_factor>[,{RATio | DECibel}]

The :CHANnel<N>:PROBe command sets the probe attenuation factor and the
units (ratio or decibels) for the probe attenuation factor for a user-defined probe.

The DECibel and RATio parameters also set the "mode" for the probe attenuation.
These parameters, along with attenuation factor, determine the scaling of the
display and affect automatic measurements and trigger levels.

This mode also determines the units (ratio or decibels) that may be used for a
subsequent command.

<N> An integer, 1-4

<attenuation
_factor>

A real number from 0.0001 to 1000 for the RATio attenuation units or from -80 dB
to 60 dB for the DECibel attenuation units.

Example This example sets the probe attenuation factor for a 10:1 probe on channel 1 in
ratio units.

myScope.WriteString ":CHANNEL1:PROBE 10,RAT"

Query :CHANnel<N>:PROBe?

The :CHANnel<N>:PROBe? query returns the current probe attenuation setting
and units for the selected channel.

Returned Format [:CHANnel<N>:PROBe] <attenuation>,{RATio | DECibel}<NL>

Example This example places the current attenuation setting for channel 1 in the string
variable, strAtten, then the program prints the contents.

Dim strAtten As String ' Dimension variable.
myScope.WriteString ":CHANNEL1:PROBE?"
strAtten = myScope.ReadString
Debug.Print strAtten

If you use a string variable, the query returns the attenuation value and the factor
(decibel or ratio). If you use an integer variable, the query returns the attenuation
value. You must then read the attenuation units into a string variable.

History Legacy command (existed before version 3.10).

238 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:ACCAL

Command :CHANnel<N>:PROBe:ACCAL {AUTO | OFF | PRECprobe}

The :CHANnel<N>:PROBe:ACCAL command sets the type of AC response probe
calibration to use:

• OFF — no AC response probe calibration is used.

• AUTO — the AC response probe calibration is based on the type of probe being
used and its general characteristics.

• PRECprobe — PrecisionProbe or PrecisionCable probe calibration is used.

<N> An integer, 1-4.

Example This example chooses the PrecisionProbe or PrecisionCable AC response
calibration for the probe on channel 1.

myScope.WriteString ":CHANNEL1:PROBE:ACCAL PRECprobe"

Query :CHANnel<N>:PROBe:ACCAL?

The :CHANnel<N>:PROBe:ACCAL? query returns the AC response probe
calibration setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:ACCAL] {AUTO | OFF | PREC}<NL>

See Also • ":CHANnel<N>:PROBe:PRECprobe:MODE" on page 260

• ":CHANnel<N>:PROBe:PRECprobe:CALibration" on page 258

• ":CHANnel<N>:PROBe:PRECprobe:ZSRC" on page 261

• ":CHANnel<N>:PROBe:PRECprobe:BANDwidth" on page 257

History New in version 3.10.

NOTE You are not able to start a PrecisionProbe or PrecisionCable calibration using remote SCPI
commands. However, you can enter SCPI commands to use the results of calibrations
performed using the front panel wizards.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 239

:CHANnel<N>:PROBe:ATTenuation

Command :CHANnel<N>:PROBe:ATTenuation {DIV1 | DIV10}

The :CHANnel<N>:PROBe:ATTenuation command sets the 1154A probe's input
amplifier attenuation. If the 1154A probe is not connected to the channel you will
get a settings conflict error.

<N> An integer, 1-4.

Example This example sets the probe attenuation for channel 1 to divide by 10.

myScope.WriteString ":CHANNEL1:PROBE:ATTENUATION DIV10"

Query :CHANnel<N>:PROBe:ATTenuation?

The :CHANnel<N>:PROBe:ATTenuation? query returns the current 1154A probe
input amplifier attenuation setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:ATTenuation] {DIV1 | DIV10}<NL>

History Legacy command (existed before version 3.10).

NOTE This command is only valid for the 1154A probe.

240 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:AUTozero

Command :CHANnel<N>:PROBe:AUTozero

The :CHANnel<N>:PROBe:AUTozero command initiates the N2893A probe's auto
degauss/ offset cal.

If the N2893A probe is not connected to the channel you will get a settings conflict
error.

<N> An integer, 1-4.

Example This example performs an auto zero operation for the probe on channel 1.

myScope.WriteString ":CHANnel1:PROBe:AUTozero"

History New in version 3.50.

NOTE This command is currently only valid for the N2893A probe.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 241

:CHANnel<N>:PROBe:COUPling

Command :CHANnel<N>:PROBe:COUPling {DC | AC}

The :CHANnel<N>:PROBe:COUPling command sets the coupling to either AC or
DC.

<N> An integer, 1-4.

Example This example sets the probe coupling for channel 1 to AC.

myScope.WriteString ":CHANNEL1:PROBE:COUPling AC"

Query :CHANnel<N>:PROBe:COUPling?

The :CHANnel<N>:PROBe:COUPling? query returns the current probe coupling
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:COUPling] {DC | AC}<NL>

History Legacy command (existed before version 3.10).

242 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:EADapter

Command :CHANnel<N>:PROBe:EADapter {NONE | DIV10 |
DIV20 | DIV100}

The :CHANnel<N>:PROBe:EADapter command sets the probe external adapter
control. The 1153A, 1154A, and 1159A probes have external adapters that you can
attach to the end of your probe. When you attach one of these adapters, you
should use the EADapter command to set the external adapter control to match
the adapter connected to your probe as follows.

If an 1153A, 1154A, or 1159A probe is not connected to the channel you will get a
settings conflict error.

<N> An integer, 1-4.

Example This example sets the external adapter for channel 1 to divide by 10:

myScope.WriteString ":CHANNEL1:PROBE:EADAPTER DIV10"

Query :CHANnel<N>:PROBe:EADapter?

The :CHANnel<N>:PROBe:EADapter? query returns the current external adapter
value for the specified channel.

Returned Format [CHANnel<N>:PROBe:EDApter] {NONE | DIV10 | DIV20 | DIV100}<NL>

Example This example places the external adapter value of the specified channel in the
string variable, strAdapter, then prints the contents of the variable to the
computer's screen.

Dim strAdapter As String 'Dimension variable
myScope.WriteString ":CHANNEL1:PROBE:EADAPTER?"

NOTE This command is valid only for the 1153A, 1154A, and 1159A probes.

Parameter Description

NONE Use this setting when there is no adapter connected to the end of your
probe.

DIV10 Use this setting when you have a divide by 10 adapter connected to the
end of your probe.

DIV20 Use this setting when you have a divide by 20 adapter connected to the
end of your probe. (1159A)

DIV100 Use this setting when you have a divide by 100 adapter connected to the
end of your probe.(1153A only)

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 243

strAdapter = myScope.ReadString
Debug.Print strAdapter

History Legacy command (existed before version 3.10).

244 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:ECOupling

Command :CHANnel<N>:PROBe:ECOupling {NONE | AC}

The :CHANnel<N>:PROBe:ECOupling command sets the probe external coupling
adapter control. The 1154A and 1159A probes have external coupling adapters
that you can attach to the end of your probe. When you attach one of these
adapters, you should use the ECOupling command to set the external coupling
adapter control to match the adapter connected to your probe as follows.

If an 1153A, 1154A, or 1159A probe is not connected to the channel you will get a
settings conflict error.

<N> An integer, 1-4.

Example This example sets the external coupling adapter for channel 1 to ac:

myScope.WriteString ":CHANNEL1:PROBE:ECOUPLING AC"

Query :CHANnel<N>:PROBe:ECOupling?

The :CHANnel<N>:PROBe:ECoupling? query returns the current external adapter
coupling value for the specified channel.

Returned Format [CHANnel<N>:PROBe:ECOupling] {NONE | AC}<NL>

Example This example places the external coupling adapter value of the specified channel
in the string variable, strAdapter, then prints the contents of the variable to the
computer's screen.

Dim strAdapter As String ' Dimension variable.
myScope.WriteString ":CHANNEL1:PROBE:ECOUPLING?"
strAdapter = myScope.ReadString
Debug.Print strAdapter

History Legacy command (existed before version 3.10).

NOTE This command is valid only for the 1153A, 1154A, and 1159A probes.

Parameter Description

NONE Use this setting when there is no adapter connected to the end of your
probe.

AC Use this setting when you have an ac coupling adapter connected to the
end of your probe.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 245

:CHANnel<N>:PROBe:EXTernal

Command :CHANnel<N>:PROBe:EXTernal {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:PROBe:EXTernal command sets the external probe mode to on
or off.

<N> An integer, 1-4.

Example This example sets channel 1 external probe mode to on.

myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL ON"

Query :CHANnel<N>:PROBe:EXTernal?

The :CHANnel<N>:PROBe:EXTernal? query returns the current external probe
mode for the specified channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal] {1 | 0}<NL>

Example This example places the current setting of the external probe mode on channel 1 in
the variable varMode, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL?"
varMode = myScope.ReadNumber
Debug.Print FormatNumber(varMode, 0)

History Legacy command (existed before version 3.10).

246 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:EXTernal:GAIN

Command :CHANnel<N>:PROBe:EXTernal:GAIN <gain_factor>[,{RATio | DECibel}]

The :CHANnel<N>:PROBe:EXTernal:GAIN command sets the probe external
scaling gain factor and, optionally, the units for the probe gain factor. The
reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The RATio or DECibel also sets the mode for the probe attenuation and also
determines the units that may be used for a subsequent command. For example, if
you select RATio mode, then the attenuation factor must be given in ratio gain
units. In DECibel mode, you can specify the units for the argument as "dB".

<N> An integer, 1-4.

<gain_factor> A real number from 0.001 to 10000 for the RATio gain units, or from -60 dB to 80
dB for the DECibel gain units.

Example This example sets the probe external scaling gain factor for channel 1 to 10.

myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL ON"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL:GAIN 10,RATIO"

Query :CHANnel<N>:PROBe:EXTernal:GAIN?

The :CHANnel<N>:PROBe:EXTernal:GAIN? query returns the probe external gain
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal:GAIN] <gain_factor><NL>

Example This example places the external gain value of the probe on the specified channel
in the variable, varGain, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL ON"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL:GAIN?"
varGain = myScope.ReadNumber
Debug.Print FormatNumber(varGain, 0)

History Legacy command (existed before version 3.10).

NOTE CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this command or
query or this command will have no effect.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 247

:CHANnel<N>:PROBe:EXTernal:OFFSet

Command :CHANnel<N>:PROBe:EXTernal:OFFSet <offset_value>

The :CHANnel<N>:PROBe:EXTernal:OFFSet command sets the external vertical
value for the probe that is represented at the center of the display for the selected
channel. Offset parameters are probe and vertical scale dependent.

When using the 113xA series probes, the CHANnel<N>:PROBe:STYPe command
determines how the offset is applied. When CHANnel<N>:PROBe:STYPe SINGle is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFset command changes the offset
value of the probe amplifier. When CHANnel<N>:PROBe:STYPe DIFFerential is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFSet command changes the offset
value of the channel amplifier.

<N> An integer, 1-4.

<offset_value> A real number for the offset value at center screen. Usually expressed in volts, but
can be in other measurement units, such as amperes, if you have specified other
units using the :CHANnel<N>:PROBe:EXTernal:UNITs command.

Example This example sets the external offset for the probe on channel 1 to 0.125 in the
current measurement units:

myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL ON"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL:OFFSET 125E-3"

Query :CHANnel<N>:EXTernal:PROBe:OFFSet?

The :CHANnel<N>:PROBe:EXTernal:OFFSet? query returns the current external
offset value for the probe on the specified channel.

Returned Format [CHANnel<N>:PROBe:EXTernal:OFFSet] <offset_value><NL>

Example This example places the external offset value of the probe on the specified channel
in the variable, Offset, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL ON"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL:OFFSET?"
varOffset = myScope.ReadNumber
Debug.Print FormatNumber(varOffset, 0)

History Legacy command (existed before version 3.10).

NOTE CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this command or
query or this command will have no effect.

248 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:EXTernal:UNITs

Command :CHANnel<N>:PROBe:EXTernal:UNITs {VOLT | AMPere | WATT | UNKNown}

The :CHANnel<N>:PROBe:EXTernal:UNITs command sets the probe external
vertical units on the specified channel. You can specify Y-axis units of VOLTs,
AMPs, WATTs, or UNKNown. The units are implied for other pertinent channel
probe external commands and channel commands (such as
:CHANnel<N>:PROBe:EXTernal:OFFSet and :CHANnel<N>:RANGe). See the Probe
Setup dialog box for more information.

<N> An integer, 1-4.

Example This example sets the external units for the probe on channel 1 to amperes.

myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL ON"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL:UNITS AMPERE"

Query :CHANnel<N>:PROBe:EXTernal:UNITs?

The :CHANnel<N>:PROBe:EXTernal:UNITs? query returns the current external
units setting for the probe on the specified channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

Example This example places the external vertical units for the probe on the specified
channel in the string variable, strUnits, then prints the contents of the variable to
the computer's screen.

Dim strUnits As String
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL ON"
myScope.WriteString ":CHANNEL1:PROBE:EXTERNAL:UNITS?"
strUnits = myScope.ReadString
Debug.Print strUnits

History Legacy command (existed before version 3.10).

NOTE CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this command or
query or this command will have no effect. UNITs can also be set using the
CHANnel<N>:UNITs command.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 249

:CHANnel<N>:PROBe:GAIN

Command :CHANnel<N>:PROBe:GAIN {X1 | X10}

The :CHANnel<N>:PROBe:GAIN command sets the 1154A probe input amplifier
gain.

If an 1154A probe is not connected to the channel you will get a settings conflict
error.

<N> An integer, 1-4.

Example This example sets the probe gain for channel 1 to times 10.

myScope.WriteString ":CHANNEL1:PROBE:GAIN X10"

Query :CHANnel<N>:PROBe:GAIN?

The :CHANnel<N>:PROBe:GAIN? query returns the current probe gain setting for
the selected channel.

Returned Format [:CHANnel<N>:PROBe:GAIN] {X1 | X10}<NL>

History Legacy command (existed before version 3.10).

NOTE This command is valid only for the 1154A probe.

250 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:HEAD:ADD

Command :CHANnel<N>:PROBe:HEAD:ADD "head", ["label"]

The :CHANnel<N>:PROBe:HEAD:ADD command adds an entry to the list of probe
heads.

<N> An integer, 1-4.

"head" A quoted string matching the probe head model such as "N5381A", "E2678A", etc.

"label" An optional quoted string for the head label.

Example This example adds the probe head N5381A to the list of probe heads for channel 1.

myScope.WriteString ":CHANNEL1:PROBE:HEAD:ADD ""N5381A"""

History Legacy command (existed before version 3.10).

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 251

:CHANnel<N>:PROBe:HEAD:DELete ALL

Command :CHANnel<N>:PROBe:HEAD:DELete ALL

The :CHANnel<N>:PROBe:HEAD:DELete ALL command deletes all the nodes in
the list of probe heads except for one default probe head which remains after this
command is executed.

<N> An integer, 1-4.

Example This example deletes the entire list of probe heads for channel 1 except for the
default head.

myScope.WriteString ":CHANNEL1:PROBE:HEAD:DELete ALL"

History Legacy command (existed before version 3.10).

252 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:HEAD:SELect

Command :CHANnel<N>:PROBe:HEAD:SELect {<int> | <quoted_label_string>}

The :CHANnel<N>:PROBe:HEAD:SELect command selects the probe head being
used from a list of possible probe head choices. You can select by the position
number in the list of probe heads, or you can select by the label given when the
probe head was added.

<N> An integer, 1-4.

<int> Specifies the number of the head (or position) in the configure list. The entry at the
top of the list starts at 1.

<quoted_label_stri
ng>

Specifies the label of the probe head given with the
:CHANnel<N>:PROBe:HEAD:ADD command.

Example This example add a couple of probe heads to the list then selects the probe head
using a number and a label.

myScope.WriteString ":CHANnel1:PROBe:HEAD:ADD 'N5445A:B1.5-2.5S'"
myScope.WriteString ":CHANnel1:PROBe:HEAD:ADD 'N5444A:2.92','foo'"
myScope.WriteString ":CHANnel1:PROBe:HEAD:SELect 1"
myScope.WriteString ":CHANnel1:PROBe:HEAD:SELect 'foo'"

Query :CHANnel<N>:PROBe:HEAD:SELect? {MODel | LABel}

The :CHANnel<N>:PROBe:HEAD:SELect? query returns a SCPI formatted string of
the selected probe head. Optional parameters are:

• MODel — Returns the model of the probe head.

• LABel — Returns the label of the probe head. This is the same label given with
the :CHANnel<N>:PROBe:HEAD:ADD command and that can also be used with
the SELect command.

If no parameter is specified, the MODel format is returned.

Example This example shows a few queries of the channel 1 probe head selection.

Dim strProbeHead As String
myScope.WriteString ":CHANnel1:PROBe:HEAD:SELect?"
strProbeHead = myScope.ReadString
Debug.Print strProbeHead ' Prints "N5444A:2.92".
myScope.WriteString ":CHANnel1:PROBe:HEAD:SELect? LABel"
strProbeHead = myScope.ReadString
Debug.Print strProbeHead ' Prints "foo".
myScope.WriteString ":CHANnel2:PROBe:HEAD:SELect? MODel"
strProbeHead = myScope.ReadString
Debug.Print strProbeHead ' Prints "N5444A:2.92".

See Also • ":CHANnel<N>:PROBe:HEAD:ADD" on page 250

History Legacy command (existed before version 3.10).

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 253

Version 3.50: Added the MPHY protocol type for the MIPI M-PHY serial decode
selection.

254 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:HEAD:VTERm

Command :CHANnel<N>:PROBe:HEAD:VTERm {FLOating | EXTernal
| {INTernal,<voltage>}}

The :CHANnel<N>:PROBe:HEAD:VTERm command sets the termination voltage
for the N5444A probe head.

<N> An integer, 1-4.

<voltage> A real number for the internal termination voltage setting.

Example To set an internal termination voltage of -1.0 V:

myScope.WriteString ":CHANnel1:PROBe:HEAD:VTERm INTernal,-1.0"

Query :CHANnel<N>:PROBe:HEAD:VTERm?

The :CHANnel<N>:PROBe:HEAD:VTERm? query returns the termination voltage
setting.

Returned Format [:CHANnel<N>:PROBe:HEAD:VTERm] {FLO | EXT | {INT,<voltage>}}<NL>

History New in version 3.50.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 255

:CHANnel<N>:PROBe:ID?

Query :CHANnel<N>:PROBe:ID?

The :CHANnel<N>:PROBe:ID? query returns the type of probe attached to the
specified oscilloscope channel.

<N> An integer, 1-4.

Returned Format [:CHANnel<N>:PROBe:ID] <probe_id>

<probe_id> A string of alphanumeric characters. Some of the possible returned values are:

Example This example reports the probe type connected to channel 1, if one is connected.

myScope.WriteString ":CHANNEL1:PROBE:ID?"

History Legacy command (existed before version 3.10).

1131A 1132A 1134A

1152A 1154A 1156A

1157A 1158A 1159A

1163A 1168A 1169A

AutoProbe E2621A E2622A

E2695A E2697A N5380A

N5381A N5382A E2695A

No Probe Unknown User Defined Probe

256 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:MODE

Command :CHANnel<N>:PROBe:MODE {DIFF | SEA | SEB | CM}

The :CHANnel<N>:PROBe:MODE command sets the N2750A probe's InfiniiMode
configuration.

If the N2750A probe is not connected to the channel you will get a settings conflict
error.

<N> An integer, 1-4.

Example This example sets the probe InfiniiMode for channel 1 to common mode.

myScope.WriteString ":CHANNEL1:PROBE:MODE CM"

Query :CHANnel<N>:PROBe:MODE?

The :CHANnel<N>:PROBe:MODE? query returns the current N2750A probe
InfiniiMode setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:MODE] {DIFF | SEA | SEB | CM}<NL>

History New in version 3.50.

NOTE This command is currently only valid for the N2750A probe.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 257

:CHANnel<N>:PROBe:PRECprobe:BANDwidth

Command :CHANnel<N>:PROBe:PRECprobe:BANDwidth {AUTO | {MANual, <bandwidth>}
| {BOOSt, <boost_dB>}}

The :CHANnel<N>:PROBe:PRECprobe:BANDwidth command specifies how the
limit of PrecisionProbe or PrecisionCable correction/boosting is determined.

<N> An integer, 1-4.

AUTO PrecisionProbe or PrecisionCable normally sets the bandwidth to a value that has
a small amount of boosting in the frequency response.

MANual,
<bandwidth>

Let you manually specify a bandwidth limit at which to stop applying correction.

BOOSt,
<boost_dB>

Lets you specify a dB limit at which to stop applying correction.

Example This example specifies that, for PrecisionProbe or PrecisionCable on channel 1,
correction/boosting should stop being applied at a 3 dB limit.

myScope.WriteString ":CHANNEL1:PROBE:PRECprobe:BANDwidth BOOSt, 3"

Query :CHANnel<N>:PROBe:PRECprobe:BANDwidth?

The :CHANnel<N>:PROBe:PRECprobe:BANDwidth? query returns the current
PrecisionProbe or PrecisionCable corrected bandwidth setting for the selected
channel.

Returned Format [:CHANnel<N>:PROBe:PRECprobe:BANDwidth] {AUTO | {MANual, <bandwidth>}
| {BOOSt, <boost_dB>}}<NL>

See Also • ":CHANnel<N>:PROBe:ACCAL" on page 238

• ":CHANnel<N>:PROBe:PRECprobe:MODE" on page 260

• ":CHANnel<N>:PROBe:PRECprobe:CALibration" on page 258

• ":CHANnel<N>:PROBe:PRECprobe:ZSRC" on page 261

• ":CHANnel<N>:PROBe:PRECprobe:DELay" on page 259

History New in version 3.10.

258 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:PRECprobe:CALibration

Command :CHANnel<N>:PROBe:PRECprobe:CALibration <cal_string>[,<cal_string2]

The :CHANnel<N>:PROBe:PRECprobe:CALibration command specifies the name
of the PrecisionProbe or PrecisionCable calibration to use for the specified channel
and probe.

<N> An integer, 1-4.

<cal_string>[,<cal_
string2>]

A quoted string that is the name of the PrecisionProbe or Precision Cable
calibration. The SMA probe heads can use two independent calibration files.

Example This example says to use the PrecisionProbe or PrecisionCable calibration named
"2-8-2" for channel 1.

myScope.WriteString ":CHANNEL1:PROBE:PRECprobe:CALibration "2-8-2""

Query :CHANnel<N>:PROBe:PRECprobe:CALibration?

The :CHANnel<N>:PROBe:PRECprobe:CALibration? query returns the currently
specified name for the selected channel's PrecisionProbe or PrecisionCable
calibration.

Returned Format [:CHANnel<N>:PROBe:PRECprobe:CALibration] <cal_string>[,<cal_string2]<NL
>

See Also • ":CHANnel<N>:PROBe:ACCAL" on page 238

• ":CHANnel<N>:PROBe:PRECprobe:MODE" on page 260

• ":CHANnel<N>:PROBe:PRECprobe:ZSRC" on page 261

• ":CHANnel<N>:PROBe:PRECprobe:BANDwidth" on page 257

• ":CHANnel<N>:PROBe:PRECprobe:DELay" on page 259

History New in version 3.10.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 259

:CHANnel<N>:PROBe:PRECprobe:DELay

Command :CHANnel<N>:PROBe:PRECprobe:DELay {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:PROBe:PRECprobe:DELay command specifies whether to
include cable delay in a PrecisionCable AC response probe calibration.

<N> An integer, 1-4.

Example This example specifies to include cable delay in the calibration.

myScope.WriteString ":CHANnel1:PROBe:PRECprobe:DELay ON"

Query :CHANnel<N>:PROBe:PRECprobe:DELay?

The :CHANnel<N>:PROBe:PRECprobe:DELay? query returns the current "include
cable delay" selection.

Returned Format [:CHANnel<N>:PROBe:PRECprobe:DELay] {1 | 0}<NL>

See Also • ":CHANnel<N>:PROBe:ACCAL" on page 238

• ":CHANnel<N>:PROBe:PRECprobe:MODE" on page 260

• ":CHANnel<N>:PROBe:PRECprobe:CALibration" on page 258

• ":CHANnel<N>:PROBe:PRECprobe:ZSRC" on page 261

• ":CHANnel<N>:PROBe:PRECprobe:BANDwidth" on page 257

History New in version 4.20.

260 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:PRECprobe:MODE

Command :CHANnel<N>:PROBe:PRECprobe:MODE {PROBe | CABLe}

The :CHANnel<N>:PROBe:PRECprobe:MODE command chooses between
PrecisionProbe or PrecisionCable AC response probe calibration.

<N> An integer, 1-4.

Example This example chooses PrecisionProbe calibration for the probe on channel 1.

myScope.WriteString ":CHANNEL1:PROBE:PRECprobe:MODE PROBe"

Query :CHANnel<N>:PROBe:PRECprobe:MODE?

The :CHANnel<N>:PROBe:PRECprobe:MODE? query returns the current
PrecisionProbe/PrecisionCable selection for the selected channel.

Returned Format [:CHANnel<N>:PROBe:PRECprobe:MODE] {PROBe | CABLe}<NL>

See Also • ":CHANnel<N>:PROBe:ACCAL" on page 238

• ":CHANnel<N>:PROBe:PRECprobe:CALibration" on page 258

• ":CHANnel<N>:PROBe:PRECprobe:ZSRC" on page 261

• ":CHANnel<N>:PROBe:PRECprobe:BANDwidth" on page 257

• ":CHANnel<N>:PROBe:PRECprobe:DELay" on page 259

History New in version 3.10.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 261

:CHANnel<N>:PROBe:PRECprobe:ZSRC

Command :CHANnel<N>:PROBe:PRECprobe:ZSRC {VIN | {VSRC, <impedance>}
| {VSRC, <file_string>}}

The :CHANnel<N>:PROBe:PRECprobe:ZSRC command specifies how
PrecisionProbe characterizes the time domain and frequency domain response.

<N> An integer, 1-4.

VIN Selects the VOut/Vin probe transfer function (which characterizes the output of
the probe as a function of the input at the probe tips).

Defining the response this way lets you evaluate the probe's accuracy in
reproducing the actual signal present in your system with the probe attached. This
correction is what you would see with a real band limited probe that has finite
input impedance. PrecisionProbe corrects the "VOut/Vin" response to be flat with
frequency and phase to your defined bandwidth limit. It does not de-embed the
loading effects of the probe. (Keysight's probe corrections are typically defined
using Vout/Vin.)

VSRC,
<impedance>

Selects the VOut/VSrc estimate of probed system response (which corrects the
probe as "what would be there if the probe were not present"), and specifies a
constant (Zo/2) value (in ohms) as the system source impedance.

One drawback of defining the probe's response in this manner is that if the probe's
loading causes your circuit to lose some timing or amplitude margin, you probably
want to know that when you make a measurement. VOut/VSource compensation
will hide these effects from you. However, this method can be effective if probing
at the transmitter.

VSRC,
<file_string>

Selects the VOut/VSrc estimate of probed system response (which corrects the
probe as "what would be there if the probe were not present"), and names an
S-parameter file whose S11 is used to specify the system source impedance.

Example This example, for channel 1, tells PrecisionProbe to use the VOut/VSrc
characterization and to get the system source impedance from S11 in the
"foo.s2p" S-parameter file.

myScope.WriteString ":CHANNEL1:PROBE:PRECprobe:ZSRC VSRC, "foo.s2p""

Query :CHANnel<N>:PROBe:PRECprobe:ZSRC?

The :CHANnel<N>:PROBe:PRECprobe:ZSRC? query returns the current settings
for PrecisionProbe time domain and frequency domain response characterization.

Returned Format [:CHANnel<N>:PROBe:PRECprobe:ZSRC] {VIN | {VSRC, <impedance>}
| {VSRC, <file_string>}}<NL>

See Also • ":CHANnel<N>:PROBe:ACCAL" on page 238

• ":CHANnel<N>:PROBe:PRECprobe:MODE" on page 260

262 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

• ":CHANnel<N>:PROBe:PRECprobe:CALibration" on page 258

• ":CHANnel<N>:PROBe:PRECprobe:BANDwidth" on page 257

• ":CHANnel<N>:PROBe:PRECprobe:DELay" on page 259

History New in version 3.10.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 263

:CHANnel<N>:PROBe:SKEW

Command :CHANnel<N>:PROBe:SKEW <skew_value>

The :CHANnel<N>:PROBe:SKEW command sets the channel-to-channel skew
factor for the specified channel. You can use the oscilloscope's probe skew control
to remove timing differences between probes or cables on different channels.

<N> An integer, 1-4.

<skew_value> A real number for the skew value, in the range -1 ms to +1 ms.

Example This example sets the probe skew for channel 1 to 10 μs.

myScope.WriteString ":CHANNEL1:PROBE:SKEW 10E-6"

Query :CHANnel<N>:PROBe:SKEW?

The :CHANnel<N>:PROBe:SKEW? query returns the current probe skew setting for
the selected channel.

Returned Format [:CHANnel<N>:PROBe:SKEW] <skew_value><NL>

History Legacy command (existed before version 3.10).

264 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:PROBe:STYPe

Command :CHANnel<N>:PROBe:STYPe {DIFFerential | SINGle}

The :CHANnel<N>:PROBe:STYPe command sets the channel probe signal type
(STYPe) to differential or single-ended when using the 113xA series probes, 1168A
probe, and 1169A probe. This setting determines how offset is applied.

When single-ended is selected, the :CHANnel<N>:PROBe:EXTernal:OFFset
command changes the offset value of the probe amplifier. When differential is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFset command changes the offset
value of the channel amplifier.

<N> An integer, 1-4.

Example This example sets the probe mode to single-ended.

myScope.WriteString ":CHANNEL1:PROBE:STYPE SINGLE"

Query :CHANnel<N>:PROBe:STYPe?

The :CHANnel<N>:PROBe:STYPe? query returns the current probe mode setting
for the selected channel.

Returned Format [:CHANnel<N>:PROBe:STYPe] {DIFFerential | SINGle}<NL>

History Legacy command (existed before version 3.10).

NOTE This command is valid only for the 113xA series probes, 1168A probe, and 1169A probe.

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 265

:CHANnel<N>:RANGe

Command :CHANnel<N>:RANGe <range_value>

The :CHANnel<N>:RANGe command defines the full-scale vertical axis of the
selected channel. It sets up acquisition and display hardware to display the
waveform at a given range scale. The values represent the full-scale deflection
factor of the vertical axis in volts. These values change as the probe attenuation
factor is changed.

<N> An integer, 1-4.

<range_value> A real number for the full-scale voltage of the specified channel number.

Example This example sets the full-scale range for channel 1 to 500 mV.

myScope.WriteString ":CHANNEL1:RANGE 500E-3"

Query :CHANnel<N>:RANGe?

The :CHANnel<N>:RANGe? query returns the current full-scale vertical axis setting
for the selected channel.

Returned Format [:CHANnel<N>:RANGe]<range_value><NL>

Example This example places the current range value in the number variable, varSetting,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":CHANNEL1:RANGE?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

266 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

:CHANnel<N>:SCALe

Command :CHANnel<N>:SCALe <scale_value>

The :CHANnel<N>:SCALe command sets the vertical scale, or units per division, of
the selected channel. This command is the same as the front-panel channel scale.

<N> An integer, 1-4.

<scale_value> A real number for the vertical scale of the channel in units per division.

Example This example sets the scale value for channel 1 to 500 mV/div.

myScope.WriteString ":CHANNEL1:SCALE 500E-3"

Query :CHANnel<N>:SCALe?

The :CHANnel<N>:SCALe? query returns the current scale setting for the specified
channel.

Returned Format [:CHANnel<N>:SCALe] <scale_value><NL>

Example This example places the current scale value in the number variable, varSetting,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":CHANNEL1:SCALE?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

Channel Commands 12

Keysight Infiniium Oscilloscopes Programmer's Guide 267

:CHANnel<N>:UNITs

Command :CHANnel<N>:UNITs {VOLT | AMPere | WATT | UNKNown}

The :CHANnel<N>:UNITs command sets the vertical units. You can specify Y-axis
units of VOLTs, AMPs, WATTs, or UNKNown. The units are implied for other
pertinent channel commands (such as :CHANnel<N>:RANGe and
:CHANnel<N>:OFFSet). See the Probe Setup dialog box for more information.

<N> An integer, 1-4.

Example This example sets the units for channel 1 to amperes.

myScope.WriteString ":CHANNEL1:UNITS AMPERE"

Query :CHANnel<N>:UNITs?

The :CHANnel<N>:UNITs? query returns the current units setting for the specified
channel.

Returned Format [:CHANnel<N>:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

Example This example places the vertical units for the specified channel in the string
variable, strUnits, then prints the contents of the variable to the computer's
screen.

Dim strUnits As String
myScope.WriteString ":CHANNEL1:UNITS?"
strUnits = myScope.ReadString
Debug.Print strUnits

History Legacy command (existed before version 3.10).

NOTE UNITs can also be set using the CHANnel<N>:PROBe:EXTernal:UNITs command when
CHANnel<N>:PROBe:EXTernal command has been set to ON.

268 Keysight Infiniium Oscilloscopes Programmer's Guide

12 Channel Commands

269

Keysight Infiniium Oscilloscopes
Programmer's Guide

13 Common Commands

*CLS / 271
*ESE / 272
*ESR? / 274
*IDN? / 275
*LRN? / 276
*OPC / 278
*OPT? / 279
*PSC / 282
*RCL / 283
*RST / 284
*SAV / 285
*SRE / 286
*STB? / 288
*TRG / 290
*TST? / 291
*WAI / 292

Common commands are defined by the IEEE 488.2 standard. They control generic
device functions that are common to many different types of instruments.
Common commands can be received and processed by the oscilloscope, whether
they are sent over the remote interface as separate program messages or within
other program messages.

Receiving
Common

Commands

Common commands can be received and processed by the oscilloscope, whether
they are sent over the remote interface as separate program messages or within
other program messages. If a subsystem is currently selected and a common
command is received by the oscilloscope, the oscilloscope remains in the selected
subsystem. For example, if the program message

"ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the oscilloscope, the oscilloscope sets the acquire type, clears the
status information, then sets the number of averages without leaving the selected
subsystem.

270 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

Status Registers The following two status registers used by common commands have an enable
(mask) register. By setting bits in the enable register, you can select the status
information for use. Refer to the chapter, "Status Reporting," for a complete
discussion of status.

NOTE Headers and Common Commands.

Headers are not prepended to common commands.

Table 6 Status and Enable Registers

Status Register Enable Register

Event Status Register Event Status Enable Register

Status Byte Register Service Request Enable Register

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 271

*CLS

Clear Status

Command *CLS

The *CLS command clears all status and error registers.

Example This example clears the status data structures of the oscilloscope.

myScope.WriteString "*CLS"

See Also Refer to the "Status Reporting" chapter for a complete discussion of status.

History Legacy command (existed before version 3.10).

272 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*ESE

Event Status Enable

Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the
Standard Event Status Register as shown in Table 7.

Example This example enables the User Request (URQ) bit of the Standard Event Status
Enable Register. When this bit is enabled and a front-panel key is pressed, the
Event Summary bit (ESB) in the Status Byte Register is also set.

myScope.WriteString "*ESE 64"

Query *ESE?

The *ESE? query returns the current contents of the Standard Event Status Enable
Register.

Returned Format <mask><NL>

<mask> An integer, +0 to +255 (the plus sign is also returned), representing a mask value
for the bits enabled in the Standard Event Status Register as shown in Table 7.

Example This example places the current contents of the Standard Event Status Enable
Register in the numeric variable, varEvent. The value of the variable is printed on
the computer's screen.

myScope.WriteString "*ESE?"
varEvent = myScope.ReadNumber
Debug.Print FormatNumber(varEvent, 0)

The Standard Event Status Enable Register contains a mask value for the bits to be
enabled in the Standard Event Status Register. A "1" in the Standard Event Status
Enable Register enables the corresponding bit in the Standard Event Status
Register. A "0" in the enable register disables the corresponding bit.

Table 7 Standard Event Status Enable Register Bits

Bit Weight Enables Definition

7 128 PON - Power On Indicates power is turned on.

6 64 Not Used. Permanently set to zero.

5 32 CME - Command Error Indicates whether the parser
detected an error.

4 16 EXE - Execution Error Indicates whether a parameter was
out of range, or was inconsistent
with the current settings.

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 273

See Also Refer to Chapter 6, “Status Reporting,” starting on page 117 for a complete
discussion of status.

History Legacy command (existed before version 3.10).

3 8 DDE - Device Dependent Error Indicates whether the device was
unable to complete an operation for
device-dependent reasons.

2 4 QYE - Query Error Indicates if the protocol for queries
has been violated.

1 2 RQC - Request Control Indicates whether the device is
requesting control.

0 1 OPC - Operation Complete Indicates whether the device has
completed all pending operations.

Table 7 Standard Event Status Enable Register Bits (continued)

Bit Weight Enables Definition

274 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*ESR?

Event Status Register

Query *ESR?

The *ESR? query returns the contents of the Standard Event Status Register.
Reading this register clears the Standard Event Status Register, as does a *CLS.

Returned Format <status><NL>

<status> An integer, 0 to 255, representing the total bit weights of all bits that are high at
the time you read the register.

Example This example places the current contents of the Standard Event Status Register in
the numeric variable, varEvent, then prints the value of the variable to the
computer's screen.

myScope.WriteString "*ESR?"
varEvent = myScope.ReadNumber
Debug.Print FormatNumber(varEvent, 0)

Table 8 lists each bit in the Event Status Register and the corresponding bit
weights.

History Legacy command (existed before version 3.10).

Table 8 Standard Event Status Register Bits

Bit Bit
Weight

Bit Name Cond ition (0 = False = Low, 1 =
True = High)

7 128 PON 1 = OFF to ON transition has
occurred.

6 64 Not Used. Permanently set to zero.

5 32 CME 0 = no command errors. 1 = a
command error has been detected.

4 16 EXE 0 = no execution error. 1 = an
execution error has been detected.

3 8 DDE 0 = no device-dependent errors. 1 =
a device-dependent error has been
detected.

2 4 QYE 0 = no query errors. 1 = a query
error has been detected.

1 2 RQC 0 = request control - NOT used -
always 0.

0 1 OPC 0 = operation is not complete. 1 =
operation is complete.

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 275

*IDN?

Identification Number

Query *IDN?

The *IDN? query returns the company name, oscilloscope model number, serial
number, and software version by returning this string:

Keysight Technologies,<Model #>,<USXXXXXXXX>,<Rev #>[,<Options>]

<Model #> Specifies the model number of the oscilloscope.

<USXXXXXXXX> Specifies the serial number of the oscilloscope. The first four digits and letter are
the serial prefix, which is the same for all identical oscilloscopes. The last five
digits are the serial suffix, which is assigned sequentially, and is different for each
oscilloscope.

<Rev #> Specifies the software version of the oscilloscope, and is the revision number.

<Options> Comma separated list of the installed options.

Returned Format Keysight Technologies,DSO9404A,USXXXXXXXX,XX.XX.XXXX

Example This example places the oscilloscope's identification information in the string
variable, strIdentify, then prints the identification information to the computer's
screen.

Dim strIdentify As String ' Dimension variable.
myScope.WriteString "*IDN?"
strIdentify = myScope.ReadString
Debug.Print strIdentify

History Legacy command (existed before version 3.10).

276 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*LRN?

Learn

Query *LRN?

The *LRN? query returns a block of data that contains the oscilloscope's current
setup. You can store the oscilloscope's setup and send it back to the oscilloscope
at a later time. This block of setup data should be sent to the oscilloscope just as it
is. It works because of its embedded ":SYST:SET" header.

Returned Format :SYST:SET<setup><NL>

<setup> This is a definite-length, arbitrary block response specifying the current
oscilloscope setup. The block size is subject to change with different firmware
revisions.

Example This Python and PyVISA example saves the *LRN? string to a file and then restores
the oscilloscope setup from the file.

**
Using the *LRN? string to save and restore the oscilloscope setup.
**

Import modules.

import visa
import string
import sys

===
Check for instrument errors:
===
def check_instrument_errors():

while True:
error_string = Infiniium.ask(":SYSTem:ERRor? STRing\n")
if error_string: # If there is an error string value.

if error_string.find("0,", 0, 2) == -1: # Not "No error".
print "ERROR: %s." % error_string
print "Exited because of error."
sys.exit(1)

else: # "No error"
break

else: # :SYSTem:ERRor? STRing should always return string.
print "ERROR: :SYSTem:ERRor? STRing returned nothing."
print "Exited because of error."
sys.exit(1)

===
Main program:
===

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 277

Infiniium = visa.instrument("TCPIP0::130.29.71.191::inst0::INSTR")
Infiniium.timeout = 20
Infiniium.term_chars = ""
Infiniium.clear()

Save oscilloscope setup.
sLearn = Infiniium.ask("*LRN?\n")
check_instrument_errors()

f = open("learn.stp", "wb")
f.write("%s\n" % sLearn)
f.close()
print "Learn string bytes saved: %d" % len(sLearn)

Restore the default setup.
Infiniium.write("*RST\n")

Set up oscilloscope by loading previously saved learn string.
sLearn = ""
f = open("learn.stp", "rb")
sLearn = f.read()
f.close()

Infiniium.write("%s\n" % sLearn)
check_instrument_errors()

print "Learn string bytes restored: %d" % len(sLearn)

See Also :SYSTem:SETup command and query. When HEADers is ON and LONGform is
OFF, the :SYSTem:SETup command performs the same function as the *LRN?
query. However, *LRN and SETup block setup data are not interchangeable.

History Legacy command (existed before version 3.10).

NOTE *LRN? Returns Prefix to Setup Block

The *LRN? query always returns :SYST:SET as a prefix to the setup block. The
:SYSTem:HEADer command has no effect on this response.

278 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*OPC

Operation Complete

Command *OPC

The *OPC command sets the operation complete bit in the Standard Event Status
Register when all pending device operations have finished.

Example This example sets the operation complete bit in the Standard Event Status
Register when the DIGitize operation is complete.

myScope.WriteString ":DIGITIZE CHANNEL1;*OPC"

Query *OPC?

The *OPC? query places an ASCII character "1" in the oscilloscope's output queue
when all pending selected device operations have finished.

Returned Format 1<NL>

Example This example places an ASCII character "1" in the oscilloscope's output queue
when the AUToscale operation is complete. Then the value in the output queue is
placed in the numeric variable var"varComplete."

myScope.WriteString ":AUTOSCALE;*OPC?"
varComplete = myScope.ReadNumber
Debug.Print FormatNumber(varComplete, 0)

The *OPC? query allows synchronization between the computer and the
oscilloscope by using the message available (MAV) bit in the Status Byte or by
reading the output queue. Unlike the *OPC command, the *OPC query does not
affect the OPC Event bit in the Standard Event Status Register.

History Legacy command (existed before version 3.10).

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 279

*OPT?

Option

Query *OPT?

The *OPT? query returns a string with a list of installed options. If no options are
installed, the string will have a 0 as the first character.

The length of the returned string may increase as options become available in the
future. Once implemented, an option name will be appended to the end of the
returned string, delimited by a comma.

Returned Format [002,EZP,EZJ,SDA,LSS,ABD,ABC,ABB,NRD,ERC,AIP,PCI1,ETH,DVI,HDM,B30,CAN,
SA1,DDR]<NL>

Table 9 Possible Installed Options and Descriptions

Installed Option Description

AP2 (U7233A) DDR1 Compliance

B30 (N5416A) USB Compliance

CAN (N5402A) CAN/FlexRay Protocols

CFL (N8803A/B) Basic CAN/FlexRay Protocols

D12 (U7232B) Display Port Compliance

DD3 (U7231A) DDR3 Compliance

DD4 (N6462A) DDR4 Compliance

DDR (N5413A/B) DDR2 Compliance

DEA (N5465A-002) InfiniiSim Advanced

DEB (N5465A-001) InfiniiSim Basic

DEQ (N5461A) Equalization

DPT (U7232A) Display Port Compliance

DRF (N8807A) DIGRF4 Protocol

DVI (N5394A) DVI Compliance

EKR (N8815A) 10GBASE-KR Ethernet Protocol

EMC (N6465A) eMMC Compliance

ETH (N5392A) Gigabit Ethernet Compliance

ETN (U7236A) 10G Ethernet Compliance

EZC (N8813A) EZJIT Complete

EZJ (E2681A) EZJIT

EZP (N5400A) EZJIT Plus

280 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

FBD (N5409A) FB DIMM Compliance

FBR (N5410A) Fibre Channel Compliance

GD5 (U7245A) GDDR5 Compliance

H14 (N5399B) HDMI + HEAC Compliance

HDM (N5399A/B) HDMI Compliance

HSI (U7248A) HSIC Compliance

LTP (N8817A) JTAG Protocol

LP2 (N5413B) LPDDR2 Compliance

LPU (N5413B) LPDDR2 Upgrade

LP3 (U7231B) LPDDR3 Compliance

L3U (U7231B) LPDDR3 Upgrade

LSS (N5391A/B) SPI/I2C Protocols

MHL (N6460A) Mobile HD Link Compliance

MPI (U7238A) MIPI D-PHY Compliance

MPH (U7249A) MIPI M-PHY Compliance

MPP (N8802A) MIPI D-PHY Protocol

MYC (N5467A) User Defined App

PCI (N5393B) PCI Express 1.0a Compliance

PC2 (N5393B) PCI Express 2.0 Compliance

PC3 (N5393C) PCI Express 3.0 Compliance

P3U (N5393C) PCIE 3.0 Upgrade

PEP (N5463A/B) PCI Express Protocol

PRN (N2809A) PrecisionProbe

PWR (U1882A) Power

QPI (U7241A) QPI Compliance

RSP (N5462A/B) RS232/UART Protocol

S6G (N5412B) SAS 6G Compliance

S6U (N5411B) SATA 3 Compliance Upgrade

SA1 (N5411A) SATA 1 Compliance

SA6 (N5411B) SATA 3 Compliance

SAS (N5412A) SAS Compliance

Table 9 Possible Installed Options and Descriptions (continued)

Installed Option Description

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 281

Example This example places all options into the string variable, strOptions, then prints the
option name to the computer's screen.

Dim strOptions As String
myScope.WriteString "*OPT?"
strOptions = myScope.ReadString
Debug.Print strOptions

History Legacy command (existed before version 3.10).

SDA (E2688A, N5384A) Serial Data Analysis

SDC (U7246A) SD Card Compliance

SSU (N5412B) SAS 6G Upgrade

STP (N8801A) SATA/SAS Protocol

SVD (N8812A) SVID Protocol

SWT (N5414A/B, N5415B) InfiniiScan

TBL (N6463A) Thunderbolt Compliance

U3P (N5464A/B) USB 3.0 Protocol

UDF (N5430A) User Def Fn

UH2 Ultra HS2 SD Compliance

U23 (U7243A-003) Upgrade from USB 2.0 to USB 3.0 Advanced

US3 (U7243A-001) USB 3.0 Compliance Only (Basic)

USA (U7243A-002) USB 2.0 and 3.0 Advanced

USU (U7243A-004) Upgrade from USB 3.0 Compliance Only to USB 3.0 Advanced

USP (N5464A/B) USB 2.0 Protocol

VSA UWB VSA

WUB (U7239A) Wireless USB Compliance

XAI (N5431A) XAUI Compliance

Table 9 Possible Installed Options and Descriptions (continued)

Installed Option Description

282 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*PSC

Power-on Status Clear

Command *PSC {{ON|1} | {OFF|0}}

The *PSC command determines whether or not the SRQ line is set upon the
completion of the oscilloscope's boot process. When the *PSC flag is set to 1, the
Power On (PON) bit of the Standard Event Status Register is 0 during the boot
process. When the *PSC flag is set to 0, the PON bit is set to a 1 during the boot
process.

When the *PSC flag is set to 0, the Standard Event Status Enable Register must be
set to 128 decimal and the Service Request Enable Register must be set to 32
decimal. This allows the Power On (PON) bit to set the SRQ line when the
oscilloscope is ready to receive commands.

Example This example sets the *PSC flag to 0 which sets the SRQ line during the boot
process.

myScope.WriteString "*PSC 0;*SRE 32;*ESE 128"

Query The *PSC? query returns the value of the *PSC flag.

Returned Format 1<NL>

Example This example places the *PSC flag into the integer variable varPscflag.

myScope.WriteString "*PSC?"
varPscflag = myScope.ReadNumber
Debug.Print FormatNumber(varPscflag, 0)

History Legacy command (existed before version 3.10).

NOTE If you are using a LAN interface rather than a GPIB interface, it is not possible to receive the
SRQ during the boot process.

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 283

*RCL

Recall

Command *RCL <register>

The *RCL command restores the state of the oscilloscope to a setup previously
stored in the specified save/recall register. An oscilloscope setup must have been
stored previously in the specified register. Registers 0 through 9 are
general-purpose registers and can be used by the *RCL command.

<register> An integer, 0 through 9, specifying the save/recall register that contains the
oscilloscope setup you want to recall.

Example This example restores the oscilloscope to the oscilloscope setup stored in register
3.

myScope.WriteString "*RCL 3"

See Also *SAV (Save). An error message appears on the oscilloscope's display if nothing has
been previously saved in the specified register.

History Legacy command (existed before version 3.10).

284 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*RST

Reset

Command *RST

The *RST command performs a default setup which is the same as pressing the
oscilloscope front panel default key.

Example This example resets the oscilloscope to a known state.

myScope.WriteString "*RST"

History Legacy command (existed before version 3.10).

NOTE The default values for all of the Infiniium controls is located in the Infiniium Help System under
Default Setup.

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 285

*SAV

Save

Command *SAV <register>

The *SAV command stores the current state of the oscilloscope in a save register.

<register> An integer, 0 through 9, specifying the register used to save the current
oscilloscope setup.

Example This example stores the current oscilloscope setup to register 3.

myScope.WriteString "*SAV 3"

See Also *RCL (Recall).

History Legacy command (existed before version 3.10).

286 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*SRE

Service Request Enable

Command *SRE <mask>

The *SRE command sets the Service Request Enable Register bits. By setting the
*SRE, when the event happens, you have enabled the oscilloscope's interrupt
capability. The oscilloscope will then do an SRQ (service request), which is an
interrupt.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the
Service Request Enable Register as shown in Table 10.

Example This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV bit is high.

myScope.WriteString "*SRE 16"

Query *SRE?

The *SRE? query returns the current contents of the Service Request Enable
Register.

Returned Format <mask><NL>

<mask> An integer, 0 to 255, representing a mask value for the bits enabled in the Service
Request Enable Register.

Example This example places the current contents of the Service Request Enable Register
in the numeric variable, varValue, then prints the value of the variable to the
computer's screen.

myScope.WriteString "*SRE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

The Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A "1" in the Service Request Enable Register
enables the corresponding bit in the Status Byte Register. A "0" disables the bit.

Table 10 Service Request Enable Register Bits

Bit Weight Enables

7 128 OPER - Operation Status Register

6 64 Not Used

5 32 ESB - Event Status Bit

4 16 MAV - Message Available

3 8 Not Used

2 4 MSG - Message

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 287

History Legacy command (existed before version 3.10).

1 2 USR - User Event Register

0 1 TRG - Trigger

Table 10 Service Request Enable Register Bits (continued)

Bit Weight Enables

288 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*STB?

Status Byte

Query *STB?

The *STB? query returns the current contents of the Status Byte, including the
Master Summary Status (MSS) bit. See Table 11 for Status Byte Register bit
definitions.

Returned Format <value><NL>

<value> An integer, 0 to 255, representing a mask value for the bits enabled in the Status
Byte.

Example This example reads the contents of the Status Byte into the numeric variable,
varValue, then prints the value of the variable to the computer's screen.

myScope.WriteString "*STB?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

In response to a serial poll (SPOLL), Request Service (RQS) is reported on bit 6 of
the status byte. Otherwise, the Master Summary Status bit (MSS) is reported on
bit 6. MSS is the inclusive OR of the bitwise combination, excluding bit 6, of the
Status Byte Register and the Service Request Enable Register. The MSS message
indicates that the oscilloscope is requesting service (SRQ).

Table 11 Status Byte Register Bits

Bit Bit
Weight

Bit Name Cond ition (0 = False = Low, 1 =
True = High)

7 128 OPER 0 = no enabled operation status
conditions have occurred 1 = an
enabled operation status condition
has occurred

6 64 RQS/MSS 0 = oscilloscope has no reason for
service 1 = oscilloscope is
requesting service

5 32 ESB 0 = no event status conditions have
occurred 1 = an enabled event
status condition has occurred

4 16 MAV 0 = no output messages are ready 1
= an output message is ready

3 8 --- 0 = not used

2 4 MSG 0 = no message has been displayed
1 = message has been displayed

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 289

History Legacy command (existed before version 3.10).

1 2 USR 0 = no enabled user event
conditions have occurred 1 = an
enabled user event condition has
occurred

0 1 TRG 0 = no trigger has occurred 1 = a
trigger occurred

Table 11 Status Byte Register Bits (continued)

Bit Bit
Weight

Bit Name Cond ition (0 = False = Low, 1 =
True = High)

290 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*TRG

Trigger

Command *TRG

The *TRG command has the same effect as the Group Execute Trigger message
(GET) or RUN command. It acquires data for the active waveform display, if the
trigger conditions are met, according to the current settings.

Example This example starts the data acquisition for the active waveform display according
to the current settings.

myScope.WriteString "*TRG"

History Legacy command (existed before version 3.10).

NOTE Trigger Conditions Must Be Met

When you send the *TRG command in Single trigger mode, the trigger conditions must be met
before the oscilloscope will acquire data.

Common Commands 13

Keysight Infiniium Oscilloscopes Programmer's Guide 291

*TST?

Test

Query *TST?

The *TST? query causes the oscilloscope to perform a self-test, and places a
response in the output queue indicating whether or not the self-test completed
without any detected errors. Use the :SYSTem:ERRor command to check for
errors. A zero indicates that the test passed and a non-zero indicates the self-test
failed.

Returned Format <result><NL>

<result> 0 for pass; non-zero for fail.

Example This example performs a self-test on the oscilloscope and places the results in the
numeric variable, varResults. The program then prints the results to the
computer's screen.

myScope.WriteString "*TST?"
varResults = myScope.ReadNumber
Debug.Print FormatNumber(varResults, 0)

If a test fails, refer to the troubleshooting section of the service guide.

History Legacy command (existed before version 3.10).

NOTE Disconnect Inputs First

You must disconnect all front-panel inputs before sending the *TST? command.

NOTE Expanded Error Reporting

The :SELFtest:SCOPETEST command has expanded error reporting. Instead of using *TST?,
Keysight recommends that you use the :SELFtest:SCOPETEST command. In either case, be
sure you disconnect all front-panel inputs before sending the *TST? command.

292 Keysight Infiniium Oscilloscopes Programmer's Guide

13 Common Commands

*WAI

Wait

Command *WAI

The *WAI command has no function in the oscilloscope, but is parsed for
compatibility with other instruments.

Example myScope.WriteString "*WAI"

History Legacy command (existed before version 3.10).

293

Keysight Infiniium Oscilloscopes
Programmer's Guide

14 Digital Commands

:DIGital<N>:DISPlay / 294
:DIGital<N>:LABel / 295
:DIGital<N>:SIZE / 296
:DIGital<N>:THReshold / 297

NOTE The DIGital commands only apply to the MSO oscilloscopes.

294 Keysight Infiniium Oscilloscopes Programmer's Guide

14 Digital Commands

:DIGital<N>:DISPlay

Command

:DIGital<N>[:DISPlay] {ON | OFF | 1 | 0}

The :DIGital<N>:DISPlay command enables or disables the view for the selected
digital channel.

<N> An integer, 0-15.

Example This example turns on the display of bit 5 for the digital channels.

myScope.WriteString ":DIGital5:DISPlay ON"

Query :DIGital<N>[:DISPlay]?

The :DIGital<N>:DISPlay? query returns the value of the display setting for the
selected digital channel.

Returned Format [:DIGital<N>:DISPlay] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

NOTE The DIGital commands only apply to the MSO oscilloscopes.

Digital Commands 14

Keysight Infiniium Oscilloscopes Programmer's Guide 295

:DIGital<N>:LABel

Command

:DIGital<N>:LABel <quoted_string>

The :DIGital<N>:LABel command sets the digital channel label to the quoted
string. Setting a label for a digital channel will also result in the name being added
to the label list.

<N> An integer, 1-2.

<quoted_string> A series of 16 or less characters as a quoted ASCII string.

Example This example sets the label for bit 7 to Clock.

myScope.WriteString ":DIGital7:LABel ""Clock"""

Query :DIGital<N>:LABel?

The :DIGital<N>:LABel? query returns the name of the specified digital channel.

Returned Format [:DIGital<N>:LABel] <quoted_string><NL>

History Legacy command (existed before version 3.10).

NOTE The DIGital commands only apply to the MSO oscilloscopes.

NOTE Label strings are 16 characters or less, and may contain any commonly used ASCII characters.
Labels with more than 16 characters are truncated to 16 characters.

296 Keysight Infiniium Oscilloscopes Programmer's Guide

14 Digital Commands

:DIGital<N>:SIZE

Command

DIGital<N>:SIZE {SMALl | MEDium | LARGe}

The :DIGital<N>:SIZE command changes the vertical size of all the displayed
digital channels. The digital subsystem must be enabled before this command will
work. See ENABle command in the root subsystem.

<N> An integer, 0-15.

Example This example changes the size to medium for all displayed digital channels or
buses.

myScope.WriteString ":ENABLE DIGITAL"
myScope.WriteString ":DIGITAL5:SIZE MEDIUM"

Query :DIGital<N>:SIZE?

The :DIGital:CHANnel:SIZE? query returns the size of the displayed digital
channels.

Returned Format [:DIGital<N>:SIZE] {SMALl | MEDium | LARGe}<NL>

History Legacy command (existed before version 3.10).

NOTE The DIGital commands only apply to the MSO oscilloscopes.

Digital Commands 14

Keysight Infiniium Oscilloscopes Programmer's Guide 297

:DIGital<N>:THReshold

Command

:DIGital<N>:THReshold {CMOS50 | CMOS33 | CMOS25 | ECL | PECL | TTL
| DIFFerential | <value>}

The :DIGital<N>:THReshold command sets the logic threshold value for a pod.
Setting the threshold for digital channels 0 through 7 sets the threshold for pod 1
while setting the threshold for digital channels 8 through 15 sets the threshold for
pod 2. This command is equivalent to the POD<N>:THReshold command.

The threshold is used for triggering purposes and for displaying the digital data as
high (above the threshold) or low (below the threshold). The voltage values for the
predefined thresholds are:

• CMOS50 = 2.5 V

• CMOS33 = 1.65 V

• CMOS25 = 1.25 V

• ECL = -1.3 V

• PECL = 3.7 V

• TTL = 1.4 V

• DIFFerential = 0 V

<N> An integer, 0-15.

<value> A real number representing the voltage value which distinguishes a 1 logic level
from a 0 logic level. Waveform voltages greater than the threshold are 1 logic
levels while waveform voltages less than the threshold are 0 logic levels.

On 9000 Series, 9000H Series, and S-Series mixed-signal oscilloscopes, the range
of the threshold voltage is from -8 volts to 8 volts.

On 90000 X-Series mixed-signal oscilloscopes, the range of the threshold voltage
is from -3.75 volts to 3.75 volts.

Example This example sets the threshold to 1.8 volts for bits D15 through D8.

myScope.WriteString ":DIGital8:THReshold 1.8"

Query :DIGital<N>:THREShold?

The :DIGital<N>:THReshold? query returns the threshold value for the specified
pod.

NOTE The DIGital commands only apply to the MSO oscilloscopes.

298 Keysight Infiniium Oscilloscopes Programmer's Guide

14 Digital Commands

Returned Format [:DIGital<N>:THReshold] {CMOS50 | CMOS33 | CMOS25 | ECL | PECL | TTL
| DIFF | <value>}<NL>

History Legacy command (existed before version 3.10).

Version 4.50: Added the DIFFerential parameter for specifying the threshold
voltage.

299

Keysight Infiniium Oscilloscopes
Programmer's Guide

15 Disk Commands

:DISK:CDIRectory / 300
:DISK:COPY / 301
:DISK:DELete / 302
:DISK:DIRectory? / 303
:DISK:LOAD / 304
:DISK:MDIRectory / 305
:DISK:PWD? / 306
:DISK:SAVE:COMPosite / 307
:DISK:SAVE:IMAGe / 308
:DISK:SAVE:JITTer / 309
:DISK:SAVE:LISTing / 310
:DISK:SAVE:MEASurements / 311
:DISK:SAVE:PRECprobe / 312
:DISK:SAVE:SETup / 313
:DISK:SAVE:WAVeform / 314
:DISK:SEGMented / 316

The DISK subsystem commands perform the disk operations as defined in the File
menu. This allows saving and loading of waveforms and setups, as well as saving
screen images to bitmap files.

NOTE Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

NOTE Filenames are Not Case Sensitive.

The filename that you use is not case sensitive.

300 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:CDIRectory

Command :DISK:CDIRectory "<directory>"

The :DISK:CDIRectory command changes the present working directory to the
designated directory name. An error occurs when the requested directory does not
exist. You can then view the error with the :SYSTem:ERRor? [{NUMBer | STRing}]
query.

<directory> A character-quoted ASCII string, which can include the subdirectory designation.
You must separate the directory name and any subdirectories with a backslash (\).

Example This example sets the present working directory to C:\Document and Settings\All
Users\Shared Documents\Infiniium\Data.

myScope.WriteString ":DISK:CDIRECTORY ""C:\Document and Settings\
All Users\Shared Documents\Infiniium\Data"""

History Legacy command (existed before version 3.10).

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 301

:DISK:COPY

Command :DISK:COPY "<source_file>","<dest_file>"

The :DISK:COPY command copies a source file from the disk to a destination file on
the disk. An error is displayed on the oscilloscope screen if the requested file does
not exist. The default path is C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data.

<source_file>
<dest_file>

A character-quoted ASCII string which can include subdirectories with the name of
the file.

Example This example copies FILE1.SET to NEWFILE.SET on the disk.

myScope.WriteString ":DISK:COPY ""FILE1.SET"",""NEWFILE.SET"""

History Legacy command (existed before version 3.10).

302 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:DELete

Command :DISK:DELete "<file_name>"

The :DISK:DELete command deletes a file from the disk. An error is displayed on
the oscilloscope screen if the requested file does not exist. The default path is C:\
Document and Settings\All Users\Shared Documents\Infiniium\Data.

<file_name> A character-quoted ASCII string which can include subdirectories with the name of
the file.

Example This example deletes FILE1.SET from the disk.

myScope.WriteString ":DISK:DELETE ""FILE1.SET"""

History Legacy command (existed before version 3.10).

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 303

:DISK:DIRectory?

Query :DISK:DIRectory? ["<directory>"]

The :DISK:DIRectory? query returns the requested directory listing. Each entry is
63 bytes long, including a carriage return and line feed. The default path is C:\
Document and Settings\All Users\Shared Documents\Infiniium\Data.

<directory> The list of filenames and directories.

Returned Format [:DISK:DIRectory]<n><NL><directory>

<n> The specifier that is returned before the directory listing, indicating the number of
lines in the listing.

<directory> The list of filenames and directories. Each line is separated by a <NL>.

Example This example displays a number, then displays a list of files and directories in the
current directory. The number indicates the number of lines in the listing.

Dim varResults As Variant
Dim lngI As Long

myScope.WriteString ":DISK:DIR?"
varResults = myScope.ReadList(ASCIIType_BSTR, vbLf)
Debug.Print FormatNumber(varResults(0), 0)

For lngI = 1 To (varResults(0) - 2)
Debug.Print CStr(varResults(lngI))

Next lngI

History Legacy command (existed before version 3.10).

304 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:LOAD

Command :DISK:LOAD "<file_name>"[,<destination>]

The :DISK:LOAD command restores from the disk a setup file, composite file, or a
waveform file into a waveform memory destination. The type of file is determined
by the filename suffix if one is present, or by the destination field if one is not
present. You can load .WFM, .CSV, .TSV, .TXT, .BIN, .H5, .SET, and .OSC file types.
The destination is only used when loading a waveform memory.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used. You can use either .WFM, .CSV, .TSV, .TXT, .BIN, .H5, .SET, or .OSC
as a suffix after the filename. If no file suffix is specified, the default is .wfm.

The present working directory is assumed, or you can specify the entire path. For
example, you can load the standard setup file "SETUP0.SET" using the command:

:DISK:LOAD "C:\Users\Public\Documents\Infiniium\Setups\SETUP0.SET"

Or, you can use :DISK:CDIRectory to change the present working directory to C:\
Users\Public\Documents\Infiniium\Setups, then just use the file name
("SETUP0.SET", for example). The default path is C:\Users\Public\Documents\
Infiniium\Setups.

<destination> WMEMory<N>.

Where <N> is an integer from 1-4.

If a destination is not specified, waveform memory 1 is used.

Example This example restores the waveform in FILE1.WFM to waveform memory 1.

myScope.WriteString ":DISK:LOAD ""FILE1.WFM"",WMEM1"

History Legacy command (existed before version 3.10).

CAUTION Setups saved from Infiniium software versions prior to 2.00 may not load correctly in
software versions 4.30 and greater.

You can remedy this by re-saving any pre-2.00 setups using any version of software
from version 2.00 to version 4.20.

Setups saved from software versions between 2.00 and 4.20 should load correctly into
version 4.30 and greater.

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 305

:DISK:MDIRectory

Command :DISK:MDIRectory "<directory>"

The :DISK:MDIRectory command creates a directory in the present working
directory which has been set by the :DISK:CDIRectory command. If the present
working directory has not been set by the :DISK:CDIRectory command, you must
specify the full path in the <directory> parameter as shown in Example 1 below.

An error is displayed if the requested subdirectory does not exist.

<directory> A quoted ASCII string which can include subdirectories. You must separate the
directory name and any subdirectories with a backslash (\).

Example 1 This example creates the directory CPROGRAMS in the C:\Document and
Settings\All Users\Shared Documents\Infiniium\Data directory.

myScope.WriteString _
":DISK:MDIRECTORY ""C:\Document and Settings\All Users\

Shared Documents\Infiniium\Data\CPROGRAMS"""

Example 2 This example creates the directory CPROGRAMS in the present working directory
set by the :DISK:CDIRectory command.

myScope.WriteString ":DISK:MDIRECTORY ""CPROGRAMS"""

You can check your path with the :DISK:DIRectory? query.

History Legacy command (existed before version 3.10).

306 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:PWD?

Query :DISK:PWD?

The :DISK:PWD? query returns the name of the present working directory
(including the full path). If the default path (C:\Document and Settings\All Users\
Shared Documents\Infiniium\Data) has not been changed by the
:DISK:CDIRectory command, the :DISK:PWD? query will return an empty string.

Returned Format :DISK:PWD? <present_working_directory><NL>

Example This example places the present working directory in the string variable strWdir,
then prints the contents of the variable to the computer's screen.

Dim strWdir As String
myScope.WriteString ":DISK:PWD?"
str Wdir = myScope.ReadString
Debug.Print strWdir

History Legacy command (existed before version 3.10).

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 307

:DISK:SAVE:COMPosite

Command :DISK:SAVE:COMPosite "<file_name>"

The :DISK:SAVE:COMPosite command lets you save oscilloscope composite files
to Infiniium's hard disk or to a network drive. Composite files contain setups and
waveform data.

The file will have an .osc extension.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

The filename assumes the present working directory if a path does not precede the
file name.

Example This example saves the oscilloscope's setup and waveform data to a composite file
named "C:\Scope\Setup\Comp001.osc".

myScope.WriteString ":DISK:SAVE:COMPosite ""C:\Scope\Setup\Comp001"""

History New in version 3.50.

308 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:SAVE:IMAGe

Command :DISK:SAVE:IMAGe "<file_name>" [,<format>
[,{SCReen | GRATicule}
[,{ON | 1} | {OFF | 0}
[,{NORMal | INVert}
[,{ON | 1} | {OFF | 0}]]]]]

The DISK:SAVE:IMAGe command saves a screen image. The default path is C:\
Document and Settings\All Users\Shared Documents\Infiniium\Data.

<format> The image format can be: BMP, GIF, TIF, PNG, or JPEG. The extension is supplied
by the oscilloscope depending on the selected file format.

If you do not include the format in the command, the file is saved in the format
shown in the Save Screen dialog box.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

(First) ON | OFF ON means that compression is on for the bitmap format (BMP). OFF means
compression is off.

(Second) ON | OFF The second ON/OFF selection indicates to save the setup information in the image
or not.

<format> {BMP | GIF | TIF | JPEG | PNG}

Examples myScope.WriteString ":DISK:SAVE:IMAGE ""FILE1"",BMP,SCR,ON,INVERT"

or:

myScope.WriteString ":DISK:SAVE:IMAGE ""FILE1"",TIF,GRAT,ON"

or:

myScope.WriteString ":DISK:SAVE:IMAGE ""FILE1"""

History Legacy command (existed before version 3.10).

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 309

:DISK:SAVE:JITTer

Command :DISK:SAVE:JITTer "<file_name>"

The DISK:SAVE:JITTer command saves the jitter measurements shown in the RJDJ
tab at the bottom of the oscilloscope screen along with the RJDJ histograms in a
comma separated variables (CSV) file format. The csv extension is supplied by the
oscilloscope. The default path is C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

Example myScope.WriteString ":DISK:SAVE:JITTER ""FILE1"""

History Legacy command (existed before version 3.10).

310 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:SAVE:LISTing

Command :DISK:SAVE:LISTing [<source>,] "<file_name>" [,<format>[,<type>]]

The DISK:SAVE:LISTing command saves the contents of the bus listing window to
a file in either a .csv or .txt format. The default path is C:\Document and Settings\
All Users\Shared Documents\Infiniium\Data.

<source> {SERial<N>} — The default serial bus is the one currently displayed in the listing
window.

<N> An integer 1 - 4.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

<format> {CSV | TXT}

<type> {PACKets | SYMBols}

Specifies which display window to save.

Example myScope.WriteString ":DISK:SAVE:LISTing SERial3, ""FILE1"", CSV"

History Legacy command (existed before version 3.10).

Version 5.00: Added the <type> parameter for specifying which display window to
save.

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 311

:DISK:SAVE:MEASurements

Command :DISK:SAVE:MEASurements "<file_name>"

The DISK:SAVE:MEASurements command saves the measurements shown in the
measurements tab at the bottom of the oscilloscope screen in a comma separated
variables (CSV) file format. The csv extension is supplied by the oscilloscope. The
default path is C:\Document and Settings\All Users\Shared Documents\Infiniium\
Data.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

Example myScope.WriteString ":DISK:SAVE:MEASURMENTS ""FILE1"""

History Legacy command (existed before version 3.10).

312 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:SAVE:PRECprobe

Command :DISK:SAVE:PRECprobe "<file_name>.csv", {CHAN1 | CHAN2 | CHAN3 | CHAN4}

The DISK:SAVE:PRECprobe command saves PrecisionProbe/Cable data in a
comma separated variables (CSV) file format. The default path is C:\Document
and Settings\All Users\Shared Documents\Infiniium\Data.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

Example myScope.WriteString ":DISK:SAVE:PRECprobe ""PPch1data.csv""", CHAN1

History New in version 4.00.

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 313

:DISK:SAVE:SETup

Command :DISK:SAVE:SETup "<file_name>"

The :DISK:SAVE:SETup command saves the current oscilloscope setup to a disk.
The file will have a .set extension.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used. The filename assumes the present working directory if a path does
not precede the file name. The default path is C:\SCOPE\SETUP.

Example This example saves the channel 1 waveform to SETUP1 on the disk.

myScope.WriteString ":DISK:SAVE:SETUP ""SEUP1"""

History Legacy command (existed before version 3.10).

314 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:SAVE:WAVeform

Command :DISK:SAVE:WAVeform <source>,"<file_name>" [,<format>[,<header>]]

The :DISK:SAVE:WAVeform command saves a waveform to a disk. If the source is
ALL, all of the currently displayed waveforms are saved to the file. If you use a file
extension as shown below in the <format> variable, then the type of file saved
defaults to the extension type. If no format is specified and no extension is used,
the file is saved in the INTernal format.

<source> {ALL | CHANnel<N> | CLOCk | FUNCtion<F> | HISTogram | MTRend | MSPectrum |
EQUalized | WMEMory<N> | PODALL | POD1 | POD2}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The PODALL source is all digital channels, POD1 is d0-d7, and POD2 is d8-d15.

<N> An integer, 1-4.

<F> An integer, 1-16.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used. The filename assumes the present working directory if a path does
not precede the file name. The default path is C:\Document and Settings\All
Users\Shared Documents\Infiniium\Data.

<format> {BIN | CSV | INTernal | TSV | TXT | H5 | H5INt}

The following file name extensions are used for the different formats:

• BIN = file_name.bin

• CSV (comma separated values) = file_name.csv

• INTernal = file_name.wfm

• TSV (tab separated values) = file_name.tsv

• TXT = file_name.txt

NOTE See the ":WAVeform:VIEW" on page 1238 command to determine how much data is saved.

Disk Commands 15

Keysight Infiniium Oscilloscopes Programmer's Guide 315

• H5, H5INt (HDF5) = file_name.h5

In the H5 format, data is saved as floats. In the H5INt format, data is saved as
integers.

<header> {{ON | 1} | {OFF | 0}}

Example This example saves the channel 1 waveform to FILE1 on the disk in the CSV format
with header on.

myScope.WriteString ":DISK:SAVE:WAVeform CHANnel1,""FILE1"",CSV,ON"

History Legacy command (existed before version 3.10).

Version 4.50: Added the H5INt format parameter which saves waveform data as
integers within the H5 file.

316 Keysight Infiniium Oscilloscopes Programmer's Guide

15 Disk Commands

:DISK:SEGMented

Command :DISK:SEGMented {ALL | CURRent}

The :DISK:SEGMented command sets whether all segments or just the current
segment are saved to a file when the :DISK:SAVE:WAVeform command is issued
and the source is a channel but not a waveform memory or function. Before
segments can be saved, the :ACQuire:MODE must be set to the SEGMented mode
and segments must be acquired.

Example This example sets the disk segmented memory store method to CURRent.

myScope.WriteString ":DISK:SEGMENTED CURRENT"

Query :DISK:SEGMented?

The :DISK:SEGMented? query returns disk segmented memory store method
value.

Returned Format [:DISK:SEGMented] {ALL | CURRent}<NL>

Example This example places the disk store method in the string variable strMethod, then
prints the contents of the variable to the computer's screen.

Dim strMethod As String
myScope.WriteString ":DISK:SEGMENTED?"
strMethod = myScope.ReadString
Debug.Print strMethod

History Legacy command (existed before version 3.10).

317

Keysight Infiniium Oscilloscopes
Programmer's Guide

16 Display Commands

:DISPlay:BOOKmark<N>:DELete / 318
:DISPlay:BOOKmark<N>:SET / 319
:DISPlay:BOOKmark<N>:VERTical / 321
:DISPlay:BOOKmark<N>:XPOSition / 322
:DISPlay:BOOKmark<N>:YPOSition / 323
:DISPlay:CGRade / 324
:DISPlay:CGRade:LEVels? / 326
:DISPlay:CGRade:SCHeme / 328
:DISPlay:CONNect / 330
:DISPlay:DATA? / 331
:DISPlay:GRATicule / 332
:DISPlay:GRATicule:AREA<N>:STATe / 333
:DISPlay:GRATicule:INTensity / 334
:DISPlay:GRATicule:NUMBer / 335
:DISPlay:GRATicule:SETGrat / 336
:DISPlay:LABel / 337
:DISPlay:LAYout / 338
:DISPlay:MAIN / 339
:DISPlay:PERSistence / 340
:DISPlay:PROPortion / 341
:DISPlay:SCOLor / 342
:DISPlay:STATus:COL / 344
:DISPlay:STATus:ROW / 345
:DISPlay:TAB / 346

The DISPlay subsystem controls the display of data, text, and graticules, and the
use of color.

318 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:BOOKmark<N>:DELete

Command :DISPlay:BOOKmark<N>:DELete

The :DISPlay:BOOKmark<N>:DELete command deletes a bookmark.

<N> An integer, 1-100.

See Also • ":DISPlay:BOOKmark<N>:SET" on page 319

• ":DISPlay:BOOKmark<N>:VERTical" on page 321

• ":DISPlay:BOOKmark<N>:XPOSition" on page 322

• ":DISPlay:BOOKmark<N>:YPOSition" on page 323

History New in version 5.00.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 319

:DISPlay:BOOKmark<N>:SET

Command :DISPlay:BOOKmark<N>:SET NONE,"label"[,<color>[,"content"]]

:DISPlay:BOOKmark<N>:SET <source>,"label"[,"content"[,<time>]]

The :DISPlay:BOOKmark<N>:SET command sets a bookmark.

<N> An integer, 1-100.

"label" A quoted ASCII string. This is the text that appears in the bookmark callout box.

<color> Display element color name (see the color names in ":DISPlay:SCOLor" on
page 342). You can set the color only for bookmarks that are not associated with a
waveform (that is, when <source> is NONE).

"content" A quoted ASCII string. This is the text that pops up when you mouse over a
bookmark callout box.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | FUNCtion<F> | WMEMory<N> |
CLOCk | MTRend | MSPectrum | EQUalized | DIGital<M>}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<P> DIFF<P> is an integer, 1-2.

COMMonmode<P> is an integer, 3-4.

320 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

<time> A real number time position. Time values are appropriate only for bookmarks
associated with waveforms.

See Also • ":DISPlay:BOOKmark<N>:DELete" on page 318

• ":DISPlay:BOOKmark<N>:VERTical" on page 321

• ":DISPlay:BOOKmark<N>:XPOSition" on page 322

• ":DISPlay:BOOKmark<N>:YPOSition" on page 323

History New in version 5.00.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 321

:DISPlay:BOOKmark<N>:VERTical

Query :DISPlay:BOOKmark<N>:VERTical?

The :DISPlay:BOOKmark<N>:VERTical? query returns a waveform's vertical value
at a bookmark's horizontal position.

<N> An integer, 1-100.

Returned Format <vertical_value><NL>

<vertical_value> A real number value.

See Also • ":DISPlay:BOOKmark<N>:DELete" on page 318

• ":DISPlay:BOOKmark<N>:SET" on page 319

• ":DISPlay:BOOKmark<N>:XPOSition" on page 322

• ":DISPlay:BOOKmark<N>:YPOSition" on page 323

History New in version 5.00.

322 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:BOOKmark<N>:XPOSition

Command :DISPlay:BOOKmark<N>:XPOSition <x_pos>

The :DISPlay:BOOKmark<N>:XPOSition command sets the horizontal grid position
of a bookmark's callout box.

<N> An integer, 1-100.

<x_pos> A real number between 0.0 and 1.0 that represents a percentage of the grid width.

Query :DISPlay:BOOKmark<N>:XPOSition?

The :DISPlay:BOOKmark<N>:XPOSition? query returns the horizontal grid position
of a bookmark's callout box.

Returned Format [:DISPlay:BOOKmark<N>:XPOSition] <x_pos><NL>

See Also • ":DISPlay:BOOKmark<N>:DELete" on page 318

• ":DISPlay:BOOKmark<N>:SET" on page 319

• ":DISPlay:BOOKmark<N>:VERTical" on page 321

• ":DISPlay:BOOKmark<N>:YPOSition" on page 323

History New in version 5.00.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 323

:DISPlay:BOOKmark<N>:YPOSition

Command :DISPlay:BOOKmark<N>:YPOSition <y_pos>

The :DISPlay:BOOKmark<N>:YPOSition command sets the vertical grid position of
a bookmark's callout box.

<N> An integer, 1-100.

<y_pos> A real number between 0.0 and 1.0 that represents a percentage of the grid
height.

Query :DISPlay:BOOKmark<N>:YPOSition?

The :DISPlay:BOOKmark<N>:YPOSition? query returns the vertical grid position of
a bookmark's callout box.

Returned Format [:DISPlay:BOOKmark<N>:YPOSition] <y_pos><NL>

See Also • ":DISPlay:BOOKmark<N>:DELete" on page 318

• ":DISPlay:BOOKmark<N>:SET" on page 319

• ":DISPlay:BOOKmark<N>:VERTical" on page 321

• ":DISPlay:BOOKmark<N>:XPOSition" on page 322

History New in version 5.00.

324 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:CGRade

Command :DISPlay:CGRade {{ON | 1} | {OFF | 0}}[,<source>]

The :DISPlay:CGRade command sets the color grade persistence on or off.

When in the color grade persistence mode, all waveforms are mapped into a
database and shown with different colors representing varying number of hits in a
pixel. "Connected dots" display mode (:DISPlay:CONNect) is disabled when the
color grade persistence is on.

The oscilloscope has three features that use a specific database. This database
uses a different memory area than the waveform record for each channel. The
three features that use the database are:

• Histograms.

• Mask testing.

• Color grade persistence.

When any one of these three features is turned on, the oscilloscope starts building
the database. The database is the size of the graticule area and varies in size.
Behind each pixel is a 53-bit counter. Each counter is incremented each time a
pixel is hit by data from a channel or function. The maximum count (saturation) for
each counter is 9,007,199,254,740,991. You can check for counter saturation by
using the DISPlay:CGRade:LEVels? query.

The color grade persistence uses colors to represent the number of hits on various
areas of the display. The default color-grade state is off.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | EQUalized | MTRend | MSPectrum}

If <source> is omitted, color grade is enabled/disabled for all sources which are
currently on.

<N> An integer, 1-4.

<F> An integer, 1-16.

Example This example sets the color grade persistence on.

myScope.WriteString ":DISPlay:CGRade ON"

Query :DISPlay:CGRade? [<source>]

The DISPlay:CGRade query returns the current color-grade state.

If <source> is omitted, the query returns ON (1) if any color grade is enabled.

Returned Format [:DISPlay:CGRade] {1 | 0}<NL>

Example This example returns the current color grade state.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 325

Dim strCgrade As String ' Dimension variable.
myScope.WriteString ":DISPlay:CGRade?"
strCgrade = myScope.ReadString
Debug.Print strCgrade

See Also • ":DISPlay:CGRade:LEVels?" on page 326

• ":DISPlay:CGRade:SCHeme" on page 328

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which color grade should be turned on or off.

326 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:CGRade:LEVels?

Query :DISPlay:CGRade:LEVels?

The :DISPlay:CGRade:LEVels? query returns the range of hits represented by each
color. Fourteen values are returned, representing the minimum and maximum
count for each of seven colors. In the CLASsic color grade scheme, the values are
returned in the following order:

• Green minimum value

• Green maximum value

• Blue minimum value

• Blue maximum value

• Pink minimum value

• Pink maximum value

• Red minimum value

• Red maximum value

• Orange minimum value

• Orange maximum value

• Yellow minimum value

• Yellow maximum value

• White minimum value

• White maximum value

Returned Format [DISPlay:CGRade:LEVels] <color format><NL>

<color format> <intensity color min/max> is an integer value from 0 to 9,007,199,254,740,991

Example This example gets the range of hits represented by each color and prints it on the
computer screen:

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPlay:CGRade:LEVels?"
strCgrade = myScope.ReadString
Debug.Print strCgrade

In the CLASsic color grade scheme, colors start at green minimum, maximum,
then blue, pink, red, orange, yellow, white. The format is a string where commas
separate minimum and maximum values. The largest number in the string can be
9,007,199,254,740,991

An example of a possible returned string is as follows:

1,414,415,829,830,1658,1659,3316,3317,6633,6634,13267,13268,26535

See Also • ":DISPlay:CGRade" on page 324

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 327

• ":DISPlay:CGRade:SCHeme" on page 328

History Legacy command (existed before version 3.10).

Version 5.00: This query is unchanged but results are returned only when a single
color grade view is on.

328 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:CGRade:SCHeme

Command :DISPlay:CGRade:SCHeme {CLASsic | TEMP}

The :DISPlay:CGRade:SCHeme command sets the color grade scheme to CLASsic
or TEMP.

Color grade persistence is displayed in seven different colors which represent the
range of the counters in the database. In the CLASsic color grade scheme, the
counters with the largest counts are displayed using a white pixel while the
counters with the smallest counts are displayed using green pixels.

The following table shows the counter ranges for each color for both the CLASsic
and TEMP color grade schemes.

Example This example sets the color grade scheme to "classic".

myScope.WriteString ":DISPlay:CGRade:SCHeme CLASsic"

Query :DISPlay:CGRade:SCHeme?

Color Grade Scheme Range

Classic Temperature

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 329

The :DISPlay:CGRade:SCHeme? query returns the specified color scheme.

Returned Format [DISPlay:CGRade:SCHeme] {CLASsic | TEMP}<NL>

Example This example gets the specified color scheme and prints it on the computer
screen:

Dim strCgradeScheme As String ' Dimension variable.
myScope.WriteString ":DISPlay:CGRade:SCHeme?"
strCgradeScheme = myScope.ReadString
Debug.Print strCgradeScheme

See Also • ":DISPlay:CGRade" on page 324

• ":DISPlay:CGRade:LEVels?" on page 326

History New in version 4.20.

330 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:CONNect

Command :DISPlay:CONNect {{ON | 1} | {OFF | 0}}[,<source>]

When enabled, :DISPlay:CONNect draws a line between consecutive waveform
data points. This is also known as linear interpolation.

:DISPlay:CONNect is forced to OFF when color grade (:DISPlay:CGRade)
persistence is on.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | EQUalized | MTRend | MSPectrum}

If <source> is omitted, connected dots is enabled for all sources.

<N> An integer, 1-4.

<F> An integer, 1-16.

Example This example turns on the connect-the-dots feature.

myScope.WriteString ":DISPlay:CONNect ON"

Query :DISPlay:CONNect? [<source>]

The :DISPlay:CONNect? query returns the status of the connect-the-dots feature.

If <source> is omitted, the query returns ON (1) if connect the dots is enabled on
channel 1.

Returned Format [:DISPlay:CONNect] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the setting should be made.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 331

:DISPlay:DATA?

Query :DISPlay:DATA? [<type>[,<screen_mode>[,<compression> [,<inversion>]]]]

The :DISPlay:DATA? query returns information about the captured data. If no
options to the query are specified, the default selections are BMP file type, SCReen
mode, compression turned ON, and inversion set to NORMal.

<type> The bitmap type: BMP | JPG | GIF | TIF | PNG.

<screen_mode> The display setting: SCReen | GRATicule. Selecting GRATicule displays a 10-by-8
(unit) display graticule on the screen. See also :DISPlay:GRATicule.

<compression> The file compression feature: ON | OFF.

<inversion> The inversion of the displayed file: NORMal | INVert.

Returned Format [:DISPlay:DATA] <binary_block_data><NL>

<binary_block
_data>

Data in the IEEE 488.2 definite block format.

History Legacy command (existed before version 3.10).

332 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:GRATicule

Commands :DISPlay:GRATicule {GRID | FRAMe}

The :DISPlay:GRATicule command selects the type of graticule that is displayed.
Infiniium oscilloscopes have a 10-by-8 (unit) display graticule grid GRID), a grid
line is place on each vertical and horizontal division. When it is off (FRAMe), a
frame with tic marks surrounds the graticule edges.

Example This example sets up the oscilloscope's display background with a frame that is
separated into major and minor divisions.

myScope.WriteString ":DISPlay:GRATicule FRAMe"

Queries :DISPlay:GRATicule?

The :DISPlay:GRATicule? query returns the type of graticule currently displayed.

Returned Format [:DISPlay:GRATicule] {GRID | FRAMe}<NL>

Example This example places the current display graticule setting in the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPlay:GRATicule?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":DISPlay:GRATicule:INTensity" on page 334

• ":DISPlay:GRATicule:NUMBer" on page 335

• ":DISPlay:GRATicule:SETGrat" on page 336

History Legacy command (existed before version 3.10).

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 333

:DISPlay:GRATicule:AREA<N>:STATe

Commands :DISPlay:GRATicule:AREA<N>:STATe {{ON | 1} | {OFF | 0}}

The :DISPlay:GRATicule:AREA<N>:STATe command turn a waveform area on or off.

<N> Can be an integer from 2–8. Waveform area 1 is always on.

Example This example turns on waveform area 2.

myScope.WriteString ":DISPlay:GRATicule:AREA2:STATe ON"

Queries :DISPlay:GRATicule:AREA<N>:STATe?

The :DISPlay:GRATicule:AREA<N>:STATe? query returns whether the waveform
area is on or off.

Returned Format [:DISPlay:GRATicule:AREA<N>:STATe] {1 | 0}<NL>

Example This example places the status of waveform area 2 in the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPlay:GRATicule:AREA2:STATe?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":DISPlay:GRATicule" on page 332

• ":DISPlay:GRATicule:INTensity" on page 334

• ":DISPlay:GRATicule:NUMBer" on page 335

• ":DISPlay:GRATicule:SETGrat" on page 336

History New in version 5.00.

334 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:GRATicule:INTensity

Commands :DISPlay:GRATicule:INTensity <intensity_value>

You can dim the grid's intensity or turn the grid off to better view waveforms that
might be obscured by the graticule lines using the :DISPlay:GRATicule:INTensity
command. Otherwise, you can use the grid to estimate waveform measurements
such as amplitude and period.

When printing, the grid intensity control does not affect the hard copy. To remove
the grid from a printed hard copy, you must turn off the grid before printing.

<intensity _value> A integer from 0 to 100, indicating the percentage of grid intensity.

Example This example sets the graticule intensity to 50%.

myScope.WriteString ":DISPlay:GRATicule:INTensity 50"

Queries :DISPlay:GRATicule:INTensity?

The :DISPlay:GRATicule:INTensity? query returns the intensity.

Returned Format [:DISPlay:GRATicule:INTensity] <value><NL>

Example This example places the current graticule intensity setting in the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPlay:GRATicule:INTensity?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":DISPlay:GRATicule" on page 332

• ":DISPlay:GRATicule:NUMBer" on page 335

• ":DISPlay:GRATicule:SETGrat" on page 336

History Legacy command (existed before version 3.10).

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 335

:DISPlay:GRATicule:NUMBer

Commands :DISPlay:GRATicule:NUMBer <grids>[,<area>]

The :DISPlay:GRATicule:NUMBer command specifies the number of grids in a
waveform area. Multiple grids let you more easily view multiple waveforms that
use the full vertical scale.

<grids> Can be an integer from 1–16.

<area> Can be an integer from 1–8.

If the <area> is omitted, the number of grids will be applied to waveform area 1.

Example This example sets up two viewing areas.

myScope.WriteString ":DISPlay:GRATicule:NUMBer 2"

Queries :DISPlay:GRATicule:NUMBer? [<area>]

The :DISPlay:GRATicule:NUMBer? query returns the the number of grids in a
waveform area.

Returned Format [:DISPlay:GRATicule:NUMBer] {1-16}<NL>

Example This example places the current number of grids in the string variable, strSetting,
then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPlay:GRATicule:NUMBer?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":DISPlay:GRATicule" on page 332

• ":DISPlay:GRATicule:INTensity" on page 334

• ":DISPlay:GRATicule:SETGrat" on page 336

• ":DISPlay:GRATicule:AREA<N>:STATe" on page 333

History Legacy command (existed before version 3.10).

Version 5.0: Number of grids can be any number between 1 and 16 (not just 1, 2,
4, 8, or 16). You can also specify which waveform area the number of grids setting
is for.

336 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:GRATicule:SETGrat

Commands :DISPlay:GRATicule:SETGrat
<DispGratChan>,<grid>[,<area>][,{MAIN | CGRade}]

The :DISPlay:GRATicule:SETGrat command assigns the corresponding waveform
to a specific grid and waveform area.

If {MAIN | CGRade} is omitted, the MAIN view will be placed.

<DispGratChan> Can be:

• CHN<N>

• DIFF1, DIFF2

• COMM3, COMM4

• MEM<N> where N is between 1 and 4

• FN<N> where N is between 1 and 16 (function)

• HIST

• D<M> where M is between 0 and 15 (on MSO models with 16 digital channels)

• BUS<Y> where Y is between 1 and 4 (on MSO models)

<grid> Can be an integer from 1-16; this is the number of the grid you want to assign the
waveform to.

<area> Can be an integer from 1–8.

If <area> is omitted, the waveform will be placed in waveform area 1.

Example This example assigns the histogram to grid 2 (in waveform area 1).

myScope.WriteString ":DISPlay:GRATicule:SETGrat HIST,2"

See Also • ":DISPlay:GRATicule" on page 332

• ":DISPlay:GRATicule:INTensity" on page 334

• ":DISPlay:GRATicule:NUMBer" on page 335

• ":DISPlay:GRATicule:AREA<N>:STATe" on page 333

History Legacy command (existed before version 3.10).

Version 5.00: In addition to assigning a waveform to a grid, you can now optionally
specify which waveform area the grid is in. Also, you can specify whether the MAIN
or CGRade (color grade) view of the waveform will be placed.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 337

:DISPlay:LABel

Command :DISPlay:LABel {{ON | 1} | {OFF | 0}}

The :DISPlay:LABel command turns on or off the display of analog channel labels.
Label names can be up to 6 characters long. The label name is assigned by using
the CHANnel<n>:LABel command:

Example This example turns on the display of all labels.

myScope.WriteString ":DISPLAY:LABEL ON"

Query :DISPlay:LABel?

The :DISPlay:LABel? query returns the current state of the labels.

Returned Format [:DISPlay:LABel] {1 | 0}<NL>

Example This example places the current label state into the string variable, strSetting, then
prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPLAY:LABEL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

338 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:LAYout

Command :DISPlay:LAYout <layout>

The :DISPlay:LAYout command sets the window layout.

<layout> {CUSTom | SVERtical | SHORizontal}

• CUSTom — Tabbed/custom window layout.

• SVERtical — Stack windows vertically.

• SHORizontal — Stack windows horizontally.

Query :DISPlay:LAYout?

The :DISPlay:LAYout? query returns the window layout setting.

Returned Format [DISPlay:LAYout] <layout><NL>

See Also • ":DISPlay:PROPortion" on page 341

History New in version 5.00.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 339

:DISPlay:MAIN

Command :DISPlay:MAIN {{ON | 1} | {OFF | 0}}[,<source>]

The :DISPlay:MAIN command turns on or off the main window view for the
indicated source.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the main window view is enabled/disabled for all sources
that are currently on, except for digital channel sources.

<N> An integer, 1-4.

<F> An integer, 1-16.

Example This example sets the main view on.

myScope.WriteString ":DISPlay:MAIN ON"

Query :DISPlay:MAIN? [<source>]

The DISPlay:MAIN? returns whether the main window view for the indicated source
is on or off.

If <source> is omitted, the query returns ON (1) if any main window view is
enabled.

Returned Format [:DISPlay:MAIN] {1 | 0}<NL>

Example This example returns the main window view state.

Dim strMain As String ' Dimension variable.
myScope.WriteString ":DISPlay:MAIN?"
strCgrade = myScope.ReadString
Debug.Print strMain

See Also • ":DISPlay:CGRade" on page 324

History New in version 5.00.

340 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:PERSistence

Command :DISPlay:PERSistence {MINimum | INFinite | <time>}[,<source>]

<time> ::= seconds in in NR3 format from 100E-3 to 200E0

The :DISPlay:PERSistence command sets the display persistence. The parameter
for this command can be:

• MINimum — indicates zero persistence.

• INFinite — indicates infinite persistence.

• <time> — for variable persistence, that is, you can specify how long acquisitions
remain on the screen.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the persistence is applied to all waveforms.

For the WMEMory<N> source, the only valid persistence value is MINimum.

<N> An integer, 1-4.

<F> An integer, 1-16.

Example This example sets the persistence to infinite.

myScope.WriteString ":DISPlay:PERSistence INFinite"

Query :DISPlay:PERSistence? [<source>]

The :DISPlay:PERSistence? query returns the current persistence value.

When <source> is omitted, the query returns the persistence mode for channel 1.

Returned Format [:DISPlay:PERSistence] {MINimum | INFinite | <time>}<NL>

Example This example places the current persistence setting in the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPlay:PERSistence?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the persistence setting should be made.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 341

:DISPlay:PROPortion

Command :DISPlay:PROPortion <pane>, <float>

The :DISPlay:PROPortion command specifies the size of the waveform and plot
areas.

If the :DISPlay:LAYout is VERTical, this command sets an area's height.

If the :DISPlay:LAYout is HORizontal, this command sets an area's width.

If the :DISPlay:LAYout is CUSTom, this command is not supported.

<pane> {AREA<N> | SERial<M> | {JITTer | NOISe} | ISIM | PRECprobe | BUS}

<N> An integer, 1-8.

<M> An integer, 1-4.

<float> A value from 0.0 to 100.0.

Example You should set the proportion of all areas that are displayed such that the sum of
the proportions is 100. For example, if you have three areas on: Waveform Area1,
Waveform Area 2, and Jitter graphs, you may want to size them as follows:

:DISPlay:PROPortion AREA1, 20.0
:DISPlay:PROPortion AREA2, 20.0
:DISPlay:PROPortion JITTer, 60.0

If you set the size of one area only, it may not have the intended effect.

Query :DISPlay:PROPortion? <pane>

The :DISPlay:PROPortion? query returns the proportion value of the specified
pane.

The query returns the actual percentage of the specified area's width or height.
Note that this may be different than the value passed to the command, particularly
if the sum of the values passed to the command forms is not 100.

Returned Format [DISPlay:PROPortion] <float><NL>

See Also • ":DISPlay:LAYout" on page 338

History New in version 5.00.

342 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:SCOLor

Command :DISPlay:SCOLor <color_name>, <hue>, <saturation>, <luminosity>

The :DISPlay:SCOLor command sets the color of the specified display element.
The display elements are described in Table 12.

<color_name> {BUS | CGLevel1 - CGLevel7 | CHANnel1 - CHANnel4 | DCHannel | DMEMory
| FUNCtion1 - FUNCtion16 | GRID | HISTogram | MARKers | MEASurements
| MTPolygons | STEXt | TINPuts | TSCale | WBACkgrnd | WMEMories
| WMEMory1 - WMEMory4}

Table 12 Color Names

Color Name Definition

BUS Buses.

CGLevel1 - CGLevel7 Color Grade Level 1 through Level 7 waveform display elements.

CHANnel1 - CHANnel4 Channel 1 through Channel 4 waveform display elements.

DCHannel Digital channels.

DMEMory Digital waveform memory.

FUNCtion1 - FUNCtion16 Function 1 through Function 16 waveform display elements.

GRID Display element for the grid inside the waveform viewing area.

HISTogram Histogram bars.

MARKers Display element for the markers.

MEASurements Display element for the measurements text.

MTPolygons Mask test regions.

STEXt Display element for status messages displayed in the upper left
corner of the display underneath the menu bar. Changing this
changes the memory bar's color.

TINPuts Display element for line and aux trigger colors.

TSCale Display element for horizontal scale and offset control text.

WBACkgrnd Display element for the waveform viewing area's background.

WMEMories Display element for waveform memories (same as WMEMory1).

WMEMory1 - WMEMory4 Waveform Memory 1 through Waveform Memory 4 display
elements.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 343

<hue> An integer from 0 to 100. The hue control sets the color of the chosen display
element. As hue is increased from 0%, the color changes from red, to yellow, to
green, to blue, to purple, then back to red again at 100% hue. For color examples,
see the sample color settings table in the Infiniium Oscilloscope online help file.
Pure red is 100%, pure blue is 67%, and pure green is 33%.

<saturation> An integer from 0 to 100. The saturation control sets the color purity of the chosen
display element. The saturation of a color is the purity of a color, or the absence of
white. A 100% saturated color has no white component. A 0% saturated color is
pure white.

<luminosity> An integer from 0 to 100. The luminosity control sets the color brightness of the
chosen display element. A 100% luminosity is the maximum color brightness. A
0% luminosity is pure black.

Example This example sets the hue to 50, the saturation to 70, and the luminosity to 90 for
the markers.

myScope.WriteString ":DISPlay:SCOLor MARKers,50,70,90"

Query :DISPlay:SCOLor? <color_name>

The :DISPlay:SCOLor? query returns the hue, saturation, and luminosity for the
specified color.

Returned Format [:DISPlay:SCOLor] <color_name>, <hue>, <saturation>, <luminosity><NL>

Example This example places the current settings for the graticule color in the string
variable, strSetting, then prints the contents of the variable to the computer's
screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPlay:SCOLor? GRID"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

344 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:STATus:COL

Command :DISPlay:STATus:COL <column>

The :DISPlay:STATus:COL command is used to position the real time eye and
InfiniiScan Zone Trigger status labels.

This and the :DISPlay:STATus:ROW commands specify the upper left corner of the
box relative to the screen.

<column> A value of 0 to 1 may be given for the column where 0 is the far left and 1 the far
right.

Example For example, a column of 0.5 will place the upper left of the status label at the
center screen.

myScope.WriteString ":DISPLAY:STATus:COL 0.5"

Query :DISPlay:STATus:COL?

The :DISPlay:STATus:COL? query returns the current value of the status label
column location.

Returned Format [:DISPlay:STATus:COL] <column><NL>

Example This example places the current value for the status label column location in the
string variable, strSetting, then prints the contents of the variable to the
computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPLAY:STATus:COL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History New in version 3.10.

Display Commands 16

Keysight Infiniium Oscilloscopes Programmer's Guide 345

:DISPlay:STATus:ROW

Command :DISPlay:STATus:ROW <row>

The :DISPlay:STATus:ROW command is used to position the real time eye and
InfiniiScan Zone Trigger status labels.

This and the :DISPlay:STATus:COL commands specify the upper left corner of the
box relative to the screen.

<row> A value of 0 to 1 may be given for the row where 0 is the far top and 1 the far
bottom.

Example For example, a row and column of 0.5 will place the upper left of the status label at
the center screen.

myScope.WriteString ":DISPLAY:STATus:ROW 0.5"

Query :DISPlay:STATus:ROW?

The :DISPlay:STATus:ROW? query returns the current value of the status label row
location.

Returned Format [:DISPlay:STATus:ROW] <row><NL>

Example This example places the current value for the status label row location in the string
variable, strSetting, then prints the contents of the variable to the computer's
screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPLAY:STATus:ROW?"
strSetting = myScope.ReadString
Debug.Print strSetting

History New in version 3.10.

346 Keysight Infiniium Oscilloscopes Programmer's Guide

16 Display Commands

:DISPlay:TAB

Command :DISPlay:TAB <tab>

The :DISPlay:TAB command displays the corresponding tab indicated by the <tab>
parameter.

<tab> MEASurement | MARKer | LIMittest | JITTer | NOISe | HISTogram | MASKtest | EYE |
COLorgrade | NAVigation | STATus | SCALe

Example This example sets the Status tab as the displayed one.

myScope.WriteString ":DISPlay:TAB STATus"

Query :DISPlay:TAB?

The :DISPlay:TAB? query returns the tab that is currently displayed.

Returned Format [:DISPlay:TAB] {MEAS | MARK | LIM | JITT | NOIS | HIST | MASK | EYE
| COL | NAV | STAT | SCAL}<NL>

Example This example places the currently displayed tab into the string variable, strTab,
then prints the contents of the variable to the computer's screen.

Dim strTab As String ' Dimension variable.
myScope.WriteString ":DISPlay:TAB?"
strTab = myScope.ReadString
Debug.Print strTab

History Legacy command (existed before version 3.10).

347

Keysight Infiniium Oscilloscopes
Programmer's Guide

17 Function Commands

:FUNCtion<F>? / 350
:FUNCtion<F>:ABSolute / 351
:FUNCtion<F>:ADD / 352
:FUNCtion<F>:ADEMod / 353
:FUNCtion<F>:AVERage / 354
:FUNCtion<F>:COMMonmode / 355
:FUNCtion<F>:DELay / 356
:FUNCtion<F>:DIFF / 357
:FUNCtion<F>:DISPlay / 358
:FUNCtion<F>:DIVide / 359
:FUNCtion<F>:FFT:FREQuency / 360
:FUNCtion<F>:FFT:REFerence / 361
:FUNCtion<F>:FFT:RESolution? / 362
:FUNCtion<F>:FFT:TDELay / 363
:FUNCtion<F>:FFT:WINDow / 364
:FUNCtion<F>:FFTMagnitude / 366
:FUNCtion<F>:FFTPhase / 367
:FUNCtion<F>:HIGHpass / 369
:FUNCtion<F>:HORizontal / 370
:FUNCtion<F>:HORizontal:POSition / 371
:FUNCtion<F>:HORizontal:RANGe / 372
:FUNCtion<F>:INTegrate / 373
:FUNCtion<F>:INVert / 374
:FUNCtion<F>:LOWPass / 375
:FUNCtion<F>:MAGNify / 376
:FUNCtion<F>:MATLab / 377
:FUNCtion<F>:MATLab:CONTrol1 / 378
:FUNCtion<F>:MATLab:CONTrol2 / 379
:FUNCtion<F>:MATLab:CONTrol3 / 380
:FUNCtion<F>:MATLab:OPERator / 381
:FUNCtion<F>:MAXimum / 382
:FUNCtion<F>:MHIStogram / 383

348 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:MINimum / 384
:FUNCtion<F>:MTRend / 385
:FUNCtion<F>:MULTiply / 386
:FUNCtion<F>:OFFSet / 387
:FUNCtion<F>:RANGe / 388
:FUNCtion<F>:SMOoth / 389
:FUNCtion<F>:SQRT / 390
:FUNCtion<F>:SQUare / 391
:FUNCtion<F>:SUBTract / 392
:FUNCtion<F>:VERSus / 393
:FUNCtion<F>:VERTical / 394
:FUNCtion<F>:VERTical:OFFSet / 395
:FUNCtion<F>:VERTical:RANGe / 396

The FUNCtion subsystem defines functions 1-16. The operands of these functions
can be:

• Any of the installed channels in the oscilloscope (see page 349)

• Differential channels or common mode channels (see page 349)

• Waveform memories (see page 349)

• Functions (see page 349)

• A constant (see page 349)

• Jitter measurement trend or jitter spectrum (see page 349)

You can control the vertical scaling and offset functions remotely using the RANGe
and OFFSet commands in this subsystem. You can obtain the horizontal scaling
and position values of the functions using the :HORizontal:RANge? and
:HORizontal:POSition? queries in this subsystem.

If a channel is not on but is used as an operand, that channel will acquire
waveform data.

If the operand waveforms have different memory depths, the function uses the
shorter of the two.

If the two operands have the same time scales, the resulting function has the same
time scale. If the operands have different time scales, the resulting function has no
valid time scale. This is because operations are performed based on the displayed
waveform data position, and the time relationship of the data records cannot be
considered. When the time scale is not valid, delta time pulse parameter
measurements have no meaning, and the unknown result indicator is displayed on
the screen.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 349

Constant operands take on the same time scale as the associated waveform
operand.

Channel Operands CHANnel<N>, where N is an integer, 1-4.

Differential and
Common Mode

Channel Operands

DIFF<P>, where P is an integer, 1-2.

COMMonmode<P>, where P is an integer, 3-4.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

Waveform Memory
Operands

WMEMory<N>, where N is an integer, 1-4.

Function Operands FUNCtion<F>, where F is an integer, 1-16.

Another function can be a function's source as long as the other function doesn't
use the function being defined. In other words, circular expressions are not
allowed.

Constant
Operands

Constant operands can be a real number from -1E6 to 1E12.

Jitter
Measurement

Trend and Jitter
Spectrum
Operands

The jitter measurement trend, MTRend, and jitter spectrum, MSPectrum, operands
are only available if the oscilloscope has the EZJIT option installed and the feature
is enabled.

350 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>?

Query :FUNCtion<F>?

The :FUNCtion<F>? query returns the currently defined source(s) for the function.

Returned Format [:FUNCtion<F>:<operator>] {<operand>[,<operand>]}<NL>

<F> An integer, 1-16, representing the selected function.

<operator> Active math operation for the selected function. For example, ADD, AVERage,
COMMonmode, DIFF, DIVide, FFTMagnitude, FFTPhase, HIGHpass, INTegrate,
INVert, LOWPass, MAGNify, MAXimum, MINimum, MULTiply, SMOoth, SUBTract,
or VERSus.

<operand> Any allowable source for the selected FUNCtion, including channels, differential
channels, common mode channels. waveform memories 1-4, functions 1-4, a
constant, jitter measurement trend, and jitter spectrum. If the function is applied
to a constant, the source returns the constant.

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example returns the currently defined source for function 1.

myScope.WriteString ":FUNCTION1?"

If the headers are off (see :SYSTem:HEADer), the query returns only the operands,
not the operator.

myScope.WriteString ":SYST:HEAD ON"
myScope.WriteString ":FUNC1:ADD CHAN1,CHAN2"
myScope.WriteString ":FUNC1?"
strSettings = myScope.ReadString ' Returns ":FUNC1:ADD CHAN1,CHAN2".
myScope.WriteString ":SYST:HEAD OFF"
myScope.WriteString ":FUNC1?"
strSettings = myScope.ReadString ' Returns "CHAN1,CHAN2".

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 351

:FUNCtion<F>:ABSolute

Command :FUNCtion<F>:ABSolute <operand>

The :FUNCtion<F>:ABSolute command takes the absolute value an operand.

<operand> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIFF<P> | COMMonmode<P> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example turns on the absolute value command using channel 3.

myScope.WriteString ":FUNCtion1:ABSOLUTE CHANNEL3"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

352 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:ADD

Command :FUNCtion<F>:ADD <operand>,<operand>

The :FUNCtion<F>:ADD command defines a function that takes the algebraic sum
of the two operands.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 1 to add channel 1 to channel 2.

myScope.WriteString ":FUNCTION1:ADD CHANNEL1,CHANNEL2"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 353

:FUNCtion<F>:ADEMod

Command :FUNCtion<F>:ADEMod <source>

The :FUNCtion<F>:ADEMod command sets the math function to show the
amplitude envelope for an amplitude modulated (AM) input signal.

This function uses a Hilbert transform to get the real (in-phase, I) and imaginary
(quadrature, Q) parts of the input signal and then performs a square root of the
sum of the real and imaginary parts to get the demodulated amplitude envelope
waveform.

<F> An integer, 1-16, representing the selected function.

<source> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 1 to perform the amplitude demodulation function
on channel 1.

myScope.WriteString ":FUNCtion1:ADEMod CHANnel1"

History New in version 4.50.

354 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:AVERage

Command :FUNCtion<F>:AVERage <operand>[,<averages>]

The :FUNCtion<F>:AVERage command defines a function that averages the
operand based on the number of specified averages.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

<averages> An integer, 2 to 65534 specifying the number of waveforms to be averaged

Example This example sets up function 1 to average channel 1 using 16 averages.

myScope.WriteString ":FUNCTION1:AVERAGE CHANNEL1,16"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 355

:FUNCtion<F>:COMMonmode

Command :FUNCtion<F>:COMMonmode <operand>,<operand>

The :FUNCtion<F>:COMMonmode command defines a function that adds the
voltage values of the two operands and divides by 2, point by point.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 1 to view the common mode voltage value of
channel 1 and channel 2.

myScope.WriteString ":FUNCTION1:COMMONMODE CHANNEL1,CHANNEL2"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

356 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:DELay

Delay

Command :FUNCtion<F>:DELay <operand>,<delay_time>

The :FUNCtion<F>:DELay command adds the provided time to the X origin of the
source waveform, effectively shifting the function waveform in time.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

<delay_time> Time, in seconds, set for the delay.

Example This example sets function 2 to be the waveform from channel1, delayed by
100 ps.

myScope.WriteString ":FUNCtion2:DELay CHANnel1,100E-12"

History New in version 4.30.

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 357

:FUNCtion<F>:DIFF

Differentiate

Command :FUNCtion<F>:DIFF <operand>[,<low_pass_phase_align>]

The :FUNCtion<F>:DIFF command defines a function that computes the discrete
derivative of the operand.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

<low_pass_phase_
align>

{{ON | 1} | {OFF | 0}

This parameter turns on or off the low pass and phase align filter.

Example This example sets up function 2 to take the discrete derivative of the waveform on
channel 2.

myScope.WriteString ":FUNCTION2:DIFF CHANNEL2"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

358 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:DISPlay

Command :FUNCtion<F>:DISPlay {{ON|1} | {OFF|0}}

The :FUNCtion<F>:DISPlay command either displays the selected function or
removes it from the display.

<F> An integer, 1-16, representing the selected function.

Example This example turns function 1 on.

myScope.WriteString ":FUNCTION1:DISPLAY ON"

Query :FUNCtion<F>:DISPlay?

The :FUNCtion<F>:DISPlay? query returns the displayed status of the specified
function.

Returned Format [:FUNCtion<F>:DISPlay] {1|0}<NL>

Example This example places the current state of function 1 in the variable, strSetting, then
prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":FUNCTION1:DISPLAY?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 359

:FUNCtion<F>:DIVide

Command :FUNCtion<F>:DIVide <operand>,<operand>

The :FUNCtion<F>:DIVide command defines a function that divides the first
operand by the second operand.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 2 to divide the waveform on channel 1 by the
waveform in waveform memory 4.

myScope.WriteString ":FUNCTION2:DIVIDE CHANNEL1,WMEMORY4"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

360 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:FFT:FREQuency

Command :FUNCtion<F>:FFT:FREQuency <center_frequency_value>

The :FUNCtion<F>:FFT:FREQuency command sets the center frequency for the
FFT when :FUNCtion<F>:FFTMagnitude is defined for the selected function.

<F> An integer, 1-16, representing the selected function.

<center
_frequency

_value>

A real number for the value in Hertz, from -1E12 to 1E12.

Query :FUNCtion<F>:FFT:FREQuency?

The :FUNCtion<F>:FFT:FREQuency? query returns the center frequency value.

Returned Format [FUNCtion<F>:FFT:FREQuency] <center_frequency_value><NL>

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 361

:FUNCtion<F>:FFT:REFerence

Command :FUNCtion<F>:FFT:REFerence {DISPlay | TRIGger}

The :FUNCtion<F>:FFT:REFerence command sets the reference point for
calculating the FFT phase function.

<F> An integer, 1-16, representing the selected function.

Example This example sets the reference point to DISPlay.

myScope.WriteString ":FUNCTION1:FFT:REFERENCE DISPLAY"

Query :FUNCtion<F>:FFT:REFerence?

The :FUNCtion<F>:FFT:REFerence? query returns the currently selected reference
point for the FFT phase function.

Returned Format [:FUNCtion<F>:FFT:REFerence] {DISPlay | TRIGger}<NL>

Example This example places the current state of the function 1 FFT reference point in the
string variable, strREF, then prints the contents of the variable to the computer's
screen.

Dim strREF As String
myScope.WriteString ":FUNCTION1:FFT:REFERENCE?"
strREF = myScope.ReadString
Debug.Print strREF

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

362 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:FFT:RESolution?

Query :FUNCtion<F>:FFT:RESolution?

The :FUNCtion<F>:FFT:RESolution? query returns the current resolution of the FFT
function.

Returned Format [FUNCtion<F>:FFT:RESolution] <resolution_value><NL>

<F> An integer, 1-16, representing the selected function.

<resolution
_value>

Resolution frequency.

The FFT resolution is determined by the sample rate and memory depth settings.
The FFT resolution is calculated using the following equation:

The effective memory depth is the highest power of 2 less than or equal to the
number of sample points across the display. The memory bar in the status area at
the top of the display indicates how much of the actual memory depth is across
the display.

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

FFT Resolution =
Sample Rate

Effective Memory Depth

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 363

:FUNCtion<F>:FFT:TDELay

Command :FUNCtion<F>:FFT:TDELay <time_delay>

The :FUNCtion<F>:FFT:TDELay command sets the time delay for the FFT phase
function.

<time_delay> Time, in seconds, set for the time delay.

Example This example sets the time delay to one millisecond.

myScope.WriteString ":FUNCtion1:FFT:TDELay 1E-3"

Query :FUNCtion<F>:FFT:TDELay?

The :FUNCtion<F>:FFT:TDELay? query returns the time delay for the FFT phase
function.

Returned Format [:FUNCtion<F>:FFT:TDELay] <time_delay><NL>

Example This example places the FFT phase function's time delay value in the variable,
varFftPhaseTimeDelay, then prints the contents of the variable to the computer's
screen.

Dim varFftPhaseTimeDelay As Variant
myScope.WriteString ":FUNCtion1:FFT:TDELay?""
varFftPhaseTimeDelay = myScope.ReadNumber
Debug.Print FormatNumber(varFftPhaseTimeDelay, 0)

See Also • ":FUNCtion<F>:FFTPhase" on page 367

History New in version 4.20.

Version 4.30: Up to 16 functions supported.

364 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:FFT:WINDow

Command :FUNCtion<F>:FFT:WINDow {RECTangular | HANNing | FLATtop
| BHARris | HAMMing}

The :FUNCtion<F>:FFT:WINDow command sets the window type for the FFT
function.

The FFT function assumes that the time record repeats. Unless there is an integral
number of cycles of the sampled waveform in the record, a discontinuity is created
at the beginning of the record. This introduces additional frequency components
into the spectrum about the actual peaks, which is referred to as spectral leakage.
To minimize spectral leakage, windows that approach zero smoothly at the
beginning and end of the record are employed as filters to the FFTs. Each window
is useful for certain classes of input waveforms.

• RECTangular — is essentially no window, and all points are multiplied by 1. This
window is useful for transient waveforms and waveforms where there are an
integral number of cycles in the time record.

• HANNing — is useful for frequency resolution and general purpose use. It is
good for resolving two frequencies that are close together, or for making
frequency measurements.

• FLATtop — is best for making accurate amplitude measurements of frequency
peaks.

• BHARris — (Blackman-Harris) is best used when you want to looks at signals
with a strong interference component that is fairly distant from the frequency
you want to see. It can be used as a general purpose window as its main lobe is
not too wide (decent frequency discrimination) and the side lobes drop off by
90 dB.

• HAMMing —is a "raised cosine" function like the HANNing window but with
different coefficients. It has slightly better frequency resolution than the
HANNing window.

<F> An integer, 1-16, representing the selected function. This command presently
selects all functions, regardless of which integer (1-16) is passed.

Example This example sets the window type for the FFT function to RECTangular.

myScope.WriteString ":FUNCtion1:FFT:WINDow RECTangular"

Query :FUNCtion<F>:FFT:WINDow?

The :FUNCtion<F>:FFT:WINDow? query returns the current selected window for
the FFT function.

Returned Format [:FUNCtion<F>:FFT:WINDow] {RECTangular | HANNing | FLATtop
| BHARris | HAMMing}<NL>

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 365

Example This example places the current state of the function 1 FFT window in the string
variable, strWND, then prints the contents of the variable to the computer's
screen.

Dim strWND As String
myScope.WriteString ":FUNCtion1:FFT:WINDow?""
strWND = myScope.ReadString
Debug.Print strWND

History Legacy command (existed before version 3.10).

Version 3.11: Added the HAMMing window mode selection.

Version 4.30: Up to 16 functions supported.

366 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:FFTMagnitude

Command :FUNCtion<F>:FFTMagnitude <operand>

The :FUNCtion<F>:FFTMagnitude command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or memory. The FFT takes the digitized
time record and transforms it to magnitude and phase components as a function
of frequency.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 1 to compute the FFT of waveform memory 3.

myScope.WriteString ":FUNCTION1:FFTMAGNITUDE WMEMORY3"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 367

:FUNCtion<F>:FFTPhase

Command :FUNCtion<F>:FFTPhase <source>

The :FUNCtion<F>:FFTPhase command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or waveform memory. The FFT takes the
digitized time record and transforms it into magnitude and phase components as a
function of frequency.

<F> An integer, 1-16, representing the selected function.

<source> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 1 to compute the FFT of waveform memory 3.

myScope.WriteString ":FUNCTION1:FFTPHASE WMEMORY3"

See Also • ":FUNCtion<F>:FFT:TDELay" on page 363

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

368 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:GATing

Gating

Command :FUNCtion<F>:GATing <operand>[,<gating_start>,<gating_stop>]

The :FUNCtion<F>:GATing command defines a horizontal gating function of
another waveform (similar to horizontal zoom). Measurements on horizontal gating
functions are essentially gated measurements.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

<gating_start> Time, in seconds, relative to the source waveform that specifies where the gating
window begins.

<gating_stop> Time, in seconds, relative to the source waveform that specifies where the gating
window ends.

Example This example sets function 4 to be a horizontal gating of the channel1 waveform
beginiing at -8 ns and ending at -5 ns.

myScope.WriteString ":FUNCtion4:GATing CHANnel1,-8E-9,-5E-9"

History New in version 4.30.

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 369

:FUNCtion<F>:HIGHpass

Command :FUNCtion<F>:HIGHpass <source>,<bandwidth>

The :FUNCtion<F>:HIGHpass command applies a single-pole high pass filter to
the source waveform. The bandwidth that you set is the 3 dB bandwidth of the
filter.

<F> An integer, 1-16, representing the selected function.

<source> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

<bandwidth> A real number in the range of 50 to 50E9.

Example This example sets up function 2 to compute a high pass filter with a bandwidth of
1 MHz.

myScope.WriteString ":FUNCTION2:HIGHPASS CHANNEL4,1E6"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

370 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:HORizontal

Command :FUNCtion<F>:HORizontal {AUTO | MANual}

The :FUNCtion<F>:HORizontal command sets the horizontal tracking to either
AUTO or MANual.

The HORizontal command also includes the following commands and queries,
which are described on the following pages:

• POSition

• RANGe

<F> An integer, 1-16, representing the selected function.

Query :FUNCtion<F>:HORizontal?

The :FUNCtion<F>:HORizontal? query returns the current horizontal scaling mode
of the specified function.

Returned Format [:FUNCtion<F>:HORizontal] {AUTO | MANual}<NL>

Example This example places the current state of the function 1 horizontal tracking in the
string variable, strSetting, then prints the contents of the variable to the
computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":FUNCTION1:HORIZONTAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 371

:FUNCtion<F>:HORizontal:POSition

Command :FUNCtion<F>:HORizontal:POSition <position_value>

The :FUNCtion<F>:HORizontal:POSition command sets the time value at center
screen for the selected function. If the oscilloscope is not already in manual mode
when you execute this command, it puts the oscilloscope in manual mode.

When you select :FUNCtion<F>:FFTMagnitude, the horizontal position is
equivalent to the center frequency. This also automatically selects manual mode.

<F> An integer, 1-16, representing the selected function.

<position _value> A real number for the position value in time, in seconds, from -10E15 to 10E15.

Query :FUNCtion<F>:HORizontal:POSition?

The :FUNCtion<F>:HORizontal:POSition? query returns the current time value at
center screen of the selected function.

Returned Format [:FUNCtion<F>:HORizontal:POSition] <position><NL>

Example This example places the current horizontal position setting for function 2 in the
numeric variable, varValue, then prints the contents to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":FUNCTION2:HORIZONTAL:POSITION?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

372 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:HORizontal:RANGe

Command :FUNCtion<F>:HORizontal:RANGe <range_value>

The :FUNCtion<F>:HORizontal:RANGe command sets the current time range for
the specified function. This automatically selects manual mode.

<F> An integer, 1-16, representing the selected function.

<range_value> A real number for the width of screen in current X-axis units (usually seconds),
from -100E-15 to 100E15.

Query :FUNCtion<F>:HORizontal:RANGe?

The :FUNCtion<F>:HORizontal:RANGe? query returns the current time range
setting of the specified function.

Returned Format [:FUNCtion<F>:HORizontal:RANGe] <range><NL>

Example This example places the current horizontal range setting of function 2 in the
numeric variable, varValue, then prints the contents to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":FUNCTION2:HORIZONTAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 373

:FUNCtion<F>:INTegrate

Command :FUNCtion<F>:INTegrate <operand>

The :FUNCtion<F>:INTegrate command defines a function that computes the
integral of the specified operand's waveform.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 1 to compute the integral of waveform memory 3.

myScope.WriteString ":FUNCTION1:INTEGRATE WMEMORY3"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

374 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:INVert

Command :FUNCtion<F>:INVert <operand>

The :FUNCtion<F>:INVert command defines a function that inverts the defined
operand's waveform by multiplying by -1.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 2 to invert the waveform on channel 1.

myScope.WriteString ":FUNCTION2:INVERT CHANNEL1"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 375

:FUNCtion<F>:LOWPass

Command :FUNCtion<F>:LOWPass <source>,<bandwidth>

The :FUNCtion<F>:LOWPass command applies a 4th order Bessel-Thompson pass
filter to the source waveform. The bandwidth that you set is the 3 dB bandwidth of
the filter.

<F> An integer, 1-16, representing the selected function.

<source> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

<bandwidth> A real number in the range of 50 to 50E9.

Example This example sets up function 2 to compute a low pass filter with a bandwidth of 1
MHz.

myScope.WriteString ":FUNCTION2:LOWPASS CHANNEL4,1E6"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

376 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:MAGNify

Command :FUNCtion<F>:MAGNify <operand>

The :FUNCtion<F>:MAGNify command defines a function that is a copy of the
operand. The magnify function is a software magnify. No hardware settings are
altered as a result of using this function. It is useful for scaling channels, another
function, or memories with the RANGe and OFFSet commands in this subsystem.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example creates a function (function 1) that is a magnified version of
channel 1.

myScope.WriteString ":FUNCTION1:MAGNIFY CHANNEL1"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 377

:FUNCtion<F>:MATLab

Command :FUNCtion<F>:MATLab <operand>[,<operand>]

The :FUNCtion<F>:MATLab command sets the operand.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

Where <N> is an integer, 1-4, representing the selected channel or waveform
memory.

Where <F> is an integer, 1-16, representing the selected function.

Another function can be a function's source as long as the other function does not
use the function being defined. In other words, circular expressions are not
allowed.

Example This example sets the operand to channel 3.

myScope.WriteString ":FUNCtion1:MATLab CHANnel3"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

378 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:MATLab:CONTrol1

Command :FUNCtion<F>:MATLab:CONTrol1 {<value> | <string>}

The :FUNCtion<F>:MATLab:CONTrol1 command sets control 1.

<F> An integer, 1-16, representing the selected function.

<value> A double, integer, or enumerated type value. For an enumerated type, the 1 based
index is passed to select the enumeration.

<string> A character array.

Example This example sets control 1 to 3.

myScope.WriteString ":FUNCtion1:MATLab:CONTrol1 3"

Query :FUNCtion<F>:MATLab:CONTrol1?

The :FUNCtion<F>:MATLab:CONTrol1? query returns the value or string of control
1.

Returned Format [:FUNCtion<F>:MATLab:CONTrol1] {<value> | <string>}<NL>

Example This example places the current returned value for function 1 control 1 in the string
variable, strSelection, then prints the contents of the variable to the computer's
screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":FUNCtion1:MATLab:CONTrol1?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 379

:FUNCtion<F>:MATLab:CONTrol2

Command :FUNCtion<F>:MATLab:CONTrol2 {<value> | <string>}

The :FUNCtion<F>:MATLab:CONTrol2 command sets control 2.

<F> An integer, 1-16, representing the selected function.

<value> A double, integer, or enumerated type value. For an enumerated type, the 1 based
index is passed to select the enumeration.

<string> A character array.

Example This example sets control 2 to 3.

myScope.WriteString ":FUNCtion1:MATLab:CONTrol2 3"

Query :FUNCtion<F>:MATLab:CONTrol2?

The :FUNCtion<F>:MATLab:CONTrol2? query returns the value or string of control
2.

Returned Format [:FUNCtion<F>:MATLab:CONTrol2] {<value> | <string>}<NL>

Example This example places the current returned value for function 1 control 2 in the string
variable, strSelection, then prints the contents of the variable to the computer's
screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":FUNCtion1:MATLab:CONTrol2?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

380 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:MATLab:CONTrol3

Command :FUNCtion<F>:MATLab:CONTrol3 {<value> | <string>}

The :FUNCtion<F>:MATLab:CONTrol3 command sets control 3.

<F> An integer, 1-16, representing the selected function.

<value> A double, integer, or enumerated type value. For an enumerated type, the 1 based
index is passed to select the enumeration.

<string> A character array.

Example This example sets control 3 to 3.

myScope.WriteString ":FUNCtion1:MATLab:CONTrol3 3"

Query :FUNCtion<F>:MATLab:CONTrol3?

The :FUNCtion<F>:MATLab:CONTrol3? query returns the value or string of control
3.

Returned Format [:FUNCtion<F>:MATLab:CONTrol3] {<value> | <string>}<NL>

Example This example places the current returned value for function 1 control 3 in the string
variable, strSelection, then prints the contents of the variable to the computer's
screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":FUNCtion1:MATLab:CONTrol3?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 381

:FUNCtion<F>:MATLab:OPERator

Command :FUNCtion<F>:MATLab:OPERator <string>

The :FUNCtion<F>:MATLab:OPERator command sets the Math dialog box
operator.

<F> An integer, 1-16, representing the selected function.

<string> A character array that is the name of the function in the XML file.

Example This example sets function 1 to the Deconvolve operator.

myScope.WriteString ":FUNCtion1:MATLab:OPERator 'Deconvolve'"

Query :FUNCtion<F>:MATLab:OPERator?

The :FUNCtion<F>:MATLab:OPERator? query returns the string of the function 1
operator.

Returned Format [:FUNCtion<F>:MATLab:OPERator] <string><NL>

Example This example places the current operator string for function 1 in the string variable,
strSelection, then prints the contents of the variable to the computer's screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":FUNCtion1:MATLab:OPERator?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

382 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:MAXimum

Command :FUNCtion<F>:MAXimum <operand>

The :FUNCtion<F>:MAXmum command defines a function that computes the
maximum of each time bucket for the defined operand's waveform.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 2 to compute the maximum of each time bucket for
channel 4.

myScope.WriteString ":FUNCTION2:MAXIMUM CHANNEL4"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 383

:FUNCtion<F>:MHIStogram

Command :FUNCtion<F>:MHIStogram {MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}

The :FUNCtion<F>:MHIStogram command adds a Meas Histogram function that
shows a histogram of measurement values. Measurement values are captured and
the histogram is updated as new acquisitions are made.

You can display statistics for the histogram in the Measurements tab using the
:MEASure:HISTogram commands and you can get histogram statistics using the
:MEASure:HISTogram queries.

<F> An integer, 1-16, representing the selected function.

Example This example sets up a histogram function of the first measurement.

myScope.WriteString ":FUNCtion2:MHIStogram MEAS1"

See Also • ":MEASure:HISTogram:HITS" on page 610

• ":MEASure:HISTogram:M1S" on page 611

• ":MEASure:HISTogram:M2S" on page 612

• ":MEASure:HISTogram:M3S" on page 613

• ":MEASure:HISTogram:MAX" on page 614

• ":MEASure:HISTogram:MEAN" on page 615

• ":MEASure:HISTogram:MEDian" on page 616

• ":MEASure:HISTogram:MIN" on page 617

• ":MEASure:HISTogram:MODE" on page 618

• ":MEASure:HISTogram:PEAK" on page 619

• ":MEASure:HISTogram:PP" on page 620

• ":MEASure:HISTogram:RESolution" on page 621

• ":MEASure:HISTogram:STDDev" on page 622

History New in version 3.50.

Version 4.30: Up to 16 functions supported.

384 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:MINimum

Command :FUNCtion<F>:MINimum <operand>

The :FUNCtion<F>:MINimum command defines a function that computes the
minimum of each time bucket for the defined operand's waveform.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example sets up function 2 to compute the minimum of each time bucket for
channel 4.

myScope.WriteString ":FUNCTION2:MINIMUM CHANNEL4"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 385

:FUNCtion<F>:MTRend

Command :FUNCtion<F>:MTRend {MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}

The :FUNCtion<F>:MTRend command adds a Meas Trend function that shows
measurement values for a waveform (based on measurement threshold settings)
as the waveform progresses across the screen. For every cycle, a measurement is
made, and the value is displayed on the screen for the cycle.

If a measurement cannot be made for part of a waveform, the trend function
output is a hole (that is, no value) until a measurement can be made.

<F> An integer, 1-16, representing the selected function.

Example This example sets up a trend function of the first measurement.

myScope.WriteString ":FUNCtion2:MTRend MEAS1"

History New in version 3.50.

Version 4.30: Up to 16 functions supported.

386 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:MULTiply

Command :FUNCtion<F>:MULTiply <operand>,<operand>

The :FUNCtion<F>:MULTiply command defines a function that algebraically
multiplies the first operand by the second operand.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example defines a function that multiplies channel 1 by waveform memory 1.

myScope.WriteString ":FUNCTION1:MULTIPLY CHANNEL1,WMEMORY1"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 387

:FUNCtion<F>:OFFSet

Command :FUNCtion<F>:OFFSet <offset_value>

The :FUNCtion<F>:OFFSet command sets the voltage represented at the center of
the screen for the selected function. This automatically changes the mode from
auto to manual.

<F> An integer, 1-16, representing the selected function.

<offset_value> A real number for the vertical offset in the currently selected Y-axis units (normally
volts). The offset value is limited to being within the vertical range that can be
represented by the function data.

Example This example sets the offset voltage for function 1 to 2 mV.

myScope.WriteString ":FUNCTION1:OFFSET 2E-3"

Query :FUNCtion<F>:OFFSet?

The :FUNCtion<F>:OFFSet? query returns the current offset value for the selected
function.

Returned Format [:FUNCtion<F>:OFFSet] <offset_value><NL>

Example This example places the current setting for offset on function 2 in the numeric
variable, varValue, then prints the result to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":FUNCTION2:OFFSET?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

388 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:RANGe

Command :FUNCtion<F>:RANGe <full_scale_range>

The :FUNCtion<F>:RANGe command defines the full-scale vertical axis of the
selected function. This automatically changes the mode from auto to manual.

<F> An integer, 1-16, representing the selected function.

<full_scale
_range>

A real number for the full-scale vertical range, from -100E15 to 100E15.

Example This example sets the full-scale range for function 1 to 400 mV.

myScope.WriteString ":FUNCTION1:RANGE 400E-3"

Query :FUNCtion<F>:RANGe?

The :FUNCtion<F>:RANGe? query returns the current full-scale range setting for
the specified function.

Returned Format [:FUNCtion<F>:RANGe] <full_scale_range><NL>

Example This example places the current range setting for function 2 in the numeric
variable "varValue", then prints the contents to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":FUNCTION2:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 389

:FUNCtion<F>:SMOoth

Command :FUNCtion<F>:SMOoth <operand>[,<points>]

The :FUNCtion<F>:SMOoth command defines a function that assigns the
smoothing operator to the operand with the number of specified smoothing
points.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

<points> An integer, odd numbers from 3 to 4001 specifying the number of smoothing
points.

Example This example sets up function 1 using assigning smoothing operator to channel 1
using 5 smoothing points.

myScope.WriteString ":FUNCTION1:SMOOTH CHANNEL1,5"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

390 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:SQRT

Command :FUNCtion<F>:SQRT <operand>

The :FUNCtion<F>:SQRT command takes the square root of the operand.

<operand> {CHANnel<N> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<N> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example turns on the square root function using channel 3.

myScope.WriteString ":FUNCtion1:SQRT CHANNEL3"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 391

:FUNCtion<F>:SQUare

Command :FUNCtion<F>:SQUare <operand>

The :FUNCtion<F>:SQUare command takes the square value of the operand.

<operand> {CHANnel<N> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<N> |
MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example turns on the square value command using channel 3.

myScope.WriteString ":FUNCtion1:SQUARE CHANNEL3"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

392 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:SUBTract

Command :FUNCtion<F>:SUBTract <operand>,<operand>

The :FUNCtion<F>:SUBTract command defines a function that algebraically
subtracts the second operand from the first operand.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example defines a function that subtracts waveform memory 1 from channel
1.

myScope.WriteString ":FUNCTION1:SUBTRACT CHANNEL1,WMEMORY1"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 393

:FUNCtion<F>:VERSus

Command :FUNCtion<F>:VERSus <operand>,<operand>

The :FUNCtion<F>:VERSus command defines a function for an X-versus-Y display.
The first operand defines the Y axis and the second defines the X axis. The Y-axis
range and offset are initially equal to that of the first operand, and you can adjust
them with the RANGe and OFFSet commands in this subsystem.

<F> An integer, 1-16, representing the selected function.

<operand> {CHANnel<n> | DIFF<P> | COMMonmode<P> | FUNCtion<F> | WMEMory<n> |
<float_value> | MTRend | MSPectrum}

See the discussion of possible operands in the introduction to Chapter 17,
“Function Commands,” starting on page 347.

Example This example defines function 1 as an X-versus-Y display. Channel 1 is the X axis
and waveform memory 2 is the Y axis.

myScope.WriteString ":FUNCTION1:VERSUS WMEMORY2,CHANNEL1"

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

394 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:VERTical

Command :FUNCtion<F>:VERTical {AUTO | MANual}

The :FUNCtion<F>:VERTical command sets the vertical scaling mode of the
specified function to either AUTO or MANual.

This command also contains the following commands and queries:

• OFFset

• RANge

<F> An integer, 1-16, representing the selected function.

Query :FUNCtion<F>:VERTical?

The :FUNCtion<F>:VERTical? query returns the current vertical scaling mode of
the specified function.

Returned Format [:FUNCtion<F>:VERTical] {AUTO | MANual}<NL>

Example This example places the current state of the vertical tracking of function 1 in the
string variable, strSetting, then prints the contents of the variable to the
computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":FUNCTION1:VERTICAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

Function Commands 17

Keysight Infiniium Oscilloscopes Programmer's Guide 395

:FUNCtion<F>:VERTical:OFFSet

Command :FUNCtion<F>:VERTical:OFFSet <offset_value>

The :FUNCtion<F>:VERTical:OFFSet command sets the voltage represented at
center screen for the selected function. This automatically changes the mode from
auto to manual.

<F> An integer, 1-16, representing the selected function.

<offset_value> A real number for the vertical offset in the currently selected Y-axis units (normally
volts). The offset value is limited only to being within the vertical range that can be
represented by the function data.

Query :FUNCtion<F>:VERTical:OFFset?

The :FUNCtion<F>:VERTical:OFFSet? query returns the current offset value of the
selected function.

Returned Format [:FUNCtion<F>:VERTical:OFFset] <offset_value><NL>

Example This example places the current offset setting for function 2 in the numeric
variable, varValue, then prints the contents to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":FUNCTION2:VERTICAL:OFFSET?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

396 Keysight Infiniium Oscilloscopes Programmer's Guide

17 Function Commands

:FUNCtion<F>:VERTical:RANGe

Command :FUNCtion<F>:VERTical:RANGe <full_scale_range>

The :FUNCtion<F>:VERTical:RANGe command defines the full-scale vertical axis
of the selected function. This automatically changes the mode from auto to
manual, if the oscilloscope is not already in manual mode.

<F> An integer, 1-16, representing the selected function.

<full_scale
_range>

A real number for the full-scale vertical range, from -100E15 to 100E15.

Query :FUNCtion<F>:VERTical:RANGe?

The :FUNCtion<F>:VERTical:RANGe? query returns the current range setting of
the specified function.

Returned Format [:FUNCtion<F>:VERTical:RANGe] <range><NL>

Example This example places the current vertical range setting of function 2 in the numeric
variable, varValue, then prints the contents to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":FUNCTION2:VERTICAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 4.30: Up to 16 functions supported.

397

Keysight Infiniium Oscilloscopes
Programmer's Guide

18 Hardcopy Commands

:HARDcopy:AREA / 398
:HARDcopy:DPRinter / 399
:HARDcopy:FACTors / 400
:HARDcopy:IMAGe / 401
:HARDcopy:PRINters? / 402

The HARDcopy subsystem commands set various parameters for printing the
screen. The print sequence is activated when the root level command :PRINt is
sent.

398 Keysight Infiniium Oscilloscopes Programmer's Guide

18 Hardcopy Commands

:HARDcopy:AREA

Command :HARDcopy:AREA {GRATicule | SCReen}

The :HARDcopy:AREA command selects which data from the screen is to be
printed. When you select GRATicule, only the graticule area of the screen is printed
(this is the same as choosing Waveforms Only in the Configure Printer dialog box).
When you select SCReen, the entire screen is printed.

Example This example selects the graticule for printing.

myScope.WriteString ":HARDCOPY:AREA GRATICULE"

Query :HARDcopy:AREA?

The :HARDcopy:AREA? query returns the current setting for the area of the screen
to be printed.

Returned Format [:HARDcopy:AREA] {GRATicule | SCReen}<NL>

Example This example places the current selection for the area to be printed in the string
variable, strSelection, then prints the contents of the variable to the computer's
screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":HARDCOPY:AREA?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Hardcopy Commands 18

Keysight Infiniium Oscilloscopes Programmer's Guide 399

:HARDcopy:DPRinter

Command :HARDcopy:DPRinter {<printer_number> | <printer_string>}

The :HARDcopy:DPRinter command selects the default printer to be used.

<printer _number> An integer representing the attached printer. This number corresponds to the
number returned with each printer name by the :HARDcopy:PRINters? query.

<printer _string> A string of alphanumeric characters representing the attached printer.

The :HARDcopy:DPRinter command specifies a number or string for the printer
attached to the oscilloscope. The printer string must exactly match the character
strings in the File->Print Setup dialog boxes, or the strings returned by the
:HARDcopy:PRINters? query.

Examples This example sets the default printer to the second installed printer returned by
the :HARDcopy:PRINters? query.

myScope.WriteString ":HARDCOPY:DPRINTER 2"

This example sets the default printer to the installed printer with the name
"HP Laser".

myScope.WriteString ":HARDCOPY:DPRINTER ""HP Laser"""

Query :HARDcopy:DPRinter?

The :HARDcopy:DPRinter? query returns the current printer number and string.

Returned Format [:HARDcopy:DPRinter?] {<printer_number>,<printer_string>,DEFAULT}<NL>

Or, if there is no default printer (no printers are installed), only a <NL> is returned.

Example This example places the current setting for the hard copy printer in the string
variable, strSetting, then prints the contents of the variable to the computer's
screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":HARDCOPY:DPRinter?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE It takes several seconds to change the default printer. Any programs that try to set the default
printer must wait (10 seconds is a safe amount of time) for the change to complete before
sending other commands. Otherwise, the oscilloscope will become unresponsive.

400 Keysight Infiniium Oscilloscopes Programmer's Guide

18 Hardcopy Commands

:HARDcopy:FACTors

Command :HARDcopy:FACTors {{ON | 1} | {OFF | 0}}

The :HARDcopy:FACTors command determines whether the oscilloscope setup
factors will be appended to screen or graticule images. FACTors ON is the same as
choosing Include Setup Information in the Configure Printer dialog box.

Example This example turns on the setup factors.

myScope.WriteString ":HARDCOPY:FACTORS ON"

Query :HARDcopy:FACTors?

The :HARDcopy:FACTors? query returns the current setup factors setting.

Returned Format [:HARDcopy:FACTors] {1 | 0}<NL>

Example This example places the current setting for the setup factors in the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":HARDCOPY:FACTORS?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Hardcopy Commands 18

Keysight Infiniium Oscilloscopes Programmer's Guide 401

:HARDcopy:IMAGe

Command :HARDcopy:IMAGe {NORMal | INVert}

The :HARDcopy:IMAGe command prints the image normally, inverted, or in
monochrome. IMAGe INVert is the same as choosing Invert Waveform Colors in
the Configure Printer dialog box.

Example This example sets the hard copy image output to normal.

myScope.WriteString ":HARDCOPY:IMAGE NORMAL"

Query :HARDcopy:IMAGe?

The :HARDcopy:IMAGe? query returns the current image setting.

Returned Format [:HARDcopy:IMAGe] {NORMal | INVert}<NL>

Example This example places the current setting for the hard copy image in the string
variable, strSetting, then prints the contents of the variable to the computer's
screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":HARDCOPY:IMAGE?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

402 Keysight Infiniium Oscilloscopes Programmer's Guide

18 Hardcopy Commands

:HARDcopy:PRINters?

Query :HARDcopy:PRINters?

The :HARDcopy:PRINters? query returns the currently available printers.

Returned Format [:HARDcopy:PRINters?]
<printer_count><NL><printer_data><NL>[,<printer_data><NL>]

<printer_count> The number of printers currently installed.

<printer _data> The printer number and the name of an installed printer. The word DEFAULT
appears next to the printer that is the currently selected default printer.

The <printer_data> return string has the following format:
<printer_number>,<printer_string>{,DEFAULT}

Example This example places the number of installed printers into the variable varCount,
loops through it that number of times, and prints the installed printer names to the
computer's screen.

Dim varResults As Variant
Dim lngI As Long

myScope.WriteString ":HARDcopy:PRINters?"
varResults = myScope.ReadList(ASCIIType_BSTR, vbLf)
Debug.Print FormatNumber(varResults(0), 0)

For lngI = 1 To varResults(0)
Debug.Print CStr(varResults(lngI))

Next lngI

History Legacy command (existed before version 3.10).

403

Keysight Infiniium Oscilloscopes
Programmer's Guide

19 Histogram Commands

:HISTogram:AXIS / 405
:HISTogram:HORizontal:BINS / 406
:HISTogram:MEASurement:BINS / 407
:HISTogram:MODE / 408
:HISTogram:SCALe:SIZE / 409
:HISTogram:VERTical:BINS / 410
:HISTogram:WINDow:DEFault / 411
:HISTogram:WINDow:SOURce / 412
:HISTogram:WINDow:LLIMit / 413
:HISTogram:WINDow:RLIMit / 414
:HISTogram:WINDow:BLIMit / 415
:HISTogram:WINDow:TLIMit / 416

The HISTogram commands and queries control the histogram features. A
histogram is a probability distribution that shows the distribution of acquired data
within a user-definable histogram window.

You can display the histogram either vertically, for voltage measurements, or
horizontally, for timing measurements.

The most common use for histograms is measuring and characterizing noise or
jitter on displayed waveforms. Noise is measured by sizing the histogram window
to a narrow portion of time and observing a vertical histogram that measures the
noise on a waveform. Jitter is measured by sizing the histogram window to a
narrow portion of voltage and observing a horizontal histogram that measures the
jitter on an edge.

Histograms and
the database

The histograms, mask testing, and color grade persistence use a specific database
that uses a different memory area from the waveform record for each channel.
When any of these features are turned on, the oscilloscope starts building the
database. The database is the size of the graticule area. Behind each pixel is a
21-bit counter that is incremented each time data from a channel or function hits a
pixel. The maximum count (saturation) for each counter is 2,097,151. You can use
the DISPlay:CGRade:LEVels command to see if any of the counters are close to
saturation.

404 Keysight Infiniium Oscilloscopes Programmer's Guide

19 Histogram Commands

The database continues to build until the oscilloscope stops acquiring data or all
both features (color grade persistence and histograms) are turned off. You can
clear the database by turning off all three features that use the database.

The database does not differentiate waveforms from different channels or
functions. If three channels are on and the waveform from each channel happens
to light the same pixel at the same time, the counter is incremented by three.
However, it is not possible to tell how many hits came from each waveform. To
separate waveforms, you can position the waveforms vertically with the channel
offset. By separating the waveforms, you can avoid overlapping data in the
database caused by multiple waveforms. Even if the display is set to show only the
most recent acquisition, the database keeps track of all pixel hits while the
database is building.

Remember that color grade persistence, mask testing, and histograms all use the
same database. Suppose that the database is building because color grade
persistence is ON; when mask testing or histograms are turned on, they can use
the information already established in the database as though they had been
turned on the entire time.

To avoid erroneous data, clear the display after you change oscilloscope setup
conditions or DUT conditions and acquire new data before extracting
measurement results.

Histogram Commands 19

Keysight Infiniium Oscilloscopes Programmer's Guide 405

:HISTogram:AXIS

Command :HISTogram:AXIS {VERTical | HORizontal}

The :HISTogram:AXIS command selects the type of histogram. A horizontal
histogram can be used to measure time related information like jitter. A vertical
histogram can be used to measure voltage related information like noise.

Example This example defines a vertical histogram.

myScope.WriteString ":HISTOGRAM:AXIS VERTICAL"

Query :HISTogram:AXIS?

The :HISTogram:AXIS? query returns the currently selected histogram type.

Returned Format [:HISTogram:AXIS] {VERTical | HORizontal}<NL>

Example This example returns the histogram type and prints it to the computer's screen.

Dim strAxis As String
myScope.WriteString ":HISTOGRAM:AXIS?"
strAxis = myScope.ReadString
Debug.Print strAxis

History Legacy command (existed before version 3.10).

406 Keysight Infiniium Oscilloscopes Programmer's Guide

19 Histogram Commands

:HISTogram:HORizontal:BINS

Command :HISTogram:HORizontal:BINS <max_bins>

<max_bins> ::= integer from 10-1280

The :HISTogram:HORizontal:BINS command sets the maximum number of bins
used for a horizontal waveform histogram.

Query :HISTogram:HORizontal:BINS?

The :HISTogram:HORizontal:BINS? query returns the maximum number of bins
setting.

Returned Format <max_bins><NL>

<max_bins> ::= integer from 10-1280

See Also • ":HISTogram:MODE" on page 408

• ":HISTogram:AXIS" on page 405

• ":HISTogram:MEASurement:BINS" on page 407

• ":HISTogram:VERTical:BINS" on page 410

History New in version 5.20.

Histogram Commands 19

Keysight Infiniium Oscilloscopes Programmer's Guide 407

:HISTogram:MEASurement:BINS

Command :HISTogram:MEASurement:BINS <max_bins>

<max_bins> ::= integer from 10-1280

The :HISTogram:MEASurement:BINS command sets the maximum number of bins
used for a measurement histogram.

Query :HISTogram:MEASurement:BINS?

The :HISTogram:MEASurement:BINS? query returns the maximum number of bins
setting.

Returned Format <max_bins><NL>

<max_bins> ::= integer from 10-1280

See Also • ":HISTogram:MODE" on page 408

• ":HISTogram:AXIS" on page 405

• ":HISTogram:HORizontal:BINS" on page 406

• ":HISTogram:VERTical:BINS" on page 410

History New in version 5.20.

408 Keysight Infiniium Oscilloscopes Programmer's Guide

19 Histogram Commands

:HISTogram:MODE

Command :HISTogram:MODE {OFF | MEASurement | WAVeforms}

The :HISTogram:MODE command selects the histogram mode. The histogram may
be off, set to track the waveforms, or set to track the measurement when the
E2681A Jitter Analysis Software is installed. When the E2681A Jitter Analysis
Software is installed, sending the :MEASure:JITTer:HISTogram ON command will
automatically set :HISTOgram:MODE to MEASurement.

Example This example sets the histogram mode to track the waveform.

myScope.WriteString ":HISTOGRAM:MODE WAVEFORM"

Query :HISTogram:MODE?

The :HISTogram:MODE? query returns the currently selected histogram mode.

Returned Format [:HISTogram:MODE] {OFF | MEASurement | WAVeform}<NL>

Example This example returns the result of the mode query and prints it to the computer's
screen.

Dim strMode As String
myScope.WriteString ":HISTOGRAM:MODE?"
strMode = myScope.ReadString
Debug.Print strMode

History Legacy command (existed before version 3.10).

NOTE The MEASurement parameter is only available when the E2681A Jitter Analysis option is
installed.

Histogram Commands 19

Keysight Infiniium Oscilloscopes Programmer's Guide 409

:HISTogram:SCALe:SIZE

Command :HISTogram:SCALe:SIZE <size>

The :HISTogram:SCALe:SIZE command sets histogram size for vertical and
horizontal mode.

<size> The size is from 1.0 to 8.0 for the horizontal mode and from 1.0 to 10.0 for the
vertical mode.

Example This example sets the histogram size to 3.5.

myScope.WriteString ":HISTOGRAM:SCALE:SIZE 3.5"

Query :HISTogram:SCALe:SIZE?

The :HISTogram:SCALe:SIZE? query returns the correct size of the histogram.

Returned Format [:HISTogram:SCALe:SIZE] <size><NL>

Example This example returns the result of the size query and prints it to the computer's
screen.

Dim strSize As String
myScope.WriteString ":HISTOGRAM:SCALE:SIZE?"
strSize = myScope.ReadString
Debug.Print strSize

History Legacy command (existed before version 3.10).

410 Keysight Infiniium Oscilloscopes Programmer's Guide

19 Histogram Commands

:HISTogram:VERTical:BINS

Command :HISTogram:VERTical:BINS <max_bins>

<max_bins> ::= integer from 10-1280

The :HISTogram:VERTical:BINS command sets the maximum number of bins used
for a vertical waveform histogram.

Query :HISTogram:VERTical:BINS?

The :HISTogram:VERTical:BINS? query returns the maximum number of bins.

Returned Format <max_bins><NL>

<max_bins> ::= integer from 10-1280

See Also • ":HISTogram:MODE" on page 408

• ":HISTogram:AXIS" on page 405

• ":HISTogram:HORizontal:BINS" on page 406

• ":HISTogram:MEASurement:BINS" on page 407

History New in version 5.20.

Histogram Commands 19

Keysight Infiniium Oscilloscopes Programmer's Guide 411

:HISTogram:WINDow:DEFault

Command :HISTogram:WINDow:DEFault

The :HISTogram:WINDow:DEFault command positions the histogram markers to a
default location on the display. Each marker will be positioned one division off the
left, right, top, and bottom of the display.

Example This example sets the histogram window to the default position.

myScope.WriteString ":HISTOGRAM:WINDOW:DEFAULT"

History Legacy command (existed before version 3.10).

412 Keysight Infiniium Oscilloscopes Programmer's Guide

19 Histogram Commands

:HISTogram:WINDow:SOURce

Command :HISTogram:WINDow:SOURce {CHANnel<N> | COMMonmode<P> | DIFF<P>
| FUNCtion<F> | WMEMory<N> | CLOCk | EQUalized
| MTRend | MSPectrum}

The :HISTogram:WINDow:SOURce command selects the source of the histogram
window. The histogram window will track the source's vertical and horizontal
scale.

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

Example This example sets the histogram window's source to Channel 1.

myScope.WriteString ":HISTOGRAM:WINDOW:SOURCE CHANNEL1"

Query :HISTogram:WINDow:SOURce?

The :HISTogram:WINDow:SOURce? query returns the currently selected
histogram window source.

Returned Format [:HISTogram:WINDow:SOURce] {CHANnel<N> | COMMonmode<P>
| DIFFerential<P> | FUNCtion<F>
| WMEMory<N>}<NL>

Example This example returns the result of the window source query and prints it to the
computer's screen.

Dim strWinsour As String
myScope.WriteString ":HISTOGRAM:WINDOW:SOURCE?"
strWinsour = myScope.ReadString
Debug.Print strWinsour

History Legacy command (existed before version 3.10).

Histogram Commands 19

Keysight Infiniium Oscilloscopes Programmer's Guide 413

:HISTogram:WINDow:LLIMit

Command :HISTogram:WINDow:LLIMit <left_limit>

The :HISTogram:WINDow:LLIMit command moves the Ax marker (left limit) of the
histogram window. The histogram window determines the portion of the display
used to build the database for the histogram. The histogram window markers will
track the scale of the histogram window source.

<left_limit> A real number that represents the left boundary of the histogram window.

Example This example sets the left limit position to -200 microseconds.

myScope.WriteString ":HISTOGRAM:WINDOW:LLIMit -200E-6"

Query :HISTogram:WINDow:LLIMit?

The :HISTogram:WINDow:LLIMit? query returns the value of the left limit
histogram window marker.

Returned Format [:HISTogram:WINDow:LLIMit] <left_limit><NL>

Example This example returns the result of the left limit position query and prints it to the
computer's screen.

Dim strLL As String
myScope.WriteString ":HISTOGRAM:WINDOW:LLIMIT?"
strLL = myScope.ReadString
Debug.Print strLL

History Legacy command (existed before version 3.10).

414 Keysight Infiniium Oscilloscopes Programmer's Guide

19 Histogram Commands

:HISTogram:WINDow:RLIMit

Command :HISTogram:WINDow:RLIMit <right_limit>

The :HISTogram:WINDow:RLIMit command moves the Bx marker (right limit) of
the histogram window. The histogram window determines the portion of the
display used to build the database used for the histogram. The histogram window
markers will track the scale of the histogram window source.

<right_limit> A real number that represents the right boundary of the histogram window.

Example This example sets the Bx marker to 200 microseconds.

myScope.WriteString ":HISTOGRAM:WINDOW:RLIMit 200E-6"

Query :HISTogram:WINDow:RLIMit?

The :HISTogram:WINDow:RLIMit? query returns the value of the right histogram
window marker.

Returned Format [:HISTogram:WINDow:RLIMit] <right_limit><NL>

Example This example returns the result of the Bx position query and prints it to the
computer's screen.

Dim strRL As String
myScope.WriteString ":HISTOGRAM:WINDOW:RLIMit?"
strRL = myScope.ReadString
Debug.Print strRL

History Legacy command (existed before version 3.10).

Histogram Commands 19

Keysight Infiniium Oscilloscopes Programmer's Guide 415

:HISTogram:WINDow:BLIMit

Command :HISTogram:WINDow:BLIMit <bottom_limit>

The :HISTogram:WINDow:BLIMit command moves the Ay marker (bottom limit) of
the histogram window. The histogram window determines the portion of the
display used to build the database used for the histogram. The histogram window
markers will track the scale of the histogram window source.

<bottom_limit> A real number that represents the bottom boundary of the histogram window.

Example This example sets the position of the Ay marker to -250 mV.

myScope.WriteString ":HISTOGRAM:WINDOW:BLIMit -250E-3"

Query :HISTogram:WINDow:BLIMit?

The :HISTogram:WINDow:BLIMit? query returns the value of the Ay histogram
window marker.

Returned Format [:HISTogram:WINDow:BLIMit] <bottom_limit><NL>

Example This example returns the result of the Ay position query and prints it to the
computer's screen.

Dim strBL As String
myScope.WriteString ":HISTOGRAM:WINDOW:BLIMit?"
strBL = myScope.ReadString
Debug.Print strBL

History Legacy command (existed before version 3.10).

416 Keysight Infiniium Oscilloscopes Programmer's Guide

19 Histogram Commands

:HISTogram:WINDow:TLIMit

Command :HISTogram:WINDow:TLIMit <top_limit>

The :HISTogram:WINDow:TLIMit command moves the By marker (top limit) of the
histogram window. The histogram window determines the portion of the display
used to build the database used for the histogram. The histogram window markers
will track the scale of the histogram window source.

<top_limit> A real number that represents the top boundary of the histogram window.

Example This example sets the position of the By marker to 250 mV.

myScope.WriteString ":HISTOGRAM:WINDOW:TLIMit 250E-3"

Query :HISTogram:WINDow:TLIMit?

The :HISTogram:WINDow:TLIMit? query returns the value of the By histogram
window marker.

Returned Format [:HISTogram:WINDow:TLIMit] <top_limit><NL>

Example This example returns the result of the By position query and prints it to the
computer's screen.

Dim strTL As String
myScope.WriteString ":HISTOGRAM:WINDOW:TLIMit?"
strTL = myScope.ReadString
Debug.Print strTL

History Legacy command (existed before version 3.10).

417

Keysight Infiniium Oscilloscopes
Programmer's Guide

20 InfiniiScan (ISCan)
Commands

:ISCan:DELay / 418
:ISCan:MEASurement:FAIL / 419
:ISCan:MEASurement:LLIMit / 420
:ISCan:MEASurement / 421
:ISCan:MEASurement:ULIMit / 422
:ISCan:MODE / 423
:ISCan:NONMonotonic:EDGE / 424
:ISCan:NONMonotonic:HYSTeresis / 425
:ISCan:NONMonotonic:SOURce / 426
:ISCan:RUNT:HYSTeresis / 427
:ISCan:RUNT:LLEVel / 428
:ISCan:RUNT:SOURce / 429
:ISCan:RUNT:ULEVel / 430
:ISCan:SERial:PATTern / 431
:ISCan:SERial:SOURce / 432
:ISCan:ZONE:HIDE / 433
:ISCan:ZONE:SOURce / 434
:ISCan:ZONE<N>:MODE / 435
:ISCan:ZONE<N>:PLACement / 436
:ISCan:ZONE<N>:STATe / 437

The ISCan commands and queries control the InfiniiScan feature of the
oscilloscope. InfiniiScan provides several ways of searching through the waveform
data to find unique events.

418 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:DELay

Command :ISCan:DELay {OFF | <delay_time>}

The :ISCan:DELay command sets the delay time from when the hardware trigger
occurs and when InfiniiScan tries to find the waveform event that has been
defined.

OFF Turns off the delay from the hardware trigger.

<delay_time> Sets the amount of time that the InfiniiScan trigger is delayed from the hardware
trigger.

Example The following example causes the oscilloscope to delay by 1 ms.

myScope.WriteString ":ISCAN:DELay 1E-06"

Query :ISCan:DELay?

The query returns the current set delay value.

Returned Format [:ISCan:DELay] {OFF | <delay_time>}<NL>

Example The following example returns the current delay value and prints the result to the
controller's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":ISCAN:DELAY?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 419

:ISCan:MEASurement:FAIL

Command :ISCan:MEASurement:FAIL {INSide | OUTSide}

The :ISCan:MEASurement:FAIL command sets the fail condition for an individual
measurement. The conditions for a test failure are set on the measurement
selected by the :ISCan:MEASurement command.

When a measurement failure is detected by the limit test the oscilloscope triggers
and the trigger action is executed.

INSide INside causes the oscilloscope to fail a test when the measurement results are
within the parameters set by the :ISCan:MEASurement:LIMit and
:ISCan:MEASurement:ULIMit commands.

OUTSide OUTside causes the oscilloscope to fail a test when the measurement results
exceed the parameters set by the :ISCan:MEASurement:LLIMit and the
:ISCan:MEASurement:ULIMit commands.

Example The following example causes the oscilloscope to trigger when the measurements
are outside the lower or upper limits.

myScope.WriteString ":ISCAN:MEASUREMENT:FAIL OUTSIDE"

Query :ISCan:MEASurement:FAIL?

The query returns the current set fail condition.

Returned Format [:ISCan:MEASurement:FAIL] {INSide | OUTSide}<NL>

Example The following example returns the current fail condition and prints the result to the
controller's screen.

Dim strFAIL As String
myScope.WriteString ":ISCAN:MEASUREMENT:FAIL?"
strFAIL = myScope.ReadString
Debug.Print strFAIL

History Legacy command (existed before version 3.10).

420 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:MEASurement:LLIMit

Command :ISCan:MEASurement:LLIMit <lower_value>

The :ISCan:MEASurement:LLIMit (lower limit) command sets the lower test limit
for the currently selected measurement. The :ISCan:MEASurement command
selects the measurement used.

<lower_value> A real number.

Example The following example sets the lower test limit to 1.0.

myScope.WriteString ":ISCAN:MEASUREMENT:LLIMIT 1.0"

If, for example, you chose to measure volts peak-peak and want the smallest
acceptable signal swing to be one volt, you could use the above command, then
set the measurement limit to trigger when the signal is outside the specified limit.

Query :ISCan:MEASurement:LLIMit?

The query returns the current value set by the command.

Returned Format [:ISCan:MEASurement:LLIMit]<lower_value><NL>

Example The following example returns the current lower test limit and prints the result to
the controller's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":ISCAN:MEASUREMENT:LLIMIT?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 421

:ISCan:MEASurement

Command :ISCan:MEASurement {MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}

The :ISCan:MEASurement command selects the current source for Measurement
Limit Test Trigger. It selects one of the active measurements as referred to by their
position in the Measurement tab area at the bottom of the screen. Measurements
are numbered from left to right in the Measurements tab area of the screen.

Example The following example selects the first measurement as the source for the limit
testing commands.

myScope.WriteString ":ISCAN:MEASUREMENT MEAS1"

Query :ISCan:MEASurement?

The query returns the currently selected measurement source.

Returned Format [:ISCan:MEASurement]{MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5} <NL>

Example The following example returns the currently selected measurement source for the
limit testing commands.

Dim strSOURCE As String
myScope.WriteString ":ISCAN:MEASUREMENT?"
strSOURCE = myScope.ReadString
Debug.Print strSOURCE

See Also Measurements are started by the commands in the Measurement Subsystem.

History Legacy command (existed before version 3.10).

422 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:MEASurement:ULIMit

Command :ISCan:MEASurement:ULIMit <upper_value>

The :ISCan:MEASurement:ULIMit (upper limit) command sets the upper test limit
for the active measurement currently selected by the :ISCan:MEASurement
command.

<upper_value> A real number.

Example The following example sets the upper limit of the currently selected measurement
to 500 mV.

myScope.WriteString ":ISCAN:MEASUREMENT:ULIMIT 500E-3"

Suppose you are measuring the maximum voltage of a signal with Vmax, and that
voltage should not exceed 500 mV. You can use the above program and set the
:ISCan:MEASurement:FAIL OUTside command to specify that the oscilloscope will
trigger when the voltage exceeds 500 mV.

Query :ISCan:MEASurement:ULIMit?

The query returns the current upper limit of the limit test.

Returned Format [:ISCan:MEASurement:ULIMit] <upper_value><NL>

Example The following example returns the current upper limit of the limit test and prints
the result to the controller's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":ISCAN:MEASUREMENT:ULIMit?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 423

:ISCan:MODE

Command :ISCan:MODE {OFF | MEASurement | NONMonotonic |
RUNT | SERial | ZONE}

The :ISCan:MODE command selects the type of InfiniiScan trigger mode. The
Measurement, Runt, Zone Qualify, and Non-monotonic Edge InfiniiScan modes
can be set using this command.

OFF Turns off the InfiniiScan trigger mode.

MEASurement Sets the Measurement Limit trigger mode.

NONMonotonic Sets the Non-monotonic edge trigger mode.

RUNT Sets the Runt trigger mode.

SERial Sets the Serial trigger mode.

ZONE Sets the Zone Qualify trigger mode.

Example The following example selects the runt trigger.

myScope.WriteString ":ISCAN:MODE RUNT"

Query :ISCan:MODE?

The query returns the currently selected IniniiScan trigger mode.

Returned Format [:ISCan:MEASurement]{OFF | MEASurement | NONMonotonic |
RUNT | SERial | ZONE}<NL>

Example The following example returns the currently selected InfiniiScan trigger mode.

Dim strMODE As String
myScope.WriteString ":ISCAN:MODE?"
strMODE = myScope.ReadString
Debug.Print strMODE

History Legacy command (existed before version 3.10).

424 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:NONMonotonic:EDGE

Command :ISCan:NONMonotonic:EDGE {EITHer | FALLing | RISing}

The :ISCan:NONMonotonic:EDGE command selects the rising edge, the falling
edge, or either edge for the Non-monotonic edge trigger mode.

EITHer Sets the edge used by the Non-monotonic edge trigger to both rising and falling
edges.

FALLing Sets the edge used by the Non-monotonic edge trigger to falling edges.

RISing Sets the edge used by the Non-monotonic edge trigger to rising edges.

Example The following example selects the falling edge non-monotonic trigger.

myScope.WriteString ":ISCAN:NONMONOTONIC:EDGE FALLING"

Query :ISCan:NONMonotonic:EDGE?

The query returns the currently selected edge type for the Non-Monotonic Edge
trigger.

Returned Format [:ISCan:NONMonotonic:EDGE]{EITHer | FALLing | RISing}<NL>

Example The following example returns the currently selected edge type used for the
Non-monotonic Edge trigger mode.

Dim strSOURCE As String
myScope.WriteString ":ISCAN:NONMONOTONIC:EDGE?"
strSOURCE = myScope.ReadString
Debug.Print strSOURCE

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 425

:ISCan:NONMonotonic:HYSTeresis

Command :ISCan:NONMonotonic:HYSTeresis <value>

The :ISCan:NONMonotonic:HYSTeresis command sets the hysteresis value used
for the Non-monotonic Edge trigger.

<value> is a real number for the hysteresis.

Example The following example sets the hysteresis value used by the Non-monotonic
trigger mode to 10 mV.

myScope.WriteString ":ISCAN:NONMONOTONIC:HYSTERESIS 1E-2"

Query :ISCan:NONMonotonic:HYSTersis?

The query returns the hysteresis value used by the Non-monotonic Edge trigger
mode.

Returned Format [:ISCan:NONMonotonic:HYSTeresis]<value><NL>

Example The following example returns and prints the value of the hysteresis.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":ISCAN:NONMONOTONIC:HYSTERESIS?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

426 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:NONMonotonic:SOURce

Command :ISCan:NONMonotonic:SOURce CHANnel<N>

The :ISCan:NONMonotonic:SOURce command sets the source used for the
Non-monotonic Edge trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the Non-monotonic trigger mode
to channel 1.

myScope.WriteString ":ISCAN:NONMONOTONIC:SOURCE CHANNEL1"

Query :ISCan:NONMonotonic:SOURce?

The query returns the source used by the Non-monotonic Edge trigger mode.

Returned Format [:ISCan:NONMonotonic:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for the
Non-monotonic Edge trigger mode.

Dim strSOURCE As String
myScope.WriteString ":ISCAN:NONMONOTONIC:SOURCE?"
strSOURCE = myScope.ReadString
Debug.Print strSOURCE

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 427

:ISCan:RUNT:HYSTeresis

Command :ISCan:RUNT:HYSTeresis <value>

The :ISCan:RUNT:HYSTeresis command sets the hysteresis value used for the Runt
trigger.

<value> is a real number for the hysteresis.

Example The following example sets the hysteresis value used by the Runt trigger mode to
10 mV.

myScope.WriteString ":ISCAN:RUNT:HYSTERESIS 1E-2"

Query :ISCan:RUNT:HYSTersis?

The query returns the hysteresis value used by the Runt trigger mode.

Returned Format [:ISCan:RUNT:HYSTeresis]<value><NL>

Example The following example returns and prints the value of the hysteresis.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":ISCAN:RUNT:HYSTERESIS?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

428 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:RUNT:LLEVel

Command ISCan:RUNT:LLEVel <lower_level>

The :ISCan:RUNT:LLEVel (lower level) command sets the lower level limit for the
Runt trigger mode.

<lower_level> A real number.

Example The following example sets the lower level limit to 1.0 V.

myScope.WriteString ":ISCAN:RUNT:LLEVel 1.0"

Query :ISCan:RUNT:LLEVel?

The query returns the lower level limit set by the command.

Returned Format [:ISCan:RUNT:LLEVel] <lower_level><NL>

Example The following example returns the current lower level used by the Runt trigger and
prints the result to the controller's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":ISCAN:RUNT:LLEVel?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 429

:ISCan:RUNT:SOURce

Command :ISCan:RUNT:SOURce CHANnel<N>

The :ISCan:RUNT:SOURce command sets the source used for the Runt trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the Runt trigger mode to channel
1.

myScope.WriteString ":ISCAN:RUNT:SOURCE CHANNEL1"

Query :ISCan:RUNT:SOURce?

The query returns the source used by the Runt trigger mode.

Returned Format [:ISCan:RUNT:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for the Runt trigger
mode.

Dim strSOURCE As String
myScope.WriteString ":ISCAN:RUNT:SOURCE?"
strSOURCE = myScope.ReadString
Debug.Print strSOURCE

History Legacy command (existed before version 3.10).

430 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:RUNT:ULEVel

Command :ISCan:RUNT:ULEVel <upper_level>

The :ISCan:RUNT:ULEVel (upper level) command sets the upper level limit for the
Runt trigger mode.

<upper_level> A real number.

Example The following example sets the upper level value used by the Runt trigger mode to
500 mV.

myScope.WriteString ":ISCAN:RUNT:ULEVEL 500E-3"

Query :ISCan:RUNT:ULEVel?

The query returns the current upper level value used by the Runt trigger.

Returned Format [:ISCan:RUNT:ULEVel] <upper_level><NL>

Example The following example returns the current upper level used by the Runt trigger and
prints the result to the controller's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":ISCAN:RUNT:ULEVel?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 431

:ISCan:SERial:PATTern

Command :ISCan:SERial:PATTern "<pattern>"

The :ISCan:SERial:PATTern command sets the pattern used for the Serial trigger.

<pattern> is a 1, 0, or X binary character string of up to 80 characters. The pattern can only
be expressed in the binary format.

Example The following example sets the pattern used by the Serial trigger to 101100.

myScope.WriteString ":ISCan:SERial:PATTern ""101100"""

Query :ISCan:SERial:PATTern?

The query returns the pattern used by the Serial trigger mode.

Returned Format [:ISCan:SERial:PATTern] <pattern><NL>

Example The following example returns the currently selected pattern for the Serial trigger
mode.

Dim strPATTERN As String
myScope.WriteString ":ISCan:SERIAL:PATTERN?"
strPATTERN = myScope.ReadString
Debug.Print strPATTERN

History Legacy command (existed before version 3.10).

432 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:SERial:SOURce

Command :ISCan:SERial:SOURce CHANnel<N>

The :ISCan:SERial:SOURce command sets the source used for the Serial trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the Serial trigger mode to channel
1.

myScope.WriteString ":ISCAN:SERIAL:SOURCE CHANNEL1"

Query :ISCan:SERial:SOURce?

The query returns the source used by the Serial trigger mode.

Returned Format [:ISCan:SERial:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for the Serial trigger
mode.

Dim strSOURCE As String
myScope.WriteString ":ISCAN:SERIAL:SOURCE?"
strSOURCE = myScope.ReadString
Debug.Print strSOURCE

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 433

:ISCan:ZONE:HIDE

Command :ISCan:ZONE:HIDE {{ON | 1} | {OFF | 0}}

The :ISCan:ZONE:HIDE command lets you hide or show all InfiniiScan zones on the
display.

Example The following example hides all InfiniiScan zones on the display.

myScope.WriteString ":ISCAN:ZONE:HIDE ON"

Query :ISCan:ZONE:HIDE?

The query returns the current zone hide setting.

Returned Format [:ISCan:ZONE:HIDE]{1 | 0};

Example The following example returns the current zone hide setting.

Dim strHide As String
myScope.WriteString ":ISCAN:ZONE:HIDE?"
strHide = myScope.ReadString
Debug.Print strHide

History New in version 4.00.

434 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:ZONE:SOURce

Command :ISCan:ZONE:SOURce CHANnel<N>

The :ISCan:ZONE:SOURce command sets the source used for the zone qualify
trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the zone qualify trigger to channel
1.

myScope.WriteString ":ISCAN:ZONE:SOURCE CHANNEL1"

Query :ISCan:ZONE:SOURce?

The query returns the source used by the zone qualify trigger.

Returned Format [:ISCan:ZONE:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for zone qualify
trigger.

Dim strSOURCE As String
myScope.WriteString ":ISCAN:ZONE:SOURCE?"
strSOURCE = myScope.ReadString
Debug.Print strSOURCE

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 435

:ISCan:ZONE<N>:MODE

Command :ISCan:ZONE<N>:MODE {INTersect | NOTintersect | OINTersect | ONOT}

The :ISCan:ZONE<N>:MODE command sets the Zone Qualify trigger mode. For the
INTersect mode, the waveform must enter the zone region to qualify as a valid
waveform. For NOTintersect mode, the waveform cannot enter a zone region to
qualify as a valid waveform.

<N> is an integer from 1-4.

Example The following example sets the mode to intersect for zone 1.

myScope.WriteString ":ISCan:ZONE1:MODE INTersect"

Query :ISCan:ZONE<N>:MODE?

The query returns the mode used by zone 1.

Returned Format [:ISCan:ZONE<N>:MODE]{INT | NOT | OINT | ONOT}<NL>

Example The following example returns the currently selected mode for zone 1.

Dim strMODE As String
myScope.WriteString ":ISCan:ZONE1:MODE?"
strMODE = myScope.ReadString
Debug.Print strMODE

History Legacy command (existed before version 3.10).

436 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

:ISCan:ZONE<N>:PLACement

Command :ISCan:ZONE<N>:PLACement <width>,<height>,<x_center>,<y_center>

The :ISCan:ZONE<N>:PLACement command sets the location and size of a zone
for the zone qualify trigger mode.

<N> is an integer from 1-4.

<width> a real number defining the width of a zone in seconds.

<height> is a real number defining the height of a zone in volts.

<x_center> is a real number defining the x coordinate of the center of the zone in seconds.

<y_center> is a real number defining the y coordinate of the center of the zone in volts.

Example The following example sets the size of zone 1 to be 500 ps wide and 0.5 volts high
and centered about the xy coordinate of 1.5 ns and 1 volt.

myScope.WriteString ":ISCAN:ZONE1:PLACEMENT 500e-12,0.5,1.5e-9,1"

Query :ISCan:ZONE<N>:PLACement?

The query returns the placement values used by zone 1.

Returned Format [:ISCan:ZONE<N>:PLACement]<width>,<height>,<x_center>,
<y_center><NL>

Example The following example returns the current placement values for zone 1.

Dim strPLACEMENT As String
myScope.WriteString ":ISCAN:ZONE1:PLACEMENT?"
strPLACEMENT = myScope.ReadString
Debug.Print strPLACEMENT

History Legacy command (existed before version 3.10).

InfiniiScan (ISCan) Commands 20

Keysight Infiniium Oscilloscopes Programmer's Guide 437

:ISCan:ZONE<N>:STATe

Command :ISCan:ZONE<N>:STATe {{ON | 1} | {OFF | 0}}

The :ISCan:ZONE<N>:STATe command turns a zone off or on for the zone qualify
trigger.

<N> is an integer from 1-4.

Example The following example turns on zone 2.

myScope.WriteString ":ISCAN:ZONE2:STATE ON"

Query :ISCan:ZONE<N>:STATe?

The query returns the state value for a zone.

Returned Format [:ISCan:ZONE<N>:STATe]{1 | 0}<NL>

Example The following example returns the current state value for zone 2.

Dim strSTATE As String
myScope.WriteString ":ISCAN:ZONE2:STATE?"
strSTATE = myScope.ReadString
Debug.Print strSTATE

History Legacy command (existed before version 3.10).

438 Keysight Infiniium Oscilloscopes Programmer's Guide

20 InfiniiScan (ISCan) Commands

439

Keysight Infiniium Oscilloscopes
Programmer's Guide

21 Limit Test Commands

:LTESt:FAIL / 440
:LTESt:LLIMit / 441
:LTESt:MEASurement / 442
:LTESt:RESults? / 443
:LTESt:TEST / 444
:LTESt:ULIMit / 445

The Limit Test commands and queries control the limit test features of the
oscilloscope. Limit testing automatically compares measurement results with pass
or fail limits. The limit test tracks up to four measurements. The action taken when
the test fails is also controlled with commands in this subsystem.

440 Keysight Infiniium Oscilloscopes Programmer's Guide

21 Limit Test Commands

:LTESt:FAIL

Command :LTESt:FAIL {INSide | OUTSide}

The :LTESt:FAIL command sets the fail condition for an individual measurement.
The conditions for a test failure are set on the source selected with the last
LTESt:MEASurement command.

When a measurement failure is detected by the limit test, the fail action conditions
are executed, and there is the potential to generate an SRQ.

INSide FAIL INside causes the oscilloscope to fail a test when the measurement results
are within the parameters set by the LLTESt:LIMit and LTESt:ULIMit commands.

OUTSide FAIL OUTside causes the oscilloscope to fail a test when the measurement results
exceed the parameters set by LTESt:LLIMit and LTESt:ULIMit commands.

Example The following example causes the oscilloscope to fail a test when the
measurements are outside the lower and upper limits.

myScope.WriteString ":LTEST:FAIL OUTSIDE"

Query :LTESt:FAIL?

The query returns the current set fail condition.

Returned Format [:LTESt:FAIL] {INSide | OUTSide}<NL>

Example The following example returns the current fail condition and prints the result to the
controller's screen.

Dim strFAIL As String
myScope.WriteString ":LTEST:FAIL?"
strFAIL = myScope.ReadString
Debug.Print strFAIL

History Legacy command (existed before version 3.10).

Limit Test Commands 21

Keysight Infiniium Oscilloscopes Programmer's Guide 441

:LTESt:LLIMit

Lower Limit

Command :LTESt:LLIMit <lower_value>

The :LTESt:LLIMit (Lower LIMit) command sets the lower test limit for the active
measurement currently selected by the :LTESt:MEASurement command.

<lower_value> A real number.

Example The following example sets the lower test limit to 1.0.

myScope.WriteString ":LTEST:LLIMIT 1.0"

If, for example, you chose to measure volts peak-peak and want the smallest
acceptable signal swing to be one volt, you could use the above command, then
set the limit test to fail when the signal is outside the specified limit.

Query :LTESt:LLIMit?

The query returns the current value set by the command.

Returned Format [:LTESt:LLIMit]<lower_value><NL>

Example The following example returns the current lower test limit and prints the result to
the controller's screen.

Dim strLLIM As String
myScope.WriteString ":LTEST:LLIMIT?"
strLLIM = myScope.ReadString
Debug.Print strLLIM

History Legacy command (existed before version 3.10).

442 Keysight Infiniium Oscilloscopes Programmer's Guide

21 Limit Test Commands

:LTESt:MEASurement

Command :LTESt:MEASurement {MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}

The :LTESt:MEASurement command selects the current source for Limit Test for
the ULIMit and LLIMit commands. It selects one of the active measurements as
referred to by their position in the measurement window on the bottom of the
screen. Measurements are numbered from left to right.

Example The following example selects the first measurement as the source for the limit
testing commands.

myScope.WriteString ":LTEST:MEASUREMENT MEAS1"

Query :LTESt:MEASurement?

The query returns the currently selected measurement source.

Returned Format [:LTESt:MEASurement]{MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5} <NL>

Example The following example returns the currently selected measurement source for the
limit testing commands.

Dim strSOURCE As String
myScope.WriteString ":LTEST:MEASUREMENT?"
strSOURCE = myScope.ReadString
Debug.Print strSOURCE

See Also Measurements are started in the Measurement Subsystem.

History Legacy command (existed before version 3.10).

Limit Test Commands 21

Keysight Infiniium Oscilloscopes Programmer's Guide 443

:LTESt:RESults?

Query :LTESt:RESults? {MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}

The query returns the measurement results for selected measurement. The values
returned are the failed minimum value (Fail Min), the failed maximum value (Fail
Max), and the total number of measurements made (# of Meas).

Returned Format [:LTESt:RESults] <fail_min>,<fail_max>,<num_meas><NL>

<fail_min> A real number representing the total number of measurements that have failed the
minimum limit.

<fail_max> A real number representing the total number of measurements that have failed the
maximum limit.

<num_meas> A real number representing the total number of measurements that have been
made.

Example The following example returns the values for the limit test of measurement 1.

Dim strRESULTS As String
myScope.WriteString ":LTEST:RESults? MEAS1"
strRESULTS = myScope.ReadString
Debug.Print strRESULTS

See Also Measurements are started in the Measurement Subsystem.

History Legacy command (existed before version 3.10).

444 Keysight Infiniium Oscilloscopes Programmer's Guide

21 Limit Test Commands

:LTESt:TEST

Command :LTESt:TEST {{ON | 1} {OFF | 0}}

The LTESt:TEST command controls the execution of the limit test function. ON
allows the limit test to run over all of the active measurements. When the limit test
is turned on, the limit test results are displayed on screen in a window below the
graticule.

Example The following example turns off the limit test function.

myScope.WriteString ":LTEST:TEST OFF"

Query :LTESt:TEST?

The query returns the state of the TEST control.

Returned Format [:LTESt:TEST] {1 | 0} <NL>

Example The following example returns the current state of the limit test and prints the
result to the controller's screen.

Dim strTEST As String
myScope.WriteString ":LTEST:TEST?"
strTEST = myScope.ReadString
Debug.Print strTEST

The result of the MEAS:RESults? query has two extra fields when LimitTESt:TEST is
ON (failures, total). Failures is a number and total is the total number of
measurements made.

History Legacy command (existed before version 3.10).

Limit Test Commands 21

Keysight Infiniium Oscilloscopes Programmer's Guide 445

:LTESt:ULIMit

Upper Limit

Command :LTESt:ULIMit <upper_value>

The :LTESt:ULIMit (Upper LIMit) command sets the upper test limit for the active
measurement currently selected by the last :LTESt:MEASurement command.

<upper_value> A real number.

Example The following example sets the upper limit of the currently selected measurement
to 500 milli.

myScope.WriteString ":LTEST:ULIMIT 500E-3"

Suppose you are measuring the maximum voltage of a signal with Vmax, and that
voltage should not exceed 500 mV. You can use the above program and set the
LTESt:FAIL OUTside command to specify that the limit subsystem will fail a
measurement when the voltage exceeds 500 mV.

Query :LTESt:ULIMit?

The query returns the current upper limit of the limit test.

Returned Format [:LTESt:ULIMit] <upper_value><NL>

Example The following example returns the current upper limit of the limit test and prints
the result to the controller's screen.

Dim strULIM As String
myScope.WriteString ":LTEST:ULIMIT?"
strULIM = myScope.ReadString
Debug.Print strULIM

History Legacy command (existed before version 3.10).

446 Keysight Infiniium Oscilloscopes Programmer's Guide

21 Limit Test Commands

447

Keysight Infiniium Oscilloscopes
Programmer's Guide

22 Lister Commands

:LISTer:DATA / 448
:LISTer:DISPlay / 449

The LISTer subsystem is used to turn on/off the serial decode Lister display and
return data from the Lister display.

448 Keysight Infiniium Oscilloscopes Programmer's Guide

22 Lister Commands

:LISTer:DATA

Query :LISTer:DATA? [{SBUS1 | SBUS2 | SBUS3 | SBUS4} [,<type>]]

The :LISTer:DATA? query returns the lister data.

<type> {PACKets | SYMBols}

Specifies which display window to save.

Returned Format <binary block><NL>

<binary_block> ::= comma-separated data with newlines at the
end of each row

See Also • ":LISTer:DISPlay" on page 449

History New in version 3.50.

Version 5.00: Added the <type> parameter for specifying which display window to
save.

Lister Commands 22

Keysight Infiniium Oscilloscopes Programmer's Guide 449

:LISTer:DISPlay

Command :LISTer:DISPlay <value>

<value> ::= {OFF | ON | SBUS1 | SBUS2 | SBUS3 | SBUS4}

The :LISTer:DISPlay command configures which of the serial buses to display in
the Lister, or whether the Lister is off. "ON" or "1" is the same as "SBUS1".

When set to "ALL", the decode information for different buses is interleaved in
time.

Serial bus decode must be on before it can be displayed in the Lister.

Query :LISTer:DISPlay?

The :LISTer:DISPlay? query returns the Lister display setting.

Returned Format <value><NL>

<value> ::= {OFF | ON | SBUS1 | SBUS2 | SBUS3 | SBUS4}

See Also • ":SBUS<N>[:DISPlay]" on page 845

• ":LISTer:DATA" on page 448

History New in version 3.50.

450 Keysight Infiniium Oscilloscopes Programmer's Guide

22 Lister Commands

451

Keysight Infiniium Oscilloscopes
Programmer's Guide

23 Marker Commands

:MARKer:CURSor? / 452
:MARKer:MEASurement:MEASurement / 453
:MARKer:MODE / 454
:MARKer:TSTArt / 455
:MARKer:TSTOp / 456
:MARKer:VSTArt / 457
:MARKer:VSTOp / 458
:MARKer:X1Position / 459
:MARKer:X2Position / 460
:MARKer:X1Y1source / 461
:MARKer:X2Y2source / 463
:MARKer:XDELta? / 465
:MARKer:Y1Position / 466
:MARKer:Y2Position / 467
:MARKer:YDELta? / 468

The commands in the MARKer subsystem specify and query the settings of the
time markers (X axis) and current measurement unit markers (volts, amps, and
watts for the Y axis). You typically set the Y-axis measurement units using the
:CHANnel:UNITs command.

NOTE Guidelines for Using Queries in Marker Modes

In Track Waveforms mode, use :MARKer:CURSor? to track the position of the waveform. In
Manual Markers and Track Measurements Markers modes, use other queries, such as the
X1Position? and X2Position?, and VSTArt? and VSTOp? queries. If you use :MARKer:CURSor?
when the oscilloscope is in either Manual Markers or Track Measurements Markers modes, it
will put the oscilloscope in Track Waveforms mode, regardless of the mode previously
selected. In addition, measurement results may not be what you expected.

452 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

:MARKer:CURSor?

Query :MARKer:CURSor? {DELTa | STARt | STOP}

The :MARKer:CURSor? query returns the time and current measurement unit
values of the specified marker (if markers are in Track Waveforms mode) as an
ordered pair of time and measurement unit values.

• If DELTA is specified, the value of delta Y and delta X are returned.

• If START is specified, marker A's x-to-y positions are returned.

• If STOP is specified, marker B's x-to-y positions are returned.

Returned Format [:MARKer:CURSor] {DELTa | STARt | STOP}
{<Ax, Ay> | <Bx, By> | <deltaX, deltaY>}<NL>

Example This example returns the current position of the X cursor and measurement unit
marker 1 to the string variable, strPosition. The program then prints the contents
of the variable to the computer's screen.

Dim strPosition As String ' Dimension variable.
myScope.WriteString ":MARKER:CURSOR? START"
strPosition = myScope.ReadString
Debug.Print strPosition

History Legacy command (existed before version 3.10).

CAUTION The :MARKer:CURSor? query may change marker mode and resul ts.

In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use other
marker queries, such as the X1Position? and X2Position?, and VSTArt? and VSTOp?
queries.

If you use :MARKer:CURSor? when the oscilloscope is in either Manual Markers or
Track Measurements Markers modes, it will put the oscilloscope in Track Waveforms
mode, regardless of the mode previously selected. In addition, measurement results
may not be what you expected. In addition, measurement results may not be what you
expected.

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 453

:MARKer:MEASurement:MEASurement

Command :MARKer:MEASurement:MEASurement {MEASurement<N>}

The :MARKer:MEASurement:MEASurement command specifies which
measurement markers track. This setting is only used when the :MARKer:MODE is
set to MEASurement.

<N> MEASurement<N> is an integer, 1-10.

Example This example sets the markers to track the fourth measurement.

myScope.WriteString ":MARKER:MEASurement:MEASurement MEASurement4"

Query :MARKer:MEASurement:MEASurement?

The :MARKer:MEASurement:MEASurement? query returns the currently specified
measurement for marker tracking.

Returned Format [:MARKer:MEASurement:MEASurement] {MEAS<N>}<NL>

Example This example places the current marker mode in the string variable, strTrackMeas,
then prints the contents of the variable to the computer's screen.

Dim strTrackMeas As String ' Dimension variable.
myScope.WriteString ":MARKER:MEASurement:MEASurement?"
strTrackMeas = myScope.ReadString
Debug.Print strTrackMeas

See Also • ":MARKer:MODE" on page 454

History New in version 3.20.

454 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

:MARKer:MODE

Command :MARKer:MODE {OFF | MANual | WAVeform | MEASurement | FFTPeak}

The :MARKer:MODE command sets the marker mode:

• OFF — Removes the marker information from the display.

• MANual — Enables manual placement of markers A and B.

• WAVeform — Tracks the current waveform.

• MEASurement — Tracks the most recent measurement.

• FFTPeak — Tracks the current FFT peak that has been navigated to.

Example This example sets the marker mode to waveform.

myScope.WriteString ":MARKer:MODE WAVeform"

Query :MARKer:MODE?

The :MARKer:MODE? query returns the current marker mode.

Returned Format [:MARKer:MODE] {OFF | MAN | WAV | MEAS | FFTP}<NL>

Example This example places the current marker mode in the string variable, strSelection,
then prints the contents of the variable to the computer's screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":MARKer:MODE?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 455

:MARKer:TSTArt

Command :MARKer:TSTArt <Ax_position>

The :MARKer:TSTArt command sets the Ax marker position. The
:MARKer:X1Position command described in this chapter also sets the Ax marker
position.

<Ax_position> A real number for the time at the Ax marker, in seconds.

Example This example sets the Ax marker at 90 ns. Notice that this example uses the
X1Position command instead of TSTArt.

myScope.WriteString ":MARKER:X1POSITION 90E-9"

Query :MARKer:TSTArt?

The :MARKer:TSTArt? query returns the time at the Ax marker.

Returned Format [:MARKer:TSTArt] <Ax_position><NL>

Example This example places the current setting of the Ax marker in the numeric variable,
varSetting, then prints the contents of the variable to the computer's screen.
Notice that this example uses the :MARKer:X1Position? query instead of the
:MARKer:TSTArt? query.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:X1POSITION?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

NOTE Use :MARKer:X1Position Instead of :MARKer:TSTArt

The :MARKer:TSTArt command and query perform the same function as the
:MARKer:X1Position command and query. The :MARKer:TSTArt command is provided for
compatibility with programs written for previous oscilloscopes. You should use
:MARKer:X1Position for new programs.

NOTE Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTArt command and query does not follow the defined convention for
short form commands. Because the short form, TST, is the same for TSTArt and TSTOp,
sending TST produces an error. Use TSTA for TSTArt.

456 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

:MARKer:TSTOp

Command :MARKer:TSTOp <Bx_position>

The :MARKer:TSTOp command sets the Bx marker position. The
:MARKer:X2Position command described in this chapter also sets the Bx marker
position.

<Bx_position> A real number for the time at the Bx marker, in seconds.

Example This example sets the Bx marker at 190 ns. Notice that this example uses the
X2Position command instead of TSTOp.

myScope.WriteString ":MARKER:X2POSITION 190E-9"

Query :MARKer:TSTOp?

The :MARKer:TSTOp? query returns the time at the Bx marker position.

Returned Format [:MARKer:TSTOp] <Bx_position><NL>

Example This example places the current setting of the Bx marker in the numeric variable,
varSetting, then prints the contents of the variable to the computer's screen.
Notice that this example uses the :MARKer:X2Position? query instead of the
:MARKer:TSTOp? query.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:X2POSITION?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

NOTE Use :MARKer:X2Position Instead of :MARKer:TSTOp

The :MARKer:TSTOp command and query perform the same function as the
:MARKer:X2Position command and query. The :MARKer:TSTOp command is provided for
compatibility with programs written for previous oscilloscopes. You should use
:MARKer:X2Position for new programs.

NOTE Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTOp command and query does not follow the defined convention for
short form commands. Because the short form, TST, is the same for TSTArt and TSTOp,
sending TST produces an error. Use TSTO for TSTOp.

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 457

:MARKer:VSTArt

Command :MARKer:VSTArt <Ay_position>

The :MARKer:VSTArt command sets the Ay marker position and moves the
Ay marker to the specified measurement unit value on the specified source. The
:MARKer:Y1Position command described in this chapter does also.

<Ay_position> A real number for the current measurement unit value at Ay (volts, amps, or watts).

Example This example sets Ay to -10 mV. Notice that this example uses the Y1Position
command instead of VSTArt.

myScope.WriteString ":MARKER:Y1POSITION -10E-3"

Query :MARKer:VSTArt?

The :MARKer:VSTArt? query returns the current measurement unit level of Ay.

Returned Format [:MARKer:VSTArt] <Ay_position><NL>

History Legacy command (existed before version 3.10).

NOTE Use :MARKer:Y1Position Instead of :MARKer:VSTArt

The :MARKer:VSTArt command and query perform the same function as the
:MARKer:Y1Position command and query. The :MARKer:VSTArt command is provided for
compatibility with programs written for previous oscilloscopes. You should use
:MARKer:Y1Position for new programs.

458 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

:MARKer:VSTOp

Command :MARKer:VSTOp <By_position>

The :MARKer:VSTOp command sets the By marker position. The
:MARKer:Y2Position command described in this chapter also sets the By marker
position.

<By_position> A real number for the time at the By marker, in seconds.

Example This example sets the By marker at 10 mV. Notice that this example uses the
Y2Position command instead of VSTOp.

myScope.WriteString ":MARKER:Y2POSITION 10E-3"

Query :MARKer:VSTOp?

The :MARKer:VSTOp? query returns the time at the By marker position.

Returned Format [:MARKer:VSTOp] <By_position><NL>

Example This example places the current setting of the By marker in the numeric variable,
varSetting, then prints the contents of the variable to the computer's screen.
Notice that this example uses the :MARKer:Y2? query instead of the
:MARKer:VSTOp? query.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:Y2POSITION?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

NOTE Use :MARKer:Y2Position Instead of :MARKer:VSTOp

The :MARKer:VSTOp command and query perform the same function as the
:MARKer:Y2Position command and query. The :MARKer:VSTOp command is provided for
compatibility with programs written for previous oscilloscopes. You should use
:MARKer:Y2Position for new programs.

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 459

:MARKer:X1Position

Command :MARKer:X1Position <Ax_position>

The :MARKer:X1Position command sets the Ax marker position, and moves the Ax
marker to the specified time with respect to the trigger time.

<Ax_position> A real number for the time at the Ax marker in seconds.

Example This example sets the Ax marker to 90 ns.

myScope.WriteString ":MARKER:X1POSITION 90E-9"

Query :MARKer:X1Position?

The :MARKer:X1Position? query returns the time at the Ax marker position.

Returned Format [:MARKer:X1Position] <Ax_position><NL>

Example This example returns the current setting of the Ax marker to the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:X1POSITION?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also :MARKer:TSTArt

History Legacy command (existed before version 3.10).

460 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

:MARKer:X2Position

Command :MARKer:X2Position <Bx_position>

The :MARKer:X2Position command sets the Bx marker position and moves the Bx
marker to the specified time with respect to the trigger time.

<Bx_position> A real number for the time at the Bx marker in seconds.

Example This example sets the Bx marker to 90 ns.

myScope.WriteString ":MARKER:X2POSITION 90E-9"

Query :MARKer:X2Position?

The :MARKer:X2Position? query returns the time at Bx marker in seconds.

Returned Format [:MARKer:X2Position] <Bx_position><NL>

Example This example returns the current position of the Bx marker to the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:X2POSITION?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 461

:MARKer:X1Y1source

Command :MARKer:X1Y1source {CHANnel<N> | COMMonmode<P> | DIFF<P>
| FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized
| HISTogram | DIGital<M> | BUS<N>}

The :MARKer:X1Y1source command sets the source for the Ax and Ay markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1-4.

BUS<N> is an integer, 1-4. Buses are available on mixed-signal oscilloscopes.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<P> An integer, 1-2.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example selects channel 1 as the source for markers Ax and Ay.

myScope.WriteString ":MARKer:X1Y1source CHANnel1"

Query :MARKer:X1Y1source?

The :MARKer:X1Y1source? query returns the current source for markers Ax and Ay.

462 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

Returned Format [:MARKer:X1Y1source] {CHANnel<N> | COMMonmode<P> | DIFFerential<P>
| FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized
| HISTogram | DIGital<M> | BUS<N>}<NL>

Example This example returns the current source selection for the Ax and Ay markers to the
string variable, strSelection, then prints the contents of the variable to the
computer's screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":MARKer:X1Y1source?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 463

:MARKer:X2Y2source

Command :MARKer:X2Y2source {CHANnel<N> | COMMonmode<P> | DIFF<P>
| FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized
| HISTogram | DIGital<M> | BUS<N>}

The :MARKer:X2Y2source command sets the source for the Bx and By markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1-4.

BUS<N> is an integer, 1-4. Buses are available on mixed-signal oscilloscopes.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<P> An integer, 1-2.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example selects channel 1 as the source for markers Bx and By.

myScope.WriteString ":MARKer:X2Y2source CHANnel1"

Query :MARKer:X2Y2source?

The :MARKer:X2Y2source? query returns the current source for markers Bx and By.

464 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

Returned Format [:MARKer:X2Y2source] {CHANnel<N> | COMMonmode<P> | DIFFerential<P>
| FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized
| HISTogram | DIGital<M> | BUS<N>}<NL>

Example This example returns the current source selection for the Bx and By markers to the
string variable, strSelection, then prints the contents of the variable to the
computer's screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":MARKer:X2Y2source?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 465

:MARKer:XDELta?

Query :MARKer:XDELta?

The :MARKer:XDELta? query returns the time difference between Ax and Bx time
markers.

Xdelta = time at Bx - time at Ax

Returned Format [:MARKer:XDELta] <time><NL>

<time> Time difference between Ax and Bx time markers in seconds.

Example This example returns the current time between the Ax and Bx time markers to the
numeric variable, varTime, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:XDELTA?"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

History Legacy command (existed before version 3.10).

466 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

:MARKer:Y1Position

Command :MARKer:Y1Position <Ay_position>

The :MARKer:Y1Position command sets the Ay marker position on the specified
source.

<Ay_position> A real number for the current measurement unit value at Ay (volts, amps, or watts).

Example This example sets the Ay marker to 10 mV.

myScope.WriteString ":MARKER:Y1POSITION 10E-3"

Query :MARKer:Y1Position?

The :MARKer:Y1Position? query returns the current measurement unit level at the
Ay marker position.

Returned Format [:MARKer:Y1Position] <Ay_position><NL>

Example This example returns the current setting of the Ay marker to the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:Y1POSITION?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Marker Commands 23

Keysight Infiniium Oscilloscopes Programmer's Guide 467

:MARKer:Y2Position

Command :MARKer:Y2Position <By_position>

The :MARKer:Y2Position command sets the By marker position on the specified
source.

<By_position> A real number for the current measurement unit value at By (volts, amps, or watts).

Example This example sets the By marker to-100 mV.

myScope.WriteString ":MARKER:Y2POSITION -100E-3"

Query :MARKer:Y2Position?

The :MARKer:Y2Position? query returns the current measurement unit level at the
By marker position.

Returned Format [:MARKer:Y2Position] <By_position><NL>

Example This example returns the current setting of the By marker to the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:Y2POSITION?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

468 Keysight Infiniium Oscilloscopes Programmer's Guide

23 Marker Commands

:MARKer:YDELta?

Query :MARKer:YDELta?

The :MARKer:YDELta? query returns the current measurement unit difference
between Ay and By.

Ydelta = value at By - value at Ay

Returned Format [:MARKer:YDELta] <value><NL>

<value> Measurement unit difference between Ay and By.

Example This example returns the voltage difference between Ay and By to the numeric
variable, varVolts, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MARKER:YDELTA?"
varVolts = myScope.ReadNumber
Debug.Print FormatNumber(varVolts, 0)

History Legacy command (existed before version 3.10).

469

Keysight Infiniium Oscilloscopes
Programmer's Guide

24 Mask Test Commands

:MTESt:ALIGn / 471
:MTESt:AlignFIT / 472
:MTESt:AMASk:CREate / 474
:MTESt:AMASk:SOURce / 475
:MTESt:AMASk:SAVE / 477
:MTESt:AMASk:UNITs / 478
:MTESt:AMASk:XDELta / 479
:MTESt:AMASk:YDELta / 480
:MTESt:AUTO / 481
:MTESt:AVERage / 482
:MTESt:AVERage:COUNt / 483
:MTESt:COUNt:FAILures? / 484
:MTESt:COUNt:FUI? / 485
:MTESt:COUNt:FWAVeforms? / 486
:MTESt:COUNt:UI? / 487
:MTESt:COUNt:WAVeforms? / 488
:MTESt:DELete / 489
:MTESt:ENABle / 490
:MTESt:FOLDing / 491
:MTESt:FOLDing:BITS / 494
:MTESt:FOLDing:COUNt / 496
:MTESt:FOLDing:FAST / 497
:MTESt:FOLDing:POSition / 499
:MTESt:FOLDing:SCALe / 501
:MTESt:FOLDing:TPOSition / 503
:MTESt:FOLDing:TSCale / 505
:MTESt:HAMPlitude / 507
:MTESt:IMPedance / 508
:MTESt:INVert / 509
:MTESt:LAMPlitude / 510
:MTESt:LOAD / 511
:MTESt:NREGions? / 512

470 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:PROBe:IMPedance? / 513
:MTESt:RUMode / 514
:MTESt:RUMode:SOFailure / 515
:MTESt:SCALe:BIND / 516
:MTESt:SCALe:X1 / 517
:MTESt:SCALe:XDELta / 518
:MTESt:SCALe:Y1 / 519
:MTESt:SCALe:Y2 / 520
:MTESt:SOURce / 521
:MTESt:STARt / 522
:MTESt:STOP / 523
:MTESt:STIMe / 524
:MTESt:TITLe? / 525
:MTESt:TRIGger:SOURce / 526

The MTESt subsystem commands and queries control the mask test features.
Mask Testing automatically compares measurement results with the boundaries of
a set of polygons that you define. Any waveform or sample that falls within the
boundaries of one or more polygons is recorded as a failure.

The FOLDing command is only available when the E2688A Clock Recovery
Software is installed.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 471

:MTESt:ALIGn

Command :MTESt:ALIGn

The :MTESt:ALIGn command automatically aligns and scales the mask to the
current waveform on the display. The type of mask alignment performed depends
on the current setting of the Use File Setup When Aligning control. See the
:MTESt:AUTO command for more information.

Example This example aligns the current mask to the current waveform.

myScope.WriteString ":MTEST:ALIGN"

History Legacy command (existed before version 3.10).

472 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:AlignFIT

Command :MTESt:AlignFIT {EYEAMI | EYECMI | EYENRZ | FANWidth | FAPeriod
| FAPWidth | FYNWidth | FYPWidth | NONE | NWIDth
| PWIDth | TMAX | TMIN}

The :MTESt:AlignFIT command specifies the alignment type for aligning a mask to
a waveform. The pulse mask standard has rules that determine which controls the
oscilloscope can adjust or change during the alignment process. In the following
table of alignment types, an X in a column indicates that the control can be
adjusted.

Example This example specifies the alignment type to be EYEAMI.

myScope.WriteString ":MTEST:ALIGNFIT EYEAMI"

Query :MTESt:AlignFIT?

The :MTEST:AlignFIT? query returns the alignment type used for the mask.

Table 13 Available Alignment Types

Alignment
Type

Waveform
Type

Horizontal
Position

0 Level
Vol tage

1 Level
Vol tage

Vertical
Offset

Invert
Waveform

EYEAMI AMI X X X

EYECMI CMI X X X

EYENRZ NRZ X X X

FANWidth Negative X X X

FAPeriod Full Period X X

FAPWidth Positive X X X

FYNWidth Negative X X X

FYPWidth Positive X X X

NONE Automask

NWIDth Negative
Pulse

X X X X

PWIDth Positive
Pulse

X X X X

TMAX Positive
Sine Pulse

X X X X

TMIN Negative
Sine Pulse

X X X X

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 473

Returned Format [:MTESt:AlignFIT] {EYEAMI | EYECMI | EYENRZ | FANWidth | FAPeriod
| FAPWidth | FYNWidth | FYPWidth | NONE | NWIDth
| PWIDth | TMAX | TMIN}<NL>

History Legacy command (existed before version 3.10).

474 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:AMASk:CREate

Command :MTESt:AMASk:CREate

The :MTESt:AMASk:CREate command automatically constructs a mask around the
current selected channel, using the tolerance parameters defined by the
AMASk:XDELta, AMASk:YDELta, and AMASk:UNITs commands. The mask only
encompasses the portion of the waveform visible on the display, so you must
ensure that the waveform is acquired and displayed consistently to obtain
repeatable results.

The :MTESt:SOURce command selects the channel and should be set before using
this command.

Example This example creates an automask using the current XDELta and YDELta units
settings.

myScope.WriteString ":MTEST:AMASK:CREATE"

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 475

:MTESt:AMASk:SOURce

Command :MTESt:AMASk:SOURce {CHANnel<N> | COMMonmode<P> | DIFF<P>
| WMEMory<N> | FUNCtion<F> | CLOCk | EQUalized
| MTRend | MSPectrum}

The :MTESt:AMASk:SOURce command selects the source for the interpretation of
the AMASk:XDELta and AMASk:YDELta parameters when AMASk:UNITs is set to
CURRent. When UNITs are CURRent, the XDELta and YDELta parameters are
defined in terms of the channel units, as set by the :CHANnel:UNITs command, of
the selected source. Suppose that UNITs are CURRent and that you set SOURce to
CHANNEL1, which is using units of volts. Then you can define AMASk:XDELta in
terms of volts and AMASk:YDELta in terms of seconds.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example sets the automask source to Channel 1.

myScope.WriteString ":MTEST:AMASK:SOURCE CHANNEL1"

Query :MTESt:AMASk:SOURce?

The :MTESt:AMASk:SOURce? query returns the currently set source.

Returned Format [:MTESt:AMASk:SOURce] {CHANnel<N> | COMMonmode<P> | DIFFerential<P>
| WMEMory<N> | FUNCtion<F> | CLOCk | EQUalized
| MTRend | MSPectrum}<NL>

Example This example gets the source setting for automask and prints the result on the
computer display.

Dim strAmask_source As String
myScope.WriteString ":MTEST:AMASK:SOURCE?"
strAmask_source = myScope.ReadString
Debug.Print strAmask_source

476 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 477

:MTESt:AMASk:SAVE

Command :MTESt:AMASk:{SAVE | STORe} "<filename>"

The :MTESt:AMASk:SAVE command saves the automask generated mask to a file.
If an automask has not been generated, an error occurs.

<filename> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The filename assumes the present working
directory if a path does not precede the file name. The default save path is C:\
Documents and Settings\All Users\Documents\Infiniium\masks. The filename
must have a .msk or .MSK extension or the command will fail.

Example This example saves the automask generated mask to a file named "FILE1.MSK".

myScope.WriteString ":MTEST:AMASK:SAVE""FILE1.MSK"""

History Legacy command (existed before version 3.10).

NOTE The :MTESt:AMASk:STORe command is equivalent to the :MTESt:AMASk:SAVE command.

478 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:AMASk:UNITs

Command :MTESt:AMASk:UNITs {CURRent | DIVisions}

The :MTESt:AMASk:UNITs command alters the way the mask test subsystem
interprets the tolerance parameters for automasking as defined by AMASk:XDELta
and AMASk:YDELta commands.

CURRent When set to CURRent, the mask test subsystem uses the units as set by the
:CHANnel:UNITs command, usually time for ΔX and voltage for ΔY.

DIVisions When set to DIVisions, the mask test subsystem uses the graticule as the
measurement system, so tolerance settings are specified as parts of a screen
division. The mask test subsystem maintains separate XDELta and YDELta settings
for CURRent and DIVisions. Thus, XDELta and YDELta are not converted to new
values when the UNITs setting is changed.

Example This example sets the measurement units for automasking to the current
:CHANnel:UNITs setting.

myScope.WriteString ":MTEST:AMASK:UNITS CURRENT"

Query :MTESt:AMASk:UNITs?

The AMASk:UNITs query returns the current measurement units setting for the
mask test automask feature.

Returned Format [:MTESt:AMASk:UNITs] {CURRent | DIVision}<NL>

Example This example gets the automask units setting, then prints the setting on the screen
of the computer.

Dim strAutomask_units As String
myScope.WriteString ":MTEST:AMASK:UNITS?"
strAutomask_units = myScope.ReadString
Debug.Print strAutomask_units

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 479

:MTESt:AMASk:XDELta

Command :MTESt:AMASk:XDELta <xdelta_value>

The :MTESt:AMASk:XDELta command sets the tolerance in the X direction around
the waveform for the automasking feature. The absolute value of the tolerance will
be added and subtracted to horizontal values of the waveform to determine the
boundaries of the mask.

<xdelta_value> A value for the horizontal tolerance. This value is interpreted based on the setting
specified by the AMASk:UNITs command; thus, if you specify 250-E3, the setting
for AMASk:UNITs is CURRent, and the current setting specifies time in the
horizontal direction, the tolerance will be ±250 ms. If the setting for AMASk:UNITs
is DIVisions, the same xdelta_value will set the tolerance to ±250 millidivisions, or
1/4 of a division.

Example This example sets the units to divisions and sets the ΔX tolerance to one-eighth of
a division.

myScope.WriteString ":MTEST:AMASK:UNITS DIVISIONS"
myScope.WriteString ":MTEST:AMASK:XDELTA 125E-3"

Query :MTESt:AMASk:XDELta?

The AMASk:XDELta? query returns the current setting of the ΔX tolerance for
automasking. If your computer program will interpret this value, it should also
request the current measurement system using the AMASk:UNITs query.

Returned Format [:MTESt:AMASk:XDELta] <xdelta_value><NL>

Example This example gets the measurement system units and ΔX settings for automasking
from the oscilloscope and prints the results on the computer screen.

Dim strAutomask_units As String
Dim strAutomask_xdelta As String
myScope.WriteString ":MTEST:AMASK:UNITS?"
strAutomask_units = myScope.ReadString
myScope.WriteString ":MTEST:AMASK:XDELTA?"
strAutomask_xdelta = myScope.ReadString
Debug.Print strAutomask_units
Debug.Print strAutomask_xdelta

History Legacy command (existed before version 3.10).

480 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:AMASk:YDELta

Command :MTESt:AMASk:YDELta <ydelta_value>

The :MTESt:AMASk:YDELta command sets the vertical tolerance around the
waveform for the automasking feature. The absolute value of the tolerance will be
added and subtracted to vertical values of the waveform to determine the
boundaries of the mask.

This command requires that mask testing be enabled, otherwise a settings conflict
error message is displayed. See :MTESt:ENABle for information on enabling mask
testing.

<ydelta_value> A value for the vertical tolerance. This value is interpreted based on the setting
specified by the AMASk:UNITs command; thus, if you specify 250-E3, the setting
for AMASk:UNITs is CURRent, and the current setting specifies voltage in the
vertical direction, the tolerance will be ±250 mV. If the setting for AMASk:UNITs is
DIVisions, the same ydelta_value will set the tolerance to ±250 millidivisions, or
1/4 of a division.

Example This example sets the units to current and sets the ΔY tolerance to 30 mV,
assuming that the current setting specifies volts in the vertical direction.

myScope.WriteString ":MTEST:AMASK:UNITS CURRENT"
myScope.WriteString ":MTEST:AMASK:YDELTA 30E-3"

Query :MTESt:AMASk:YDELta?

The AMASk:YDELta? query returns the current setting of the ΔY tolerance for
automasking. If your computer program will interpret this value, it should also
request the current measurement system using the AMASk:UNITs query.

Returned Format [:MTESt:AMASk:YDELta] <ydelta_value><NL>

Example This example gets the measurement system units and ΔY settings for automasking
from the oscilloscope and prints the results on the computer screen.

Dim strAutomask_units As String
Dim strAutomask_ydelta As String
myScope.WriteString ":MTEST:AMASK:UNITS?"
strAutomask_units = myScope.ReadString
myScope.WriteString ":MTEST:AMASK:YDELTA?"
strAutomask_ydelta = myScope.ReadString
Debug.Print strAutomask_units
Debug.Print strAutomask_ydelta

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 481

:MTESt:AUTO

Command :MTESt:AUTO {{ON | 1} | {OFF | 0}}

The :MTESt:AUTO command enables (ON) or disables (OFF) the Use File Setup
When Aligning control. This determines which type of mask alignment is
performed when the :MTESt:ALIGn command is sent. When enabled, the
oscilloscope controls are changed to the values which are determined by the
loaded mask file. This alignment guarantees that the aligned mask and any
subsequent mask tests meet the requirements of the standard.

When disabled, the alignment is performed using the current oscilloscope
settings. This may be useful when troubleshooting problems during the design
phase of a project.

Example This example enables the Use File Settings When Aligning control.

myScope.WriteString ":MTEST:AUTO ON"

Query :MTESt:AUTO?

The :MTESt:AUTO? query returns the current value of the Use File Setup When
Aligning control.

Returned Format [:MTESt:AUTO] {1 | 0} <NL>

Example myScope.WriteString ":MTEST:AUTO?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

482 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:AVERage

Command :MTESt:AVERage {{ON | 1} | {OFF | 0}}

The :MTESt:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages
them. When OFF, averaging is disabled. To set the number of averages, use the
:MTESt:AVERage:COUNt command described next.

The :ACQuire:AVERage command performs the same function as this command.

Averaging is not available in PDETect mode.

Example This example turns averaging on.

myScope.WriteString ":MTEST:AVERAGE ON"

Query :MTESt:AVERage?

The :MTESt:AVERage? query returns the current setting for averaging.

Returned Format [:MTESt:AVERage] {1 | 0} <NL>

Example This example places the current settings for averaging into the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":MTEST:AVERAGE?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 483

:MTESt:AVERage:COUNt

Command :MTESt:AVERage:COUNt <count_value>

The :MTESt:AVERage:COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :MTESt:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before
the acquisition is considered complete for that time bucket.

The :ACQuire:AVERage:COUNt command performs the same function as this
command.

<count_value> An integer, 2 to 65534, specifying the number of data values to be averaged.

Example This example specifies that 16 data values must be averaged for each time bucket
to be considered complete. The number of time buckets that must be complete for
the acquisition to be considered complete is specified by the :MTESt:COMPlete
command.

myScope.WriteString ":MTESt:AVERage:COUNT 16"

Query :MTESt:AVERage:COUNt?

The :MTESt:AVERage:COUNt? query returns the currently selected count value.

Returned Format [:MTESt:AVERage:COUNt] <value><NL>

<value> An integer, 2 to 65534, specifying the number of data values to be averaged.

Example This example checks the currently selected count value and places that value in
the string variable, varResult. The program then prints the contents of the variable
to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":MTEST:AVERAGE:COUNT?"
varResult = myScope.ReadNumber
Debug.Print FormatNumber(varResult, 0)

History Legacy command (existed before version 3.10).

484 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:COUNt:FAILures?

Query :MTESt:COUNt:FAILures? REGion<number>

The MTESt:COUNt:FAILures? query returns the number of failures that occurred
within a particular mask region.

The value 9.999E37 is returned if mask testing is not enabled or if you specify a
region number that is unused.

<number> An integer, 1 through 8, designating the region for which you want to determine
the failure count.

Returned Format [:MTESt:COUNt:FAILures] REGion<number><number_of_failures> <NL>

<number_of_
failures>

The number of failures that have occurred for the designated region.

Example This example determines the current failure count for region 3 and prints it on the
computer screen.

Dim strMask_failures As String
myScope.WriteString ":MTEST:COUNT:FAILURES? REGION3"
strMask_failures = myScope.ReadString
Debug.Print strMask_failures

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 485

:MTESt:COUNt:FUI?

Query :MTESt:COUNt:FUI?

The MTESt:COUNt:FUI? query returns the number of unit interval failures that have
occurred.

Returned Format [:MTESt:COUNt:FUI?] <unit_interval_failures> <NL>

<unit_interval_failu
res>

The number of unit interval failures.

Example This example determines the current number of unit interval failures and prints it
to the computer screen.

Dim strFailures As String
myScope.WriteString ":MTEST:COUNT:FUI?"
strFailures = myScope.ReadString
Debug.Print strFailures

History Legacy command (existed before version 3.10).

486 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:COUNt:FWAVeforms?

Query :MTESt:COUNt:FWAVeforms?

The :MTESt:COUNt:FWAVeforms? query returns the total number of failed
waveforms in the current mask test run. This count is for all regions and all
waveforms, so if you wish to determine failures by region number, use the
COUNt:FAILures? query.

This count may not always be available. It is available only when the following
conditions are true:

• Mask testing was turned on before the histogram or color grade persistence,
and

• No mask changes have occurred, including scaling changes, editing, or new
masks.

The value 9.999E37 is returned if mask testing is not enabled, or if you have
modified the mask.

Returned Format [:MTESt:COUNt:FWAVeforms] <number_of_failed_waveforms><NL>

<number_
of_failed_

waveforms>

The total number of failed waveforms for the current test run.

Example This example determines the number of failed waveforms and prints the result on
the computer screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MTEST:COUNT:FWAVEFORMS?"
strMask_fwaveforms = myScope.ReadString
Debug.Print strMask_fwaveforms

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 487

:MTESt:COUNt:UI?

Query :MTESt:COUNt:UI?

The MTESt:COUNt:UI? query returns the number of unit intervals that have been
mask tested.

Returned Format [:MTESt:COUNt:UI?] <unit_intervals_tested> <NL>

<unit_intervals_tes
ted>

The number of unit intervals tested.

Example This example determines the current number of unit intervals tested and prints it
to the computer screen.

Dim strUnit_intervals As String
myScope.WriteString ":MTEST:COUNT:uUI?"
strUnit_intervals = myScope.ReadString
Debug.Print strUnit_intervals

History Legacy command (existed before version 3.10).

488 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:COUNt:WAVeforms?

Query :MTESt:COUNt:WAVeforms?

The :MTESt:COUNt:WAVeforms? query returns the total number of waveforms
acquired in the current mask test run. The value 9.999E37 is returned if mask
testing is not enabled.

Returned Format [:MTESt:COUNt:WAVeforms] <number_of_waveforms><NL>

<number_of_
waveforms>

The total number of waveforms for the current test run.

Example This example determines the number of waveforms acquired in the current test run
and prints the result on the computer screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MTEST:COUNT:WAVEFORMS?"
varMask_waveforms = myScope.ReadNumber
Debug.Print FormatNumber(varMask_waveforms, 0)

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 489

:MTESt:DELete

Command :MTESt:DELete

The :MTESt:DELete command clears the currently loaded mask.

Example This example clears the currently loaded mask.

myScope.WriteString ":MTEST:DELETE"

History Legacy command (existed before version 3.10).

490 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:ENABle

Command :MTESt:ENABle {{ON | 1} | {OFF | 0}}

The :MTESt:ENABle command enables or disables the mask test features.

ON Enables the mask test features.

OFF Disables the mask test features.

Example This example enables the mask test features.

myScope.WriteString ":MTEST:ENABLE ON"

Query :MTESt:ENABle?

The :MTESt:ENABle? query returns the current state of mask test features.

Returned Format [MTESt:ENABle] {1 | 0}<NL>

Example This example places the current value of the mask test state in the numeric
variable varValue, then prints the contents to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":MTEST:ENABLE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 491

:MTESt:FOLDing

492 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

(Clock Recovery software only)

Command

:MTESt:FOLDing {{ON | 1} | {OFF | 0}} [,<source>]

The :MTESt:FOLDing command enables (ON) or disables (OFF) the display of the
real-time eye.

Color grade must be enabled before enabling the real-time eye.

Refer to the :MEASure:CLOCk commands for clock recovery.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

If <source> is omitted, the real-time eye is enabled for all sources which currently
have a color grade view on.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example enables the display of the real-time eye.

myScope.WriteString ":MTESt:FOLDing ON"

Query :MTESt:FOLDing? [<source>]

The :MTESt:FOLDing? query returns the current state of clock recovery folding.

If <source> is omitted, the query returns ON (1) if any source has real-time eye
enabled.

Returned Format [:MTESt:FOLDing] {1 | 0} <NL>

Example myScope.WriteString ":MTESt:FOLDing?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also • ":MTESt:FOLDing:BITS" on page 494

• ":MTESt:FOLDing:FAST" on page 497

NOTE This command is only available when the E2688A Clock Recovery Software is installed.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 493

• ":MTESt:FOLDing:COUNt" on page 496

• ":MTESt:FOLDing:POSition" on page 499

• ":MTESt:FOLDing:TPOSition" on page 503

• ":MTESt:FOLDing:SCALe" on page 501

• ":MTESt:FOLDing:TSCale" on page 505

• ":MEASure:CLOCk" on page 558

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:EDGE" on page 564

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:OJTF" on page 568

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which to enable/disable the real-time eye.

494 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:FOLDing:BITS

Command

:MTESt:FOLDing:BITS <source>,{BOTH | DEEMphasis | TRANsition
| PATTern, "<pattern>", <cursor>}

The :MTESt:FOLDing:BITS command determines the type of data bits used to
create the eye pattern. The transition bits are greater in amplitude than the
deemphasis bits. The PCI Express standard requires that compliance mask testing
be done for both bit types.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

<pattern> An eight character string 8 of "1", "0", or "X". For example, "101XX010".

<cursor> A value from 0 to 7 representing which bit is bit 0 from the LSB.

Example This example sets bit type to transition bits on the CHANnel1 real-time eye.

myScope.WriteString ":MTESt:FOLDing:BITS CHANnel1,TRANsition"

Query :MTESt:FOLDing:BITS? <source>

The :MTESt:FOLDing:BITS? query returns the current setting of the real time eye
bits.

Returned Format [:MTESt:FOLDing:BITS] {BOTH | DEEMphasis | TRANsition
| PATT,<pattern>,<cursor>} <NL>

Example myScope.WriteString ":MTESt:FOLDing:BITS? CHANnel1"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":MTESt:FOLDing" on page 491

NOTE This command is only available when the E2688A Clock Recovery Software is installed.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 495

• ":MTESt:FOLDing:FAST" on page 497

• ":MTESt:FOLDing:COUNt" on page 496

• ":MTESt:FOLDing:POSition" on page 499

• ":MTESt:FOLDing:TPOSition" on page 503

• ":MTESt:FOLDing:SCALe" on page 501

• ":MTESt:FOLDing:TSCale" on page 505

History Legacy command (existed before version 3.10).

Version 4.00: Added a PATTern option for specifying bit pattern qualification for
the real-time eye display.

Version 5.00: Added the required <source> parameter to specify the waveform on
which to set the real-time eye bit qualification.

496 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:FOLDing:COUNt

Query :MTESt:FOLDing:COUNt? <source>

The :MTESt:FOLDing:COUNt? query returns the number of waveforms and unit
intervals in the real time eye.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Returned Format [:MTESt:FOLDing:COUNt] Real Time Eye<NL>
<N> UI<NL>
<N> Wfm<NL>

Example myScope.WriteString ":MTESt:FOLDing:COUNt? CHANnel1"
strRteCount = myScope.ReadString
Debug.Print strRteCount

See Also • ":MTESt:FOLDing" on page 491

• ":MTESt:FOLDing:BITS" on page 494

• ":MTESt:FOLDing:FAST" on page 497

• ":MTESt:FOLDing:POSition" on page 499

• ":MTESt:FOLDing:TPOSition" on page 503

• ":MTESt:FOLDing:SCALe" on page 501

• ":MTESt:FOLDing:TSCale" on page 505

History New in version 5.00.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 497

:MTESt:FOLDing:FAST

Command :MTESt:FOLDing:FAST {{ON | 1} | {OFF | 0}}[,<source>]

The :MTESt:FOLDing:FAST command turns the "Fast, Worst Case Only" real-time
eye display option ON or OFF.

When ON, the oscilloscope performs a fast real-time eye display by showing only
the worst case bits and other bits that surround them.

This option can be used to speed up the real-time eye display when the
oscilloscope is using deep memory.

Worst case bits are evaluated using these 8 points inside the eye:

• Left and right of the eye at the threshold level.

• Left and right of the eye at the threshold + hysteresis level.

• Left and right of the eye at the threshold - hysteresis level.

• Top and bottom of the eye at the center.

For each bit that represents the worst case at one of the evaluated points, the
1,000 bits that surround that bit are also displayed. So, up to 8,000 bits per
acquisition can contribute to the real-time eye display. Keep in mind that one bit
can represent the worst case at multiple points or that the 1,000 bits surrounding
the worst case bits can overlap, so there can be fewer than 8,000 bits displayed
per acquisition.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

If <source> is omitted, fast worst-case real-time eye is enabled for all sources
which currently have a color grade view on.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example turns on the "Fast, Worst Case Only" real-time eye display option.

myScope.WriteString ":MTESt:FOLDing:FAST ON"

498 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

Query :MTESt:FOLDing:FAST? [<source>]

The :MTESt:FOLDing:FAST? query returns the current setting.

If <source> is omitted, the query returns ON (1) if any source has fast real time eye
enabled.

Returned Format [:MTESt:FOLDing:FAST] {1 | 0} <NL>

Example myScope.WriteString ":MTESt:FOLDing:FAST?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":MTESt:FOLDing" on page 491

• ":MTESt:FOLDing:BITS" on page 494

• ":MTESt:FOLDing:COUNt" on page 496

• ":MTESt:FOLDing:POSition" on page 499

• ":MTESt:FOLDing:TPOSition" on page 503

• ":MTESt:FOLDing:SCALe" on page 501

• ":MTESt:FOLDing:TSCale" on page 505

History New in version 4.50.

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which to set the fast worst-case option.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 499

:MTESt:FOLDing:POSition

Command :MTESt:FOLDing:POSition <UI_position> [,<source>]

The :MTESt:FOLDing:POSition command sets the real-time eye horizontal center
position in unit intervals.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

If <source> is omitted, this command sets the position for all sources.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example sets the real-time eye horizontal center position to -0.300 UI.

myScope.WriteString ":MTESt:FOLDing:POSition -0.300"

Query :MTESt:FOLDing:POSition? [<source>]

The :MTESt:FOLDing:POSition? query returns the real-time eye horizontal center
position.

If <source> is omitted, the query returns the position for the first real-time eye.

Returned Format [:MTESt:FOLDing:POSition] <UI_position> <NL>

Example myScope.WriteString ":MTESt:FOLDing:POSition?"
strUiPosition = myScope.ReadString
Debug.Print strUiPosition

See Also • ":MTESt:FOLDing:TPOSition" on page 503

• ":MTESt:FOLDing" on page 491

• ":MTESt:FOLDing:BITS" on page 494

• ":MTESt:FOLDing:FAST" on page 497

• ":MTESt:FOLDing:COUNt" on page 496

• ":MTESt:FOLDing:SCALe" on page 501

• ":MTESt:FOLDing:TSCale" on page 505

500 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

History New in version 5.00.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 501

:MTESt:FOLDing:SCALe

Command :MTESt:FOLDing:SCALe <UI_scale> [,<source>]

The :MTESt:FOLDing:SCALe command sets the real-time eye horizontal scale, that
is, the number of unit intervals (UIs) shown on screen.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

If <source> is omitted, this command sets the number of unit intervals for all
sources.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example sets the real-time eye horizontal scale to 2.0 UI.

myScope.WriteString ":MTESt:FOLDing:SCALe 2.0"

Query :MTESt:FOLDing:SCALe? [<source>]

The :MTESt:FOLDing:SCALe? query returns the current real-time eye horizontal
scale.

If <source> is omitted, the query returns the number of unit intervals for the first
real-time eye.

Returned Format [:MTESt:FOLDing:SCALe] <UI_scale><NL>

Example myScope.WriteString ":MTESt:FOLDing:SCALe?"
strUiScale = myScope.ReadString
Debug.Print strUiScale

See Also • ":MTESt:FOLDing:TSCale" on page 505

• ":MTESt:FOLDing" on page 491

• ":MTESt:FOLDing:BITS" on page 494

• ":MTESt:FOLDing:FAST" on page 497

• ":MTESt:FOLDing:COUNt" on page 496

• ":MTESt:FOLDing:POSition" on page 499

502 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

• ":MTESt:FOLDing:TPOSition" on page 503

History New in version 5.00.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 503

:MTESt:FOLDing:TPOSition

Command :MTESt:FOLDing:TPOSition <position> [,<source>]

The :MTESt:FOLDing:TPOSition command sets the real-time eye horizontal center
position in time.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

If <source> is omitted, this command sets the position for all sources.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example sets the real-time eye horizontal center position to -0.300 ns.

myScope.WriteString ":MTESt:FOLDing:TPOSition -0.300E-09"

Query :MTESt:FOLDing:TPOSition? [<source>]

The :MTESt:FOLDing:TPOSition? query returns the real-time eye horizontal center
position.

If <source> is omitted, the query returns the position for the first real-time eye.

Returned Format [:MTESt:FOLDing:TPOSition] <position> <NL>

Example myScope.WriteString ":MTESt:FOLDing:TPOSition?"
strTimePosition = myScope.ReadString
Debug.Print strTimePosition

See Also • ":MTESt:FOLDing:POSition" on page 499

• ":MTESt:FOLDing" on page 491

• ":MTESt:FOLDing:BITS" on page 494

• ":MTESt:FOLDing:FAST" on page 497

• ":MTESt:FOLDing:COUNt" on page 496

• ":MTESt:FOLDing:TSCale" on page 505

• ":MTESt:FOLDing:SCALe" on page 501

504 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

History New in version 5.10.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 505

:MTESt:FOLDing:TSCale

Command :MTESt:FOLDing:TSCale <scale> [,<source>]

The :MTESt:FOLDing:TSCale command sets the real-time eye horizontal scale per
division in time.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F>}

If <source> is omitted, this command sets the number of unit intervals for all
sources.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example sets the real-time eye horizontal scale to 2.0 microseconds.

myScope.WriteString ":MTESt:FOLDing:TSCale 2.0E-06"

Query :MTESt:FOLDing:TSCale? [<source>]

The :MTESt:FOLDing:TSCale? query returns the current real-time eye horizontal
scale.

If <source> is omitted, the query returns the number of unit intervals for the first
real-time eye.

Returned Format [:MTESt:FOLDing:TSCale] <scale><NL>

Example myScope.WriteString ":MTESt:FOLDing:TSCale?"
strTimeScale = myScope.ReadString
Debug.Print strTimeScale

See Also • ":MTESt:FOLDing:SCALe" on page 501

• ":MTESt:FOLDing" on page 491

• ":MTESt:FOLDing:BITS" on page 494

• ":MTESt:FOLDing:FAST" on page 497

• ":MTESt:FOLDing:COUNt" on page 496

• ":MTESt:FOLDing:TPOSition" on page 503

506 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

• ":MTESt:FOLDing:POSition" on page 499

History New in version 5.10.

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 507

:MTESt:HAMPlitude

Command :MTESt:HAMPlitude <upper_limit>

The :MTESt:HAMPlitude command sets the maximum pulse amplitude value that
passes the pulse standard. For some of the pulse communications standards, a
pulse has a range of amplitude values and still passes the standard. This command
sets the upper limit used during mask testing.

<upper_limit> A real number that represents the maximum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example sets the maximum pulse amplitude to 3.6 volts.

myScope.WriteString ":MTEST:HAMPLITUDE 3.6"

Query :MTESt:HAMPlitude?

The :MTESt:HAMPlitude? query returns the current value of the maximum pulse
amplitude.

Returned Format [MTESt:HAMPlitude] <upper_limit><NL>

<upper_limit> A real number that represents the maximum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example returns the current upper pulse limit and prints it to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MTEST:HAMPLITUDE?"
varULimit = myScope.ReadNumber
Debug.Print FormatNumber(varULimit, 0)

History Legacy command (existed before version 3.10).

508 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:IMPedance

Command :MTESt:IMPedance {NONE | IMP75 | IMP100 | IMP110 | IMP120}

The :MTESt:IMPedance command sets the desired probe impedance of the
channel being used for mask testing. This impedance value is used when starting a
mask test to determine whether or not the correct Infiniium probe is connected
and in the case of the E2621A if the switch is set to the correct impedance value.

Infiniium has an AutoProbe interface that detects probes that have Probe ID
resistors. If one of these probes is connected to the channel being mask tested and
is not the correct probe for the selected impedance, a warning dialog box appears
when the mask test is started from the human interface.

This command is meant to be used in the setup section of a mask file.

NONE Disables the probe impedance check.

IMP75 Enables the probe impedance check for the E2622A probe.

IMP100 Enables the probe impedance check for the E2621A probe with the switch set to
the 100 ohm position.

IMP110 Enables the probe impedance check for the E2621A probe with the switch set to
the 110 ohm position.

IMP120 Enables the probe impedance check for the E2621A probe with the switch set to
the 120 ohm position.

Example This example sets the probe impedance of the channel being used for mask testing
to 100 ohms.

myScope.WriteString ":MTEST:IMPEDANCE IMP100"

Query :MTESt:IMPedance?

The :MTESt:IMPedance? query returns the current value of the mask test
impedance.

Returned Format [:MTESt:IMPedance] {NONE | IMP75 | IMP100 | IMP110 | IMP120}<NL>

Example This example returns the current value of the mask test impedance and prints the
result to the computer screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MTEST:IMPEDANCE?"
strImpedance = myScope.ReadString
Debug.Print strImpedance

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 509

:MTESt:INVert

Command :MTESt:INVert {{ON | 1} | {OFF | 0}}

The :MTESt:INVert command inverts the mask for testing negative-going pulses.
The trigger level and mask offset are also adjusted. Not all masks support
negative-going pulse testing, and for these masks, the command is ignored.

Example This example inverts the mask for testing negative-going pulses.

myScope.WriteString ":MTEST:INVERT ON"

Query :MTESt:INVert?

The :MTESt:INVert? query returns the current inversion setting.

Returned Format [:MTESt:INVert] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

510 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:LAMPlitude

Command :MTESt:LAMPlitude <lower_limit>

The :MTESt:LAMPlitude command sets the minimum pulse amplitude value that
passes the pulse standard. For some of the pulse communications standards, a
pulse has a range of amplitude values and still passes the standard. This command
sets the lower limit used during mask testing.

<lower_limit> A real number that represents the minimum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example sets the minimum pulse amplitude to 2.4 volts.

myScope.WriteString ":MTEST:LAMPLITUDE 2.4"

Query :MTESt:LAMPlitude?

The :MTESt LAMPlitude? query returns the current value of the minimum pulse
amplitude.

Returned Format [:MTESt:LAMPlitude] <lower_limit><NL>

<lower_limit> A real number that represents the minimum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example returns the current lower pulse limit and prints it to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF ! Response headers off.
myScope.WriteString ":MTEST:LAMPLITUDE?""
varULimit = myScope.ReadNumber
Debug.Print FormatNumber(varULimit, 0)

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 511

:MTESt:LOAD

Command :MTESt:LOAD "<filename>"

The :MTESt:LOAD command loads the specified mask file. The default path for
mask files is C:\Documents and Settings\All Users\Documents\Infiniium\MASKS.
To use a different path, specify the complete path and file name.

<filename> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used).

Example This example loads the mask file named "140md_itu_1.msk".

myScope.WriteString _
":MTEST:LOAD ""c:\Documents and Settings\All Users\Documents\Infiniium\
masks\140md_itu_1.msk"""

History Legacy command (existed before version 3.10).

512 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:NREGions?

Query :MTESt:NREGions?

The :MTESt:NREGions? query returns the number of regions that define the mask.

Returned Format [:MTESt:NREGions] <regions><NL>

<regions> An integer from 0 to 8.

Example This example returns the number of mask regions.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":MTEST:NREGIONS?"
varRegions = myScope.ReadNumber
Debug.Print FormatNumber(varRegions, 0)

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 513

:MTESt:PROBe:IMPedance?

Query :MTESt:PROBe:IMPedance?

The :MTESt:PROBe:IMPedance? query returns the impedance setting for the
E2621A and E2622A probes for the current mask test channel.

Returned Format [:MTESt:PROBe:IMPedance] <impedance><NL>

<impedance> An unquoted string: 75, 100, 110, 120, or NONE

Example This example returns the impedance setting for the probe.

Dim strImpedance As String
myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":MTEST:PROBE:IMPEDANCE?"
strImpedance = myScope.ReadString
Debug.Print strImpedance

History Legacy command (existed before version 3.10).

514 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:RUMode

Command :MTESt:RUMode {FORever | TIME, <time> | {WAVeforms, <number_of_waveforms
>}}

The :MTESt:RUMode command determines the termination conditions for the
mask test. The choices are FORever, TIME, or WAVeforms.

If WAVeforms is selected, a second parameter is required indicating the number of
failures that can occur or the number of samples or waveforms that are to be
acquired.

FORever FORever runs the Mask Test until the test is turned off. This is used when you want
a measurement to run continually and not to stop after a fixed number of failures.
For example, you may want the Mask Test to run overnight and not be limited by a
number of failures.

TIME TIME sets the amount of time in minutes that a mask test will run before it
terminates.

<time> A real number: 0.1 to 1440.0

WAVeforms WAVeforms sets the maximum number of waveforms that are required before the
mask test terminates.

<number_of_
waveforms>

An integer: 1 to 1,000,000,000.

Example This example sets the mask test subsystem run until mode to continue testing until
500,000 waveforms have been gathered.

myScope.WriteString ":MTEST:RUMODE WAVEFORMS,500E3"

Query :MTESt:RUMode?

The query returns the currently selected termination condition and value.

Returned Format [:MTESt:RUMode] {FORever | TIME,<time> | {WAVeforms, <number_of_waveform
s>}}<NL>

Example This example gets the current setting of the mask test run until mode from the
oscilloscope and prints it on the computer screen.

Dim strMTEST_Runmode As String
myScope.WriteString ":MTEST:RUMODE?"
strMTEST_Runmode = myScope.ReadString
Debug.Print strMTEST_Runmode

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 515

:MTESt:RUMode:SOFailure

Command :MTESt:RUMode:SOFailure {{ON | 1} | {OFF | 0}}

The :MTESt:RUMode:SOFailure command enables or disables the Stop On Failure
run until criteria. When a mask test is run and a mask violation is detected, the
mask test is stopped and the acquisition system is stopped.

Example This example enables the Stop On Failure run until criteria.

myScope.WriteString ":MTEST:RUMODE:SOFAILURE ON"

Query :MTESt:SOFailure?

The :MTESt:SOFailure? query returns the current state of the Stop on Failure
control.

Returned Format [:MTESt:SOFailure] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

516 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:SCALe:BIND

Command :MTESt:SCALe:BIND {{ON | 1} | {OFF | 0}}

The :MTESt:SCALe:BIND command enables or disables Bind 1 & 0 Levels (Bind -1
& 0 Levels for inverted masks) control. If the Bind 1 & 0 Levels control is enabled,
the 1 Level and the 0 Level controls track each other. Adjusting either the 1 Level
or the 0 Level control shifts the position of the mask up or down without changing
its size. If the Bind 1 & 0 Levels control is disabled, adjusting either the 1 Level or
the 0 Level control changes the vertical height of the mask.

If the Bind -1 & 0 Levels control is enabled, the -1 Level and the 0 Level controls
track each other. Adjusting either the -1 Level or the 0 Level control shifts the
position of the mask up or down without changing its size. If the Bind -1 & 0 Levels
control is disabled, adjusting either the -1 Level or the 0 Level control changes the
vertical height of the mask.

Example This example enables the Bind 1 & 0 Levels control.

myScope.WriteString ":MTEST:SCALE:BIND ON"

Query :MTESt:SCALe:BIND?

The :MTESt:SCALe:BIND? query returns the value of the Bind 1&0 control (Bind
-1&0 for inverted masks).

Returned Format [:MTESt:SCALe:BIND?] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 517

:MTESt:SCALe:X1

Command :MTESt:SCALe:X1 <x1_value>

The :MTESt:SCALe:X1 command defines where X=0 in the base coordinate system
used for mask testing. The other X-coordinate is defined by the SCALe:XDELta
command. Once the X1 and XDELta coordinates are set, all X values of vertices in
the mask regions are defined with respect to this value, according to the equation:

Thus, if you set X1 to 100 ms, and XDELta to 100 ms, an X value of 0.100 is a
vertex at 110 ms.

The oscilloscope uses this equation to normalize vertices. This simplifies
reprogramming to handle different data rates. For example, if you halve the period
of the waveform of interest, you need only to adjust the XDELta value to set up the
mask for the new waveform.

<x1_value> A time value specifying the location of the X1 coordinate, which will then be
treated as X=0 for mask regions coordinates.

Example This example sets the X1 coordinate at 150 ms.

myScope.WriteString ":MTEST:SCALE:X1 150E-3"

Query :MTESt:SCALe:X1?

The :MTESt:SCALe:X1? query returns the current X1 coordinate setting.

Returned Format [:MTESt:SCALe:X1] <x1_value><NL>

Example This example gets the current setting of the X1 coordinate from the oscilloscope
and prints it on the computer screen.

Dim strScale_x1 As String
myScope.WriteString ":MTEST:SCALE:X1?"
strScale_x1 = myScope.ReadString
Debug.Print strScale_x1

History Legacy command (existed before version 3.10).

X = (X × ΔX) + X1

518 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:SCALe:XDELta

Command :MTESt:SCALe:XDELta <xdelta_value>

The :MTESt:SCALe:XDELta command defines the position of the X2 marker with
respect to the X1 marker. In the mask test coordinate system, the X1 marker
defines where X=0; thus, the X2 marker defines where X=1.

Because all X vertices of the regions defined for mask testing are normalized with
respect to X1 and ΔX, redefining ΔX also moves those vertices to stay in the same
locations with respect to X1 and ΔX. Thus, in many applications, it is best if you
define XDELta as a pulse width or bit period. Then a change in data rate without
corresponding changes in the waveform can easily be handled by changing ΔX.

The X-coordinate of polygon vertices is normalized using this equation:

<xdelta_value> A time value specifying the distance of the X2 marker with respect to the X1
marker.

Example Assume that the period of the waveform you wish to test is 1 ms. Then the
following example will set ΔX to 1 ms, ensuring that the waveform's period is
between the X1 and X2 markers.

myScope.WriteString ":MTEST:SCALE:XDELTA 1E-6:

Query :MTESt:SCALe:XDELta?

The :MTESt:SCALe:XDELta? query returns the current value of ΔX.

Returned Format [:MTESt:SCALe:XDELta] <xdelta_value><NL>

Example This example gets the value of ΔX from the oscilloscope and prints it on the
computer screen.

Dim strScale_xdelta As String
myScope.WriteString ":MTEST:SCALE:XDELTA?""
strScale_xdelta = myScope.ReadString
Debug.Print strScale_xdelta

History Legacy command (existed before version 3.10).

X = (X × ΔX) + X1

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 519

:MTESt:SCALe:Y1

Command :MTESt:SCALe:Y1 <y_value>

The :MTESt:SCALe:Y1 command defines where Y=0 in the coordinate system for
mask testing. All Y values of vertices in the coordinate system are defined with
respect to the boundaries set by SCALe:Y1 and SCALe:Y2 according to the
equation:

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at 190
mV.

<y1_value> A voltage value specifying the point at which Y=0.

Example This example sets the Y1 marker to -150 mV.

myScope.WriteString ":MTEST:SCALE:Y1 -150E-3"

Query :MTESt:SCALe:Y1?

The SCALe:Y1? query returns the current setting of the Y1 marker.

Returned Format [:MTESt:SCALe:Y1] <y1_value><NL>

Example This example gets the setting of the Y1 marker from the oscilloscope and prints it
on the computer screen.

Dim strScale_y1 As String
myScope.WriteString ":MTEST:SCALE:Y1?"
strScale_y1 = myScope.ReadString
Debug.Print strScale_y1

History Legacy command (existed before version 3.10).

Y = (Y × (Y2 - Y1)) + Y1

520 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:SCALe:Y2

Command :MTESt:SCALe:Y2 <y2_value>

The :MTESt:SCALe:Y2 command defines the Y2 marker in the coordinate system
for mask testing. All Y values of vertices in the coordinate system are defined with
respect to the boundaries defined by SCALe:Y1 and SCALe:Y2 according to the
following equation:

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at 190
mV.

<y2_value> A voltage value specifying the location of the Y2 marker.

Example This example sets the Y2 marker to 2.5 V.

myScope.WriteString ":MTEST:SCALE:Y2 2.5"

Query :MTESt:SCALe:Y2?

The SCALe:Y2? query returns the current setting of the Y2 marker.

Returned Format [:MTESt:SCALe:Y2] <y2_value><NL>

Example This example gets the setting of the Y2 marker from the oscilloscope and prints it
on the computer screen.

Dim strScale_y2 As String
myScope.WriteString ":MTEST:SCALE:Y2?"
strScale_y2 = myScope.ReadString
Debug.Print strScale_y2

History Legacy command (existed before version 3.10).

Y = (Y × (Y2 - Y1)) + Y1

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 521

:MTESt:SOURce

Command :MTESt:SOURce {CHANnel<N> | FUNCtion<F> | EQUalized}

The :MTESt:SOURce command selects the channel which is configured by the
commands contained in a mask file when it is loaded.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> An integer, 1-4.

<F> An integer, 1-16.

Example This example selects channel 1 as the mask test source.

myScope.WriteString ":MTEST:SOURCE CHANNEL1"

Query :MTESt:SOURce?

The :MTESt:SOURce? query returns the channel which is configured by the
commands contained in the current mask file.

Returned Format [:MTESt:SOURce] {CHANnel<N> | FUNCtion<F> | EQUalized}<NL>

Example This example gets the mask test source setting and prints the result on the
computer display.

Dim strAmask_source As String
myScope.WriteString ":MTEST:SOURCE?"
strAmask_source = myScope.ReadString
Debug.Print strAmask_source

History Legacy command (existed before version 3.10).

522 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:STARt

Command :MTESt:STARt

The :MTESt:STARt command starts the mask test. The :MTESt:STARt command
also starts the oscilloscope acquisition system.

Example This example starts the mask test and acquisition system.

myScope.WriteString ":MTEST:START"

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 523

:MTESt:STOP

Command :MTESt:STOP

The :MTESt:STOP command stops the mask test. The :MTESt:STOP command
does not stop the acquisition system.

Example This example stops the mask test.

myScope.WriteString ":MTEST:STOP"

History Legacy command (existed before version 3.10).

524 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:STIMe

Command :MTESt:STIMe <timeout>

The :MTESt:STIMe command sets the timeout value for the Autoalign feature. If
the oscilloscope is unable to align the mask to your waveform within the specified
timeout value, it will stop trying to align and will report an alignment failure.

<timeout> An integer from 1 to 120 seconds representing the time between triggers (not the
time that it takes to finish the alignment.)

Example This example sets the timeout value for the Autoalign feature to 10 seconds.

myScope.WriteString ":MTEST:STIMe 10"

Query :MTESt:STIMe?

The query returns timeout value for the Autoalign feature.

Returned Format [:MTESt:STIMe] <timeout><NL>

Example This example gets the timeout setting and prints the result on the computer
display.

myScope.WriteString ":MTEST:STIME?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Mask Test Commands 24

Keysight Infiniium Oscilloscopes Programmer's Guide 525

:MTESt:TITLe?

Query :MTESt:TITLe?

The :MTESt:TITLe? query returns the mask title which is a string of up to 23
characters. The title is displayed in the mask test dialog box and mask test tab
when a mask file is loaded.

Returned Format [:MTESt:TITLe] <mask_title><NL>

<mask_title> A string of up to 23 ASCII characters which is the mask title.

Example This example places the mask title in the string variable and prints the contents to
the computer's screen.

Dim strTitle As String
myScope.WriteString ":MTEST:TITLE?"
strTitle = myScope.ReadString
Debug.Print strTitle

History Legacy command (existed before version 3.10).

526 Keysight Infiniium Oscilloscopes Programmer's Guide

24 Mask Test Commands

:MTESt:TRIGger:SOURce

Command :MTESt:TRIGger:SOURce CHANnel<N>

The :MTESt:TRIGger:SOURce command sets the channel or function to use as the
trigger. Mask testing must be enabled before using this command.

<N> An integer, 1-4.

Example This example sets the mask trigger source to channel 1.

myScope.WriteString ":MTEST:TRIGGER:SOURCE CHANNEL1"

Query :MTESt:TRIGger:SOURce?

The query returns the currently selected mask test trigger source.

Returned Format [:MTESt:TRIGger] CHANnel<N><NL>

Example This example gets the trigger source setting and prints the result on the computer
display.

Dim strAmask_source As String
myScope.WriteString ":MTEST:TRIGGER:SOURCE?"
strAmask_source = myScope.ReadString
Debug.Print strAmask_source

History Legacy command (existed before version 3.10).

527

Keysight Infiniium Oscilloscopes
Programmer's Guide

25 Measure Commands

:MEASure:AREA / 536
:MEASure:BINTerval / 537
:MEASure:BPERiod / 538
:MEASure:BWIDth / 539
:MEASure:CDRRATE / 540
:MEASure:CGRade:CROSsing / 541
:MEASure:CGRade:DCDistortion / 543
:MEASure:CGRade:EHEight / 545
:MEASure:CGRade:EWIDth / 547
:MEASure:CGRade:EWINdow / 549
:MEASure:CGRade:JITTer / 551
:MEASure:CGRade:QFACtor / 553
:MEASure:CHARge / 555
:MEASure:CLEar / 557
:MEASure:CLOCk / 558
:MEASure:CLOCk:METHod / 559
:MEASure:CLOCk:METHod:ALIGn / 561
:MEASure:CLOCk:METHod:DEEMphasis / 563
:MEASure:CLOCk:METHod:EDGE / 564
:MEASure:CLOCk:METHod:JTF / 566
:MEASure:CLOCk:METHod:OJTF / 568
:MEASure:CLOCk:METHod:PLLTrack / 570
:MEASure:CLOCk:METHod:SOURce / 571
:MEASure:CLOCk:VERTical / 572
:MEASure:CLOCk:VERTical:OFFSet / 573
:MEASure:CLOCk:VERTical:RANGe / 574
:MEASure:CROSsing / 575
:MEASure:CTCDutycycle / 576
:MEASure:CTCJitter / 578
:MEASure:CTCNwidth / 580
:MEASure:CTCPwidth / 582
:MEASure:DATarate / 584

528 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:DEEMphasis / 586
:MEASure:DELTatime / 588
:MEASure:DELTatime:DEFine / 590
:MEASure:DUTYcycle / 592
:MEASure:EDGE / 594
:MEASure:ETOedge / 596
:MEASure:FALLtime / 597
:MEASure:FFT:DFRequency / 599
:MEASure:FFT:DMAGnitude / 601
:MEASure:FFT:FREQuency / 603
:MEASure:FFT:MAGNitude / 604
:MEASure:FFT:PEAK1 / 605
:MEASure:FFT:PEAK2 / 606
:MEASure:FFT:THReshold / 607
:MEASure:FREQuency / 608
:MEASure:HISTogram:HITS / 610
:MEASure:HISTogram:M1S / 611
:MEASure:HISTogram:M2S / 612
:MEASure:HISTogram:M3S / 613
:MEASure:HISTogram:MAX / 614
:MEASure:HISTogram:MEAN / 615
:MEASure:HISTogram:MEDian / 616
:MEASure:HISTogram:MIN / 617
:MEASure:HISTogram:MODE / 618
:MEASure:HISTogram:PEAK / 619
:MEASure:HISTogram:PP / 620
:MEASure:HISTogram:RESolution / 621
:MEASure:HISTogram:STDDev / 622
:MEASure:HOLDtime / 623
:MEASure:JITTer:HISTogram / 625
:MEASure:JITTer:MEASurement / 626
:MEASure:JITTer:SPECtrum / 627
:MEASure:JITTer:SPECtrum:HORizontal / 628
:MEASure:JITTer:SPECtrum:HORizontal:POSition / 629
:MEASure:JITTer:SPECtrum:HORizontal:RANGe / 630
:MEASure:JITTer:SPECtrum:VERTical / 631
:MEASure:JITTer:SPECtrum:VERTical:OFFSet / 632
:MEASure:JITTer:SPECtrum:VERTical:RANGe / 633
:MEASure:JITTer:SPECtrum:VERTical:TYPE / 634

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 529

:MEASure:JITTer:SPECtrum:WINDow / 635
:MEASure:JITTer:STATistics / 636
:MEASure:JITTer:TRENd / 637
:MEASure:JITTer:TRENd:SMOoth / 638
:MEASure:JITTer:TRENd:SMOoth:POINts / 639
:MEASure:JITTer:TRENd:VERTical / 640
:MEASure:JITTer:TRENd:VERTical:OFFSet / 641
:MEASure:JITTer:TRENd:VERTical:RANGe / 642
:MEASure:NAME / 643
:MEASure:NCJitter / 644
:MEASure:NOISe / 646
:MEASure:NOISe:ALL? / 647
:MEASure:NOISe:BANDwidth / 649
:MEASure:NOISe:LOCation / 650
:MEASure:NOISe:METHod / 651
:MEASure:NOISe:REPort / 652
:MEASure:NOISe:RN / 653
:MEASure:NOISe:SCOPe:RN / 654
:MEASure:NOISe:STATe / 655
:MEASure:NOISe:UNITs / 656
:MEASure:NPERiod / 657
:MEASure:NPULses / 658
:MEASure:NUI / 659
:MEASure:NWIDth / 660
:MEASure:OVERshoot / 662
:MEASure:PAMPlitude / 664
:MEASure:PBASe / 665
:MEASure:PERiod / 666
:MEASure:PHASe / 668
:MEASure:PPULses / 670
:MEASure:PREShoot / 671
:MEASure:PTOP / 673
:MEASure:PWIDth / 674
:MEASure:QUALifier<M>:CONDition / 676
:MEASure:QUALifier<M>:SOURce / 677
:MEASure:QUALifier<M>:STATe / 678
:MEASure:RESults? / 679
:MEASure:RISetime / 682
:MEASure:RJDJ:ALL? / 684

530 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:APLength? / 686
:MEASure:RJDJ:BANDwidth / 687
:MEASure:RJDJ:BER / 688
:MEASure:RJDJ:CLOCk / 690
:MEASure:RJDJ:EDGE / 691
:MEASure:RJDJ:INTerpolate / 692
:MEASure:RJDJ:METHod / 693
:MEASure:RJDJ:MODe / 694
:MEASure:RJDJ:PLENgth / 695
:MEASure:RJDJ:REPort / 696
:MEASure:RJDJ:RJ / 697
:MEASure:RJDJ:SCOPe:RJ / 698
:MEASure:RJDJ:SOURce / 699
:MEASure:RJDJ:STATe / 700
:MEASure:RJDJ:TJRJDJ? / 701
:MEASure:RJDJ:UNITs / 702
:MEASure:SCRatch / 703
:MEASure:SENDvalid / 704
:MEASure:SETuptime / 705
:MEASure:SLEWrate / 707
:MEASure:SOURce / 708
:MEASure:STATistics / 709
:MEASure:TEDGe / 710
:MEASure:THResholds:ABSolute / 712
:MEASure:THResholds:GENeral:ABSolute / 714
:MEASure:THResholds:GENeral:HYSTeresis / 716
:MEASure:THResholds:GENeral:METHod / 718
:MEASure:THResholds:GENeral:PERCent / 720
:MEASure:THResholds:GENeral:TOPBase:ABSolute / 722
:MEASure:THResholds:GENeral:TOPBase:METHod / 724
:MEASure:THResholds:HYSTeresis / 726
:MEASure:THResholds:METHod / 728
:MEASure:THResholds:PERCent / 730
:MEASure:THResholds:RFALl:ABSolute / 732
:MEASure:THResholds:RFALl:HYSTeresis / 734
:MEASure:THResholds:RFALl:METHod / 736
:MEASure:THResholds:RFALl:PERCent / 738
:MEASure:THResholds:RFALl:TOPBase:ABSolute / 740
:MEASure:THResholds:RFALl:TOPBase:METHod / 742

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 531

:MEASure:THResholds:SERial:ABSolute / 744
:MEASure:THResholds:SERial:HYSTeresis / 746
:MEASure:THResholds:SERial:METHod / 748
:MEASure:THResholds:SERial:PERCent / 750
:MEASure:THResholds:SERial:TOPBase:ABSolute / 752
:MEASure:THResholds:SERial:TOPBase:METHod / 754
:MEASure:THResholds:TOPBase:ABSolute / 756
:MEASure:THResholds:TOPBase:METHod / 758
:MEASure:TIEClock2 / 759
:MEASure:TIEData / 761
:MEASure:TIEFilter:SHAPe / 763
:MEASure:TIEFilter:STARt / 764
:MEASure:TIEFilter:STATe / 765
:MEASure:TIEFilter:STOP / 766
:MEASure:TIEFilter:TYPE / 767
:MEASure:TMAX / 768
:MEASure:TMIN / 769
:MEASure:TVOLt / 770
:MEASure:UITouijitter / 772
:MEASure:UNITinterval / 773
:MEASure:VAMPlitude / 775
:MEASure:VAVerage / 777
:MEASure:VBASe / 779
:MEASure:VLOWer / 780
:MEASure:VMAX / 781
:MEASure:VMIDdle / 783
:MEASure:VMIN / 784
:MEASure:VOVershoot / 785
:MEASure:VPP / 786
:MEASure:VPReshoot / 787
:MEASure:VRMS / 788
:MEASure:VTIMe / 790
:MEASure:VTOP / 792
:MEASure:VUPPer / 793
:MEASure:WINDow / 795
:MEASurement<N>:NAME / 796
:MEASurement<N>:SOURce / 797

532 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

The commands in the MEASure subsystem are used to make parametric
measurements on displayed waveforms.

E2688A High
Speed Serial

Software
commands

The following MEASure commands are available when the E2688A High Speed
Serial Software is installed.

• ":MEASure:CLOCk" on page 558

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:EDGE" on page 564

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:VERTical" on page 572

• ":MEASure:CLOCk:VERTical:OFFSet" on page 573

• ":MEASure:CLOCk:VERTical:RANGe" on page 574

• ":MEASure:TIEData" on page 761

• ":MEASure:TIEFilter:SHAPe" on page 763

• ":MEASure:TIEFilter:STARt" on page 764

• ":MEASure:TIEFilter:STATe" on page 765

• ":MEASure:TIEFilter:STOP" on page 766

• ":MEASure:TIEFilter:TYPE" on page 767

• Also see the ":MTESt:FOLDing" on page 491 command in the mask test system.

E2681A EZJIT
Jitter Analysis

Software
commands

The following MEASure commands are available when the E2681A EZJIT Jitter
Analysis Software is installed.

• ":MEASure:CTCDutycycle" on page 576

• ":MEASure:CTCJitter" on page 578

• ":MEASure:CTCNwidth" on page 580

• ":MEASure:CTCPwidth" on page 582

• ":MEASure:DATarate" on page 584

• ":MEASure:HOLDtime" on page 623

• ":MEASure:JITTer:HISTogram" on page 625

• ":MEASure:JITTer:MEASurement" on page 626

• ":MEASure:JITTer:SPECtrum" on page 627

• ":MEASure:JITTer:STATistics" on page 636

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 533

• ":MEASure:JITTer:TRENd" on page 637

• ":MEASure:NCJitter" on page 644

• ":MEASure:NPERiod" on page 657

• ":MEASure:NUI" on page 659

• ":MEASure:SETuptime" on page 705

• ":MEASure:TIEClock2" on page 759

• ":MEASure:TIEData" on page 761

• ":MEASure:UITouijitter" on page 772

• ":MEASure:UNITinterval" on page 773

N5400A and
N5401A Jitter

Analysis Software
commands

The following MEASure commands are available when the N5400A or N5401A
Jitter Analysis Software is installed.

• ":MEASure:CLOCk" on page 558

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:EDGE" on page 564

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:VERTical" on page 572

• ":MEASure:CLOCk:VERTical:OFFSet" on page 573

• ":MEASure:CLOCk:VERTical:RANGe" on page 574

• ":MEASure:CTCDutycycle" on page 576

• ":MEASure:CTCJitter" on page 578

• ":MEASure:CTCNwidth" on page 580

• ":MEASure:CTCPwidth" on page 582

• ":MEASure:DATarate" on page 584

• ":MEASure:HOLDtime" on page 623

• ":MEASure:JITTer:HISTogram" on page 625

• ":MEASure:JITTer:MEASurement" on page 626

• ":MEASure:JITTer:SPECtrum" on page 627

• ":MEASure:JITTer:STATistics" on page 636

• ":MEASure:JITTer:TRENd" on page 637

• ":MEASure:NCJitter" on page 644

534 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

• ":MEASure:RJDJ:ALL?" on page 684

• ":MEASure:RJDJ:APLength?" on page 686

• ":MEASure:RJDJ:BER" on page 688

• ":MEASure:RJDJ:CLOCk" on page 690

• ":MEASure:RJDJ:EDGE" on page 691

• ":MEASure:RJDJ:INTerpolate" on page 692

• ":MEASure:RJDJ:PLENgth" on page 695

• ":MEASure:RJDJ:SOURce" on page 699

• ":MEASure:RJDJ:STATe" on page 700

• ":MEASure:RJDJ:TJRJDJ?" on page 701

• ":MEASure:RJDJ:UNITs" on page 702

• ":MEASure:SETuptime" on page 705

• ":MEASure:TIEClock2" on page 759

• ":MEASure:TIEData" on page 761

• ":MEASure:UNITinterval" on page 773

FFT Commands The :MEASure:FFT commands control the FFT measurements that are accessible
through the Measure subsystem.

Measurement
Setup

To make a measurement, the portion of the waveform required for that
measurement must be displayed on the oscilloscope.

• For a period or frequency measurement, at least one and a half complete cycles
must be displayed.

• For a pulse width measurement, the entire pulse must be displayed.

• For a rise time measurement, the leading (positive-going) edge of the
waveform must be displayed.

• For a fall time measurement, the trailing (negative-going) edge of the waveform
must be displayed.

In jitter mode with jitter statistics enabled, measurements are made on all data
regardless of what is on screen.

User-Defined
Thresholds

If you choose to set user-defined thresholds, they must be set before actually
sending the measurement command or query.

Measurement
Error

If a measurement cannot be made because of a lack of data, because the source
waveform is not displayed, the requested measurement is not possible (for
example, a period measurement on an FFT waveform), or for some other reason,
the following results are returned:

• 9.99999E+37 is returned as the measurement result.

• If SENDvalid is ON, the error code is also returned as well as the questionable
value.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 535

Making
Measurements

If more than one period, edge, or pulse is displayed, time measurements are made
on the first, left-most portion of the displayed waveform.

When any of the defined measurements are requested, the oscilloscope first
determines the top (100%) and base (0%) voltages of the waveform. From this
information, the oscilloscope determines the other important voltage values (10%,
90%, and 50% voltage values) for making measurements.

The 10% and 90% voltage values are used in the rise time and fall time
measurements when standard thresholds are selected. The 50% voltage value is
used for measuring frequency, period, pulse width, and duty cycle with standard
thresholds selected.

You can also make measurements using user-defined thresholds instead of the
standard thresholds.

When the command form of a measurement is used, the oscilloscope is placed in
the continuous measurement mode. The measurement result will be displayed on
the front panel. There may be a maximum of 5 measurements running
continuously. Use the SCRatch command to turn off the measurements.

When the query form of the measurement is used, the measurement is made one
time, and the measurement result is returned.

• If the current acquisition is complete, the current acquisition is measured and
the result is returned.

• If the current acquisition is incomplete and the oscilloscope is running,
acquisitions will continue to occur until the acquisition is complete. The
acquisition will then be measured and the result returned.

• If the current acquisition is incomplete and the oscilloscope is stopped, the
measurement result will be 9.99999e+37 and the incomplete result state will be
returned if SENDvalid is ON.

All measurements are made using the entire display, except for VAVerage and
VRMS which allow measurements on a single cycle. Therefore, if you want to make
measurements on a particular cycle, display only that cycle on the screen.

Measurements are made on the displayed waveforms specified by the SOURce
command. The SOURce command lets you specify two sources. Most
measurements are only made on a single source. Some measurements, such as
the DELTatime measurement, require two sources.

If the waveform is clipped, the measurement result may be questionable. In this
case, the value returned is the most accurate value that can be made using the
current scaling. You might be able to obtain a more accurate measurement by
adjusting the vertical scale to prevent the waveform from being clipped.

536 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:AREA

Command :MEASure:AREA {CYCLe | DISPlay}[,<source>]

The :MEASure:AREA command turns on the area measurement. The area
measurement measures between the waveform, or a selected cycle of the
waveform, and the waveform ground. When measuring Area, it is sometimes
useful to use the Subtract Math Operator to remove any dc offset from a waveform
you want to measure. Also see Math/FFT Functions for more details.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example turns on the area measurement which measures between the
waveform and ground. Only that portion of the waveform which is in the waveform
viewing area is measured.

myScope.WriteString ":MEASURE:AREA DISPLAY"

Query :MEASure:AREA?

The :MEASure:AREA? query returns the area measurement.

Returned Format [:MEASure:AREA]<value>[,<result_state>]<NL>

Example This example places the current selection for the area to be measured in the string
variable, strSelection, then prints the contents of the variable to the computer's
screen.

Dim strSelection As String
myScope.WriteString ":MEASure:AREA?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 537

:MEASure:BINTerval

Command :MEASure:BINTerval <source>, <idle time>

The :MEASure:BINTerval command measures the amount of time between the end
of a burst and beginning of the next burst. The idle time is the minimum time
between bursts.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<idle time> Minimum amount of idle time between bursts.

Example This example measures the burst interval between two bursts on channel 4 (and
with an idle time of 5 microseconds)

myScope.WriteString ":MEASURE:BINTerval CHAN4, 5e-6"

Query :MEASure:BINTerval? <source>, <idle time>

The :MEASure:BINTerval? query returns the burst interval time.

History Legacy command (existed before version 3.10).

538 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:BPERiod

Command :MEASure:BPERiod <source>, <idle time>

The :MEASure:BPERiod command measures the time between the beginning of a
burst and the beginning of the next burst. The idle time is the minimum time
between bursts.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<idle time> Minimum amount of idle time between bursts.

Example This example measures the burst period between two bursts on channel 4 (and
with an idle time of 5 microseconds)

myScope.WriteString ":MEASURE:BPERiod CHAN4, 5e-6"

Query :MEASure:BPERiod? <source>, <idle time>

The :MEASure:BPERiod? query returns the burst period time.

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 539

:MEASure:BWIDth

Command :MEASure:BWIDth <source>,<idle_time>

The :MEASure:BWIDth command measures the width of bursts in your waveform.
The idle time is the minimum time between bursts.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MSPectrum | MTRend |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> An integer, 1-4.

<F> An integer, 1-16.

<idle_time> Amount of idle time between bursts.

Example This example measures the width of bursts for the waveform on channel one and
sets the idle time to 1 microsecond.

myScope.WriteString ":MEASURE:BWIDTH CHANNEL1,1E-6"

Query :MEASure:BWIDth? <source>,<idle_time>

The :MEASure:BWIDth? query returns the width of the burst being measured.

Returned Format [:MEASure:BWIDth]<burst_width><NL>

Example This example returns the width of the burst being measured, in the string variable,
strBurstwidth, then prints the contents of the variable to the computer's screen.

Dim strBurstwidth As String
myScope.WriteString ":MEASure:BWIDTH? CHANNEL1,1E-6"
strBurstwidth = myScope.ReadString
Debug.Print strBurstwidth

History Legacy command (existed before version 3.10).

540 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CDRRATE

Command :MEASure:CDRRATE <source>

The :MEASure:CDRRATE command determines the data rate (clock recovery rate)
from the clock recovery method being used. It yields one data point per acquisition
so trending cannot be performed on this measurement.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MSPectrum | MTRend |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1- 4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the clock recovery rate of channel 1.

myScope.WriteString ":MEASURE:CDRRATE CHANNEL1"

Example This example places the current data rate of the channel 1 waveform in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CDRRATE? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 541

:MEASure:CGRade:CROSsing

Command :MEASure:CGRade:CROSsing [<source>]

The :MEASure:CGRade:CROSsing command enables the crossing level percent
measurement on the current eye pattern. Before using this command or query, you
must use the :DISPlay:CGRade command to enable the color grade persistence
feature. Also, there must be a full eye diagram on screen before a valid
measurement can be made.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F> |
CLOCk | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the crossing level measurement will be performed on the
first waveform that has color grade enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example measures the crossing level.

myScope.WriteString ":MEASURE:CGRADE:CROSSING"

Query :MEASure:CGRade:CROSsing? [<source>]

The :MEASure:CGRade:CROSsing? query returns the crossing level percent
measurement of the current eye diagram on the color grade display. Before using
this command or query, you must use the :DISPlay:CGRade command to enable
the color grade persistence feature.

Returned Format [:MEASure:CGRade:CROSsing]<value>[,<result_state>]<NL>

<value> The crossing level.

542 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current crossing level in the numeric variable, varValue,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CGRADE:CROSSING?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the color grade crossing level percent is measured.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 543

:MEASure:CGRade:DCDistortion

Command :MEASure:CGRade:DCDistortion <format> [,<source>]

The :MEASure:CGRade:DCDistortion command enables the duty cycle distortion
measurement on the current eye pattern. The parameter specifies the format for
reporting the measurement. Before using this command or query, you must use
the :DISPlay:CGRade command to enable the color grade persistence feature.
Also, there must be a full eye diagram on screen before a valid measurement can
be made.

<format> {TIME | PERCent}

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F> |
CLOCk | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the duty cycle distortion measurement will be performed on
the first waveform that has color grade enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example measures the duty cycle distortion.

myScope.WriteString ":MEASURE:CGRADE:DCDISTORTION TIME"

Query :MEASure:CGRade:DCDistortion? <format> [,<source>]

The :MEASure:CGRade:DCDistortion query returns the duty cycle distortion
measurement of the color grade display. Before using this command or query, you
must use the :DISPlay:CGRade command to enable the color grade persistence
feature.

Returned Format [:MEASure:CGRade:DCDistortion]<value>[,<result_state>]<NL>

544 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

<value> The duty cycle distortion.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current duty cycle distortion in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF"
myScope.WriteString ":MEASURE:CGRADE:DCDISTORTION? PERCENT"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the color grade duty cycle distortion is measured.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 545

:MEASure:CGRade:EHEight

Command :MEASure:CGRade:EHEight <algorithm> [,<source>]

The :MEASure:CGRade:EHEight command enables the eye height measurement
on the current eye pattern. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature. Also,
there must be a full eye diagram on screen before a valid measurement can be
made.

<algorithm> {MEASured | EXTRapolated} EXTRapolated is optional because it is the default if
you do not specify an algorithm.

MEASured will measure the eye height within the window (see CGRade:EWINdow)
of the current data. The smallest eye height is reported. Extrapolated will estimate
the eye height based upon the mean and standard deviation of the eye top and
base.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F> |
CLOCk | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the eye height measurement will be performed on the first
waveform that has color grade enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example enables the eye height measurement.

myScope.WriteString ":MEASURE:CGRADE:EHEIGHT"

Query :MEASure:CGRade:EHEight? <algorithm> [,<source>]

546 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

The :MEASure:CGRade:EHEight? query returns the eye height measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:EHEight]<value>[,<result_state>]<NL>

<value> The eye height.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current eye height in the numeric variable, varValue, then
prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CGRADE:EHEIGHT?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the color grade eye height is measured.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 547

:MEASure:CGRade:EWIDth

Command :MEASure:CGRade:EWIDth <algorithm> [,<source>]

The :MEASure:CGRade:EWIDth command enables the eye width measurement on
the current eye pattern. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature. Also,
there must be a full eye diagram on screen before a valid measurement can be
made.

<algorithm> {MEASured | EXTRapolated} EXTRapolated is optional because it is the default if
you do not specify an algorithm.

MEASured will measure the eye width measurement within the window (see
CGRade:EWINdow) of the current data. The smallest eye width is reported.
Extrapolated will estimate the eye width based upon the mean and standard
deviation of the crossings.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F> |
CLOCk | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the eye width will be performed on the first waveform that
has color grade enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example measures the eye width.

myScope.WriteString ":MEASURE:CGRADE:EWIDTH"

Query :MEASure:CGRade:EWIDth? <algorithm> [,<source>]

548 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

The :MEASure:CGRade:EWIDth? query returns the eye width measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:EWIDth]<value>[,<result_state>]<NL>

<value> The eye width.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current eye width in the numeric variable, varValue, then
prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CGRADE:EWIDTH?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the color grade eye width is measured.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 549

:MEASure:CGRade:EWINdow

Command :MEASure:CGRade:EWINdow <start>,<stop>[,<start_after>][,<source>]

The :MEASure:CGRade:EWINdow command is used to change the starting point
and the stopping point of the window used to make the eye pattern measurements
of eye height, eye crossing %, and eye q-factor. In addition, the number of
waveform hits can be set to ensure that enough data has been collected to make
accurate measurements.

<start> An integer from 1 to 100 for horizontal starting point. (Default value is 40%.)

<stop> An integer from 1 to 100 for horizontal stopping point. (Default value is 60%.)

<start_after> An integer from 1 to 63,488 for number of hits to acquire before making
measurements. (Default value is 1.)

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F> |
CLOCk | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the eye window will be applied to all sources.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example sets the eye window starting point to 2%, the stopping point to 75%
and the start after to 5,000 hits.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CGRADE:EWINDOW 2,75,5000"

Query :MEASure:CGRade:EWINdow? [<source>]

The :MEASure:CGRade:EWINdow query returns the starting point, the ending
point, and the start after setting for the eye pattern measurements.

550 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

On the query, the eye window of channel 1 will be returned.

Returned Format [:MEASure:CGRade:EWIDdow] <start>,<stop>,<start_after> <NL>

The following example returns the values for the eye window.

Example myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CGRADE:EWINDOW?"
varStart,Stop,Startafter = myScope.ReadNumber
Debug.Print FormatNumber(varStart,Stop,Startafter, 0)

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the color grade eye window is applied.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 551

:MEASure:CGRade:JITTer

Command :MEASure:CGRade:JITTer <format> [,<source>]

The :MEASure:CGRade:JITTer measures the jitter at the eye diagram crossing
point. The parameter specifies the format, peak-to-peak or RMS, of the returned
results. Before using this command or query, you must use the :DISPlay:CGRade
command to enable the color grade persistence feature.

<format> {PP | RMS}

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F> |
CLOCk | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the jitter will be performed on the first waveform that has
color grade enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example measures the jitter.

myScope.WriteString ":MEASURE:CGRADE:JITTER RMS"

Query :MEASure:CGRade:JITTer? <format> [,<source>]

The :MEASure:CGRade:JITTer? query returns the jitter measurement of the color
grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:JITTer]<value>[,<result_state>]<NL>

<value> The jitter.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

552 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

Example This example places the current jitter in the numeric variable, varValue, then prints
the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CGRADE:JITTER? RMS"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the color grade jitter is measured.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 553

:MEASure:CGRade:QFACtor

Command :MEASure:CGRade:QFACtor [<source>]

The :MEASure:CGRade:QFACtor command measures the Q factor. Before using
this command or query, you must use the :DISPlay:CGRade command to enable
the color grade persistence feature. Also, there must be a full eye diagram on
screen before a valid measurement can be made.

<source> {CHANnel<N> | COMMonmode<P> | DIFF<P> | WMEMory<N> | FUNCtion<F> |
CLOCk | EQUalized | MTRend | MSPectrum}

If <source> is omitted, the Q-factor will be performed on the first waveform that
has color grade enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

Example This example measures the Q factor.

myScope.WriteString ":MEASURE:CGRade:QFACTOR"

Query :MEASure:CGRade:QFACtor? [<source>]

The :MEASure:CGRade:QFACtor? query returns the Q factor measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:QFACtor]<value>[,<result_state>]<NL>

<value> The Q factor.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

554 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

Example This example places the Q factor in the numeric variable, varValue, then prints the
contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASure:CGRade:QFACTOR"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Version 5.00: Added the optional <source> parameter for specifying the waveform
on which the color grade Q factor is measured.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 555

:MEASure:CHARge

556 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

(9000 Series, 9000H Series, S-Series)

Command :MEASure:CHARge [<primary_channel_source>]

When N2820A/N2821A high-sensitivity current probes are connected, the
:MEASure:CHARge command adds the Charge measurement to the
Measnurements tab.

This measurement determines the total current consumption over time with the
results listed in ampere-hours (Ah).

When both the primary and secondary cables of a N2820A probe are used, the
measurement includes the area under the curve across both Zoomed-In and
Zoomed-Out waveforms.

<primary_channel_
source>

{CHANnel<N>}

<N> CHANnel<N> is an integer, 1-4, and should be the primary channel of the
N2820A/N2821A probe.

Example This example turns on the Charge measurement and adds it to the Measurements
tab.

myScope.WriteString ":MEASure:CHARge CHANnel1"

Query :MEASure:CHARge?

The :MEASure:CHARge? query returns the measured Charge value in Amp-hours.

Returned Format [:MEASure:CHARge]<value>[,<result_state>]<NL>

Example This example places the measured Charge value in the string variable, strCharge,
then prints the contents of the variable to the computer's screen.

Dim strCharge As String
myScope.WriteString ":MEASure:CHARge?"
strCharge = myScope.ReadString
Debug.Print strCharge

See Also • ":MEASure:WINDow" on page 795

History New in version 4.20.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 557

:MEASure:CLEar

Command :MEASure:{CLEar | SCRatch}

The :MEASure:CLEar command clears the measurement results from the screen
and disables all previously enabled measurements.

Example This example clears the current measurement results from the screen.

myScope.WriteString ":MEASURE:CLEAR"

History Legacy command (existed before version 3.10).

558 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CLOCk

Command

:MEASure:CLOCk {{{ON|1},CHANnel<N>} | {OFF|0}}

The :MEASure:CLOCk command turns the recovered clock display on or off and
sets the clock recovery channel source.

<N> An integer, 1-4.

Example This example turns the recovered clock display on for channel 1.

myScope.WriteString ":MEASURE:CLOCK ON,CHANNEL1"

Query :MEASure:CLOCk?

The :MEASure :CLOCk? query returns the state of the recovered clock display.

Returned Format [:MEASure:CLOCk] {1 | 0}<NL>

Example This example places the current setting of the recovered clock display in the
variable varSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:CLOCK?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 559

:MEASure:CLOCk:METHod

Command

:MEASure:CLOCk:METHod
{FC,{FC1063 | FC2125 | FC425}}

| {EXPlicit,<source>,{RISing | FALLing | BOTH}[,<multiplier>]}
| {FIXed,{AUTO | {SEMI[,<data_rate>]} | <data_rate>}}
| {FLEXR,<baud_rate>}
| {FLEXT,<baud_rate>}

The :MEASure:CLOCk:METHod command sets the clock recovery method to:

• FC (Fibre Channel).

• EXPlicit (Explicit Clock).

• FIXed (Constant Frequency).

• FLEXR (FlexRay Receiver).

• FLEXT (FlexRay Transmitter).

This command applies to the clock recovery method being set up for the waveform
source selected by the :MEASure:CLOCk:METHod:SOURce command.

For setting phase-locked loop (PLL) clock recovery methods in terms of the
Observed Jitter Transfer Function (OJTF), see ":MEASure:CLOCk:METHod:OJTF"
on page 568.

For setting phase-locked loop (PLL) clock recovery methods in terms of the Jitter
Transfer Function (JTF), see ":MEASure:CLOCk:METHod:JTF" on page 566.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<data_rate> A real number for the base data rate in Hertz.

<multiplier> An integer used as the multiplication factor.

<baud_rate> A real number used for the baud rate.

Example This example sets the explicit clock recovery method on channel 1, rising edge,
with a multiplier of 2.

myScope.WriteString ":MEASure:CLOCk:METHod EXPlicit,CHANnel1,RISing,2"

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

560 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

Query :MEASure:CLOCk:METHod?

The :MEASure:CLOCk:METHod? query returns the state of the clock recovery
method.

Returned Format [:MEASure:CLOCk:METHod]
{FC,{FC1063 | FC2125 | FC425}}

| {EXPlicit,<source>,{RISing | FALLing | BOTH},<multiplier>}
| {FIXed,{AUTO | {SEMI,<data_rate>} | <data_rate>}}
| {FLEXR,<baud_rate>}
| {FLEXT,<baud_rate>}

Example This example places the current setting of the clock recovery method in the
variable strSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASure:CLOCk:METHod?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:EDGE" on page 564

History Legacy command (existed before version 3.10).

Version 4.20: The command options for specifying clock recovery PLL options
moved to the new commands :MEASure:CLOCk:METHod:JTF and
:MEASure:CLOCk:METHod:OJTF.

Version 5.10: The PCIE clock recovery method has been removed.

NOTE You can use the :MEASure:CLOCk:METHod? query when phase-locked loop (PLL) clock
recovery methods are set up. The format returned will be that of the
:MEASure:CLOCk:METHod:OJTF? query. See ":MEASure:CLOCk:METHod:OJTF" on
page 568.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 561

:MEASure:CLOCk:METHod:ALIGn

Command

:MEASure:CLOCK:METHod:ALIGn {CENTer | EDGE}

When using an explicit method of clock recovery, the
:MEASure:CLOCk:METHod:ALIGn command specifies how the clock is aligned with
data:

• CENTer — Clock edges are aligned with the center of data.

• EDGE — Clock edges are aligned with data edges. In this case, Time Interval
Error (TIE) is measured directly from the data edge to the clock edge.

This command applies to the clock recovery method being set up for the waveform
source selected by the :MEASure:CLOCk:METHod:SOURce command.

Example When using an explicit method of clock recovery, this example specifies that clock
edges are aligned with the center of data.

myScope.WriteString ":MEASURE:CLOCK:METHOD:ALIGn CENTer"

Query :MEASure:CLOCK:METHod:ALIGn?

The :MEASure:CLOCk:METHod:ALIGn? query returns the clock recovery method's
edge alignment setting.

Returned Format [:MEASure:CLOCk:METHod:ALIGn] {CENT | EDGE}

Example This example places the current edge alignment setting of the clock recovery
method in the variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:CLOCK:METHOD:ALIGn?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:EDGE" on page 564

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

562 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

History New in version 3.20.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 563

:MEASure:CLOCk:METHod:DEEMphasis

Command

:MEASure:CLOCk:METHod:DEEMphasis {OFF | ON}

The :MEASure:CLOCk:METHod:DEEMphasis command turns de-emphasis on or
off.

This command applies to the clock recovery method being set up for the waveform
source selected by the :MEASure:CLOCk:METHod:SOURce command.

See the help system for more information on de-emphasis.

Example This example enables de-emphasis.

myScope.WriteString ":MEASURE:CLOCk:METHod:DEEMphasis ON"

Query :MEASure:CLOCk:METHod:DEEMphasis?

The :MEASure:CLOCk:METHod:DEEMphasis? query returns whether or not
de-emphasis is turned on.

Returned Format [:MEASure:CLOCk:METHod:DEEMphasis] {OFF | ON}

Example This example places the current setting of the de-emphasis mode in the string
variable strDeemph, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:CLOCK:METHod:DEEMphasis?"
strDeemph = myScope.ReadString
Debug.Print strDeemph

See Also • ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:EDGE" on page 564

History Legacy command (existed before version 3.10).

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

564 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CLOCk:METHod:EDGE

Command

:MEASure:CLOCk:METHod:EDGE {RISing | FALLing | BOTH}

The :MEASure:CLOCk:METHod:EDGE command specifies which edge(s) of the
data are used to recover a clock. (In the front panel GUI, this control appears in the
Advanced Clock Recovery dialog box.) Normally, both edges are used. However, if
you are performing clock recovery on a low duty cycle clock signal, for example,
you may want to use just the rising or falling edge.

This command applies to the clock recovery method being set up for the waveform
source selected by the :MEASure:CLOCk:METHod:SOURce command.

This command applies to the following clock recovery methods:

• FIXed (Constant Frequency).

• FOPLL (First Order PLL).

• SOPLL (Second Order PLL).

• EXPlicit (Explicit Clock).

• EXPFOPLL (Explicit First Order PLL).

• EXPSOPLL (Explicit Second Order PLL).

• EQFOPLL (Equalized First Order PLL).

• EQSOPLL (Equalized Second Order PLL).

To measure jitter on only rising (or falling) edges of a clock, you must also set
:MEASure:RJDJ:EDGE to the same RISing or FALLing option, and you must set
:MEASure:RJDJ:CLOCk ON to force the pattern to be a clock and set the jitter for
edges not examined to zero (0).

Example This example specifies that both rising and falling edges of the data are used to
recover a clock.

myScope.WriteString ":MEASure:CLOCk:METHod:EDGE BOTH"

Query :MEASure:CLOCK:METHod:EDGE?

The :MEASure:CLOCk:METHod:EDGE? query returns the clock recovery method's
edge setting.

Returned Format [:MEASure:CLOCk:METHod:EDGE] {RIS | FALL | BOTH}

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 565

Example This example places the current edge setting of the clock recovery method in the
variable strSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASure:CLOCk:METHod:EDGE?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:RJDJ:EDGE" on page 691

• ":MEASure:RJDJ:CLOCk" on page 690

History New in version 4.30.

566 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CLOCk:METHod:JTF

Command

:MEASure:CLOCk:METHod:JTF
{FOPLL,<data_rate>,<jtf_loop_bandwidth>}

| {EQFOPLL,<data_rate>,<jtf_loop_bandwidth>}
| {SOPLL,<data_rate>,<jtf_loop_bandwidth>, <peaking>}
| {EQSOPLL,<data_rate>,<jtf_loop_bandwidth>, <peaking>}
| {EXPFOPLL,<source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<jtf_loop_bandwidth>}
| {EXPSOPLL,<source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<jtf_loop_bandwidth>,<peaking>}

The :MEASure:CLOCk:METHod:JTF command specifies the clock recovery PLL's
response in terms of the Jitter Transfer Function's (JTF) 3 dB bandwidth.

This command applies to the clock recovery method being set up for the waveform
source selected by the :MEASure:CLOCk:METHod:SOURce command.

You can set these types of PLL clock recovery methods:

• FOPLL (First Order PLL).

• SOPLL (Second Order PLL).

• EQFOPLL (Equalized First Order PLL).

• EQSOPLL (Equalized Second Order PLL).

• EXPFOPLL (Explicit First Order PLL).

• EXPSOPLL (Explicit Second Order PLL).

The EQUalized clock recovery methods are only available if the oscilloscope has
the High Speed Serial option and the Serial Data Equalization option installed and
the features are enabled.

For setting phase-locked loop (PLL) clock recovery methods in terms of the
Observed Jitter Transfer Function (OJTF), see ":MEASure:CLOCk:METHod:OJTF"
on page 568.

For setting other clock recovery methods, see ":MEASure:CLOCk:METHod" on
page 559.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 567

<F> FUNCtion<F> is an integer, 1-16.

<data_rate> A real number for the base data rate in bits per second.

<peaking> The peaking value in dB.

<jtf_loop_
bandwidth>

A real number for the cutoff frequency for the PLL to track.

<multiplier> An integer used as the multiplication factor.

<clock_freq> A real number used for the clock frequency of the PLL.

Example This example sets the clock recovery method to Second Order PLL, a nominal data
rate of 4 Gb/s, and a peaking value of 1.25 dB.

myScope.WriteString ":MEASure:CLOCk:METHod:JTF SOPLL,4E9,3.822E6,1.25"

Query :MEASure:CLOCk:METHod:JTF?

The :MEASure:CLOCk:METHod:JTF? query returns the state of the clock recovery
method.

Returned Format [:MEASure:CLOCk:METHod:JTF]
{FOPLL,<data_rate>,<jtf_loop_bandwidth>}

| {EQFOPLL,<data_rate>,<jtf_loop_bandwidth>}
| {SOPLL,<data_rate>,<jtf_loop_bandwidth>,<peaking>}
| {EQSOPLL,<data_rate>,<jtf_loop_bandwidth>,<peaking>}
| {EXPFOPLL <source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<jtf_loop_bandwidth>}
| {EXPSOPLL <source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<jtf_loop_bandwidth>,<peaking>}

Example This example places the current setting of the clock recovery method in the
variable strSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASure:CLOCk:METHod:JTF?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:EDGE" on page 564

History New in version 4.20.

568 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CLOCk:METHod:OJTF

Command

:MEASure:CLOCk:METHod:OJTF
{FOPLL,<data_rate>,<ojtf_loop_bandwidth>}

| {EQFOPLL,<data_rate>,<ojtf_loop_bandwidth>}
| {SOPLL,<data_rate>,<ojtf_loop_bandwidth>, <damping_factor>}
| {EQSOPLL,<data_rate>,<ojtf_loop_bandwidth>, <damping_factor>}
| {EXPFOPLL,<source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<ojtf_loop_bandwidth>}
| {EXPSOPLL,<source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<ojtf_loop_bandwidth>,<damping_factor>}

The :MEASure:CLOCk:METHod:OJTF command specifies the clock recovery PLL's
response in terms of the Observed Jitter Transfer Function's (OJTF) 3 dB
bandwidth.

This command applies to the clock recovery method being set up for the waveform
source selected by the :MEASure:CLOCk:METHod:SOURce command.

You can set these types of PLL clock recovery methods:

• FOPLL (First Order PLL).

• SOPLL (Second Order PLL).

• EQFOPLL (Equalized First Order PLL).

• EQSOPLL (Equalized Second Order PLL).

• EXPFOPLL (Explicit First Order PLL).

• EXPSOPLL (Explicit Second Order PLL).

The EQUalized clock recovery methods are only available if the oscilloscope has
the High Speed Serial option and the Serial Data Equalization option installed and
the features are enabled.

For setting phase-locked loop (PLL) clock recovery methods in terms of the Jitter
Transfer Function (JTF), see ":MEASure:CLOCk:METHod:JTF" on page 566.

For setting other clock recovery methods, see ":MEASure:CLOCk:METHod" on
page 559.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 569

<F> FUNCtion<F> is an integer, 1-16.

<data_rate> A real number for the base data rate in bits per second.

<damping_ factor> A real number for the damping factor of the PLL.

<ojtf_loop_
bandwidth>

A real number for the cutoff frequency for the PLL to track.

<multiplier> An integer used as the multiplication factor.

<clock_freq> A real number used for the clock frequency of the PLL.

Example This example sets the clock recovery method to Second Order PLL, a nominal data
rate of 4 Gb/s, and a damping factor of 1.0.

myScope.WriteString ":MEASure:CLOCk:METHod:OJTF SOPLL,4E9,2.4E6,1.0"

Query :MEASure:CLOCk:METHod:OJTF?

The :MEASure:CLOCk:METHod:OJTF? query returns the state of the clock recovery
method.

Returned Format [:MEASure:CLOCk:METHod:OJTF]
{FOPLL,<data_rate>,<ojtf_loop_bandwidth>}

| {EQFOPLL,<data_rate>,<ojtf_loop_bandwidth>}
| {SOPLL,<data_rate>,<ojtf_loop_bandwidth>,<damping_factor>}
| {EQSOPLL,<data_rate>,<ojtf_loop_bandwidth>,<damping_factor>}
| {EXPFOPLL <source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<ojtf_loop_bandwidth>}
| {EXPSOPLL <source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<ojtf_loop_bandwidth>,<damping_fact>}

Example This example places the current setting of the clock recovery method in the
variable strSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASure:CLOCk:METHod:OJTF?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:EDGE" on page 564

History New in version 4.20.

570 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CLOCk:METHod:PLLTrack

Command

:MEASure:CLOCk:METHod:PLLTrack {OFF | ON}

The :MEASure:CLOCk:METHod:PLLTrack command turns transition density
dependence on or off. See the help system for more information on the Transition
Density Dependent setting.

This command applies to the clock recovery method being set up for the waveform
source selected by the :MEASure:CLOCk:METHod:SOURce command.

Example This example enables the Transition Density Dependent setting.

myScope.WriteString ":MEASURE:CLOCk:METHod:PLLTrack ON"

Query :MEASure:CLOCk:METHod:PLLTrack?

The :MEASure:CLOCk:METHod:PLLTrack? query returns whether or not the
Transition Density Dependent setting is turned on.

Returned Format [:MEASure:CLOCk:METHod:PLLTrack] {OFF | ON}

Example This example places the current setting of the Transition Density Dependent
setting in the string variable strTDD, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:CLOCK:METHod:PLLTrack?"
strTDD = myScope.ReadString
Debug.Print strTDD

See Also • ":MEASure:CLOCk:METHod:SOURce" on page 571

• ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:EDGE" on page 564

History New in version 4.20.

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 571

:MEASure:CLOCk:METHod:SOURce

Command :MEASure:CLOCk:METHod:SOURce {ALL | <source>}

<source> ::= {CHANnel<N> | COMMonmode<P> | DIFFerential<P>
| FUNCtion<F> | WMEMory<N> | MTRend | MSPectrum | EQUalized
| DIGital<M>}

The :MEASure:CLOCk:METHod:SOURce command selects the waveform source
(or ALL sources) to which other clock recovery method setup commands apply.

Clock recovery methods can be set up for each waveform source (or for all
waveform sources).

Query :MEASure:CLOCk:METHod:SOURce?

The :MEASure:CLOCk:METHod:SOURce? query returns the waveform source to
which other clock recovery method commands currently apply.

Returned Format [:MEASure:CLOCk:METHod:SOURce] <source><NL>

<source> ::= {ALL | CHAN<N> | FUNC<F> | WMEM<N> | MTR | MSP | EQU
| DIG<M>}

See Also • ":MEASure:CLOCk:METHod" on page 559

• ":MEASure:CLOCk:METHod:OJTF" on page 568

• ":MEASure:CLOCk:METHod:JTF" on page 566

• ":MEASure:CLOCk:METHod:DEEMphasis" on page 563

• ":MEASure:CLOCk:METHod:ALIGn" on page 561

• ":MEASure:CLOCk:METHod:PLLTrack" on page 570

• ":MEASure:CLOCk:METHod:EDGE" on page 564

History New in version 5.20.

572 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CLOCk:VERTical

Command

:MEASure:CLOCk:VERTical {AUTO | MANual}

The :MEASure:CLOCk:VERTical command sets the recovered clock vertical scale
mode to automatic or manual. In automatic mode, the oscilloscope automatically
selects the vertical scaling and offset. In manual mode, you can set your own
scaling and offset values.

Example This example sets the recovered clock vertical scale mode to automatic.

myScope.WriteString ":MEASURE:CLOCk:VERTical AUTO"

Query :MEASure:CLOCk:VERTical?

The :MEASure:CLOCk:VERTical? query returns the current recovered clock vertical
scale mode setting.

Returned Format [:MEASure:CLOCk:VERTical] {AUTO | MANual}

Example This example places the current setting of the recovered clock vertical scale mode
in the string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:CLOCK:VERTICAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 573

:MEASure:CLOCk:VERTical:OFFSet

Command

:MEASure:CLOCk:VERTical:OFFSet <offset>

The :MEASure:CLOCk:VERTical:OFFSet command sets the recovered clock vertical
offset.

<offset> A real number for the recovered clock vertical offset.

Example This example sets the clock recovery vertical offset to 1 volt.

myScope.WriteString ":MEASURE:CLOCK:VERTICAL:OFFSET 1"

Query :MEASure:CLOCk:VERTical:OFFSet?

The :MEASure:CLOCk:VERTical:OFFSet? query returns the clock recovery vertical
offset setting.

Returned Format [:MEASure:CLOCk:VERTical:OFFSet] <value><NL>

<value> The clock recovery vertical offset setting.

Example This example places the current value of recovered clock vertical offset in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CLOCK:VERTICAL:OFFSET?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

574 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CLOCk:VERTical:RANGe

Command

:MEASure:CLOCk:VERTical:RANGe <range>

The :MEASure:CLOCk:VERTical:RANGe command sets the recovered clock vertical
range.

<range> A real number for the full-scale recovered clock vertical range.

Example This example sets the recovered clock vertical range to 16 volts (2 volts times 8
divisions.)

myScope.WriteString ":MEASURE:CLOCK:VERTICAL:RANGE 16"

Query :MEASure:CLOCk:VERTical:RANGe?

The :MEASure:CLOCk:VERTical:RANGe? query returns the recovered clock vertical
range setting.

Returned Format [:MEASure:CLOCk:VERTical:RANGe] <value><NL>

<value> The recovered clock vertical range setting.

Example This example places the current value of recovered clock vertical range in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CLOCK:VERTICAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 575

:MEASure:CROSsing

Command :MEASure:CROSsing <source1>, <source2>

The :MEASure:CROSsing command adds the crossing measurement to the screen.
The crossing measurement is the voltage where two signals cross (uses edges
closest to the center of the screen)

<source1> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<source2> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<hysteresis> a real number

Example This example measures the voltage where channel 1 and 2 cross.

myScope.WriteString ":MEASure:CROSsing CHANnel1, CHANnel2"

Query :MEASure:CROSsing? [<source1>, <source2>]

The :MEASure:CROSsing? query returns the crossing measurement value.

If the <source> parameters are not specified, the two sources specified by the
:MEASure:SOURce command are used.

Returned Format [:MEASure:CROSsing] <value><NL>

<value> The voltage value where the signals cross.

Example This example places the crossing voltage value in the numeric variable, varValue,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:CROSsing? CHANnel1, CHANnel2"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also • ":MEASure:SOURce" on page 708

History Legacy command (existed before version 3.10).

576 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CTCDutycycle

Command

:MEASure:CTCDutycycle <source>,<direction>

The :MEASure:CYCDutycycle command measures the cycle-to-cycle duty cycle
jitter (%) of the waveform.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> {RISing | FALLing}

Specifies direction of waveform edge to make measurement.

Example This example measures the cycle-to-cycle duty cycle on the rising edge of channel
1.

myScope.WriteString ":MEASURE:CTCDUTYCYCLE CHANNEL1,RISING"

Query :MEASure:CTCDutycycle? <source>,<direction>

The :MEASure:CTCDutycycle? query returns the cycle-to-cycle duty cycle jitter (%)
measurement.

Returned Format [:MEASure:CTCDutycycle <value>[,<result_state>]<NL>

<value> The cycle-to-cycle duty cycle jitter (%) of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 577

Example This example places the cycle-to-cycle duty cycle of channel 1 in the numeric
variable, varValue, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CTCDUTYCYCLE CHANNEL1,RISING"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

578 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CTCJitter

Command

:MEASure:CTCJitter <source>,<direction>

The :MEASure:CYCJitter command measures the cycle-to-cycle jitter of the
waveform.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> {RISing | FALLing}

Specifies direction of waveform edge to make measurement.

Example This example measures the cycle-to-cycle jitter on the rising edge of channel 1.

myScope.WriteString ":MEASURE:CTCJITTER CHANNEL1,RISING"

Query :MEASure:CTCJitter? <source>,<direction>

The :MEASure:CTCJitter? query returns the cycle-to-cycle jitter time
measurement.

Returned Format [:MEASure:CTCJitter <value>[,<result_state>]<NL>

<value> The cycle-to-cycle jitter time of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 579

Example This example places the cycle-to-cycle jitter of channel 1 in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CTCJITTER CHANNEL1,RISING"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

580 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CTCNwidth

Command

:MEASure:CTCNwidth [<source>]

The :MEASure:CTCNwidth command measures the cycle-to-cycle -width jitter of
the waveform.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the cycle-to-cycle -width of channel 1.

myScope.WriteString ":MEASURE:CTCNWIDTH CHANNEL1"

Query :MEASure:CTCNwidth? [<source>]

The :MEASure:CTCNwidth? query returns the cycle-to-cycle -width jitter
measurement.

Returned Format [:MEASure:CTCNwidth <value>[,<result_state>]<NL>

<value> The cycle-to-cycle - width jitter of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle - width of channel 1 in the numeric
variable, varValue, then prints the contents of the variable to the computer's
screen.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 581

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CTCNWIDTH CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

582 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:CTCPwidth

Command

:MEASure:CTCPwidth [<source>]

The :MEASure:CYCPwidth command measures the cycle-to-cycle + width jitter of
the waveform.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the cycle-to-cycle - width of channel 1.

myScope.WriteString ":MEASURE:CTCPWIDTH CHANNEL1"

Query :MEASure:CTCPwidth? [<source>]

The :MEASure:CTCPwidth? query returns the cycle-to-cycle + width jitter
measurement.

Returned Format [:MEASure:CTCPwidth <value>[,<result_state>]<NL>

<value> The cycle-to-cycle + width jitter of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle + width of channel 1 in the numeric
variable, varValue, then prints the contents of the variable to the computer's
screen.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 583

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:CTCPWIDTH CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

584 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:DATarate

Command

:MEASure:DATarate <source>[,{AUTO | (SEMI,<data_rate>)}]

The :MEASure:DATarate command measures the data rate in bits per second for
the selected source. Use the :MEASure:UNITinterval command/query to measure
the unit interval of the source

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1- 4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<data_rate> A real number specifying the data rate.

Example This example measures the data rate of channel 1.

myScope.WriteString ":MEASURE:DATARATE CHANNEL1"

Query :MEASure:DATarate? <source>[,{Auto | (SEMI,<data_rate>)}]

The :MEASure:DATarate? query returns the measured data rate.

Returned Format [:MEASure:DATarate] <value>[,<result_state>]<NL>

<value> Data rate frequency in bits per second for the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current data rate of the channel 1 waveform in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 585

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:DATARATE? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

586 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:DEEMphasis

Command :MEASure:DEEMphasis [<source>]

When the EZJIT Complete application is licensed, the Deemphasis serial data
measurement becomes available.

The :MEASure:DEEMphasis command adds the deemphasis measurement.

The de-emphasis measurement relies on the clock recovery to recover a clock for
each bit in the data waveform. You need to configure clock recovery appropriately
for your signal.

Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:DEEMphasis command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example adds the deemphasis measurement on the channel 1 source.

myScope.WriteString ":MEASure:DEEMphasis CHANnel1"

Query :MEASure:DEEMphasis? [<source>]

The :MEASure:DEEMphasis? query returns the measured deemphasis value of the
specified source.

Due to random noise, many bits need to be averaged together to average out the
noise. Therefore, the current value has little importance and the mean should be
used. See ":MEASure:STATistics" on page 709.

Returned Format [:MEASure:DEEMphasis] <value>[,<result_state>]<NL>

<value> For every de-emphasis bit in the waveform, a value is computed using:

20 * log10(de-emphasis voltage / transition voltage)

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 587

Where:

• Transition voltage is the voltage at the clock location of the preceding
transition bit.

• De-emphasis voltage is the voltage at the clock location of de-emphasis bits
following a transition bit.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value for deemphasis in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:DEEMphasis? CHANnel1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

588 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:DELTatime

Command :MEASure:DELTatime [<source>[,<source>]]

The :MEASure:DELTatime command measures the delta time between two edges.
If one source is specified, the delta time from the leading edge of the specified
source to the trailing edge of the specified source is measured. If two sources are
specified, the delta time from the leading edge on the first source to the trailing
edge on the second source is measured.

Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:DELTatime command. The rest of the
parameters for this command are specified with the :MEASure:DEFine command.

The necessary waveform edges must be present on the display. The query will
return 9.99999E+37 if the necessary edges are not displayed.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example measures the delta time between channel 1 and channel 2.

myScope.WriteString ":MEASure:DELTatime CHANnel1,CHANnel2"

Query :MEASure:DELTatime? [<source>[,<source>]]

The :MEASure:DELTatime? query returns the measured delta time value.

Returned Format [:MEASure:DELTatime] <value>[,<result_state>]<NL>

<value> Delta time from the first specified edge on one source to the next specified edge
on another source.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 589

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of delta time in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen. This
example assumes the source was set using :MEASure:SOURce.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:DELTatime?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

590 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:DELTatime:DEFine

Command :MEASure:DELTatime:DEFine <start_edge_direction>,<start_edge_number>,
<start_edge_position>,<stop_edge_direction>,<stop_edge_number>,
<stop_edge_position>

The :MEASure:DELTatime:DEFine command sets the type of direction, the number
of the edge, and the edge position for the delta time measurement.

<start_edge
_direction>

{RISing | FALLing | EITHer} for start directions.

<start_edge
_number>

An integer from 1 to 65534 for start edge numbers.

<start_edge
_position>

{UPPer | MIDDle | LOWer} for start edge positions.

<stop_edge
_direction>

{RISing | FALLing | EITHer} for stop directions.

<stop_edge
_number>

An integer from 1 to 65534 for stop edge numbers.

<stop_edge
_position>

{UPPer | MIDDle | LOWer} for stop edge positions.

Example This example sets the delta time starting edge to a rising edge on the 5th edge at
the middle position and the stopping edge to falling on the 50th edge at the lower
position.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString _

":MEASURE:DELTATIME:DEFINE RISING,5,MIDDLE,FALLING,50,LOWER"

Query :MEASure:DELTatime:DEFine?

The :MEASure:DELTatime:DEFine? query returns the measured delta time value.

Returned Format [:MEASure:DELTatime:DEFine] <start_edge_direction>,<start_edge_number>,
<start_edge_position>,<stop_edge_direction>,<stop_edge_number>,
<stop_edge_position><NL>

Example This example places the current value of delta time definition in the string variable,
strValue, then prints the contents of the variable to the computer's screen. This
example assumes the source was set using :MEASure:SOURce.

Dim strValue As String ' Dimension variable.
myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:DELTATIME:DEFINE?"
strValue = myScope.ReadString
Debug.Print strValue

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 591

History Legacy command (existed before version 3.10).

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

592 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:DUTYcycle

Command :MEASure:DUTYcycle [<source>[,<direction>]]

The :MEASure:DUTYcycle command measures the ratio (%) of the positive pulse
width to the period.

Sources are specified with the :MEASure:SOURce command or with the optional
<source> parameter following the :MEASure:DUTYcycle command.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<direction> {RISing | FALLing}

Specifies direction of edge to start measurement. When <direction> is specified,
the <source> parameter is required.

Using the <direction> parameter will set the "Measure All Edges" mode if it is not
currently set. You can use the :MEASure:JITTer:STATistics command to turn the
"Measure All Edges" mode off (or on again). See ":MEASure:JITTer:STATistics" on
page 636.

Example This example measures the duty cycle of the channel 1 waveform.

myScope.WriteString ":MEASure:DUTYcycle CHANnel1"

Query :MEASure:DUTYcycle? [<source>],<direction>

The :MEASure:DUTYcycle? query returns the measured duty cycle (%) of the
specified source.

Returned Format [:MEASure:DUTYcycle] <value>[,<result_state>]<NL>

<value> The ratio (%) of the positive pulse width to the period.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 593

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current duty cycle of the channel 1 waveform in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:DUTYcycle? CHANnel1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

594 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:EDGE

Command :MEASure:EDGE [<source>[,<direction>]]

The :MEASure:EDGE command measures the time of the edge, relative to the
reference location.

Sources are specified with the :MEASure:SOURce command or with the optional
<source> parameter following the :MEASure:DUTYcycle command.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<direction> {RISing | FALLing | BOTH}

Specifies direction of edge to start measurement. When <direction> is specified,
the <source> parameter is required.

Using the <direction> parameter will set the "Measure All Edges" mode if it is not
currently set. You can use the :MEASure:JITTer:STATistics command to turn the
"Measure All Edges" mode off (or on again). See ":MEASure:JITTer:STATistics" on
page 636.

Example This example measures the duty cycle of the channel 1 waveform.

myScope.WriteString ":MEASure:EDGE CHANnel1"

Query :MEASure:EDGE? [<source>[,<direction>]]

The :MEASure:EDGE? query returns the measured edge time of the specified
source.

Returned Format [:MEASure:DUTYcycle] <value>[,<result_state>]<NL>

<value> The measured edge time.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 595

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current duty cycle of the channel 1 waveform in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:EDGE? CHANnel1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History New in version 3.10.

596 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:ETOedge

Command :MEASure:ETOedge <source>, <direction 1>, <position 1>, <next/prev>,
<relative edge number>, <source 2>, <direction 2>, <position 2>

The :MEASure:ETOedge command measures the delta time between two edges. It
is similar to the delta time measurement, but can be applied to the measurement
trend. It also enables you to set whether the measurement is between an edge
before or after a specific edge and the number of edges to move forward or
backwards.

The necessary waveform edges must be present on the display. The query will
return 9.99999E+37 if the necessary edges are not displayed.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> May be RISing, FALLing, or BOTH

<position> May be UPPer, MIDDle, or LOWer

<next/prev> May be NEXT or PREVious

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 597

:MEASure:FALLtime

Command :MEASure:FALLtime [<source>]

The :MEASure:FALLtime command measures the time at the upper threshold of
the falling edge, measures the time at the lower threshold of the falling edge, then
calculates the fall time. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:FALLtime
command.

The first displayed falling edge is used for the fall-time measurement. To make this
measurement requires 4 or more sample points on the falling edge of the
waveform.

Fall time = time at lower threshold point - time at upper threshold point.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the fall time of the channel 1 waveform.

myScope.WriteString ":MEASURE:FALLTIME CHANNEL1"

Query :MEASure:FALLtime? [<source>]

The :MEASure:FALLtime? query returns the fall time of the specified source.

Returned Format [:MEASure:FALLtime] <value>[,<result_state>]<NL>

<value> Time at lower threshold - time at upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value for fall time in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

598 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:FALLTIME? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 599

:MEASure:FFT:DFRequency

Command :MEASure:FFT:DFRequency [<source>]

The :MEASure:FFT:DFRequency command enables the delta frequency
measurement. The source is specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:FFT:DFR command.

The source must be a function that is set to FFTMagnitude, or a waveform memory
that contains an FFT for this command and query to work.

<source> {FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:FFT:DFRequency? [<source>]

The :MEASure:FFT:DFRequency? query returns the FFT delta frequency of the
specified peaks.

Returned Format [:MEASure:FFT:DFRequency] <delta_frequency>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Related
Commands

:MEASure:FFT:PEAK1, :MEASure:FFT:PEAK2, :MEASure:FFT:THReshold

Example This example measures the frequency difference between the peaks specified by
the :meas:fft:peak1 and :meas:fft:peak2 for channel 4.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":func4:fftm chan4" ' Perform FFT on channel 4.
myScope.WriteString ":func4:disp on" ' Display the FFT.
myScope.WriteString ":meas:FFT:thr-47" ' Set peak threshold at-47 dBm.
myScope.WriteString ":meas:FFT:Peak1 2" ' Meas between peak 2 and 3.
myScope.WriteString ":meas:FFT:Peak2 3"
myScope.WriteString ":meas:FFT:dfr func4" ' Perform dfrequency meas.
myScope.WriteString ":meas:FFT:dfr? func4" ' Query for measurement.
varFrequency = myScope.ReadNumber
Debug.Print FormatNumber(varFrequency, "Scientific")

600 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 601

:MEASure:FFT:DMAGnitude

Command :MEASure:FFT:DMAGnitude [<source>]

The :MEASure:FFT:DMAGnitude command enables the delta magnitude
measurement. The source is specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

<source> {FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:FFT:DMAGnitude? [<source>]

The :MEASure:FFT:DMAGnitude? query returns the delta magnitude of the
specified peaks.

Returned Format [:MEASure:FFT:DMAGnitude] <delta_magnitude>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Related
Commands

:MEASure:FFT:PEAK1, :MEASure:FFT:PEAK2, :MEASure:FFT:THReshold

Example This example measures the magnitude difference between the peaks specified by
the :meas:fft:peak1 and :meas:fft:peak2 for channel 4.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":func4:fftm chan4" ' Perform FFT on channel 4.
myScope.WriteString ":func4:disp on" ' Display the FFT.
myScope.WriteString ":meas:FFT:thr-47" ' Set peak threshold at-47 dBm.
myScope.WriteString ":meas:FFT:Peak1 2" ' Meas between peak 2 and 3.
myScope.WriteString ":meas:FFT:Peak2 3"
myScope.WriteString ":meas:FFT:dmag func4" ' Perform magnitude meas.
myScope.WriteString ":meas:FFT:dmag? func4" ' Query for measurement.
varMagnitude = myScope.ReadNumber
Debug.Print FormatNumber(varMagnitude, "Scientific")

602 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 603

:MEASure:FFT:FREQuency

Command :MEASure:FFT:FREQuency [<source>]

The :MEASure:FFT:FREQuency command enables the frequency measurement.
The source is specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

<source> {FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:FFT:FREQuency? [<source>]

The :MEASure:FFT:FREQuency? query returns the frequency measurement.

Returned Format [:MEASure:FFT:FREQuency] <frequency>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example measures the frequency the peak specified by the :meas:fft:peak1 for
channel 4.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":func4:fftm chan4" ' Perform FFT on channel 4.
myScope.WriteString ":func4:disp on" ' Display the FFT.
myScope.WriteString ":meas:FFT:thr-47" ' Set peak threshold at-47 dBm.
myScope.WriteString ":meas:FFT:Peak1 2" ' Meas amplitude of peak 2.
myScope.WriteString ":meas:FFT:freq func4" ' Perform frequency meas.
myScope.WriteString ":meas:FFT:freq? func4" ' Query for measurement.
varFrequency = myScope.ReadNumber
Debug.Print FormatNumber(varFrequency, "Scientific")

History Legacy command (existed before version 3.10).

604 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:FFT:MAGNitude

Command :MEASure:FFT:MAGNitude [<source>]

The :MEASure:FFT:MAGNitude command measures the magnitude of the FFT. The
source is specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

<source> {FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:FFT:MAGNitude?

The :MEASure:FFT:MAGNitude? query returns the magnitude value of the FFT.

Returned Format [:MEASure:FFT:FMAGNitude] <magnitude>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example measures the magnitude of the peak specified by the :meas:fft:peak
for channel 4.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":func4:fftm chan4" ' Perform FFT on channel 4.
myScope.WriteString ":func4:disp on" ' Display the FFT.
myScope.WriteString ":meas:FFT:thr-47" ' Set peak threshold at-47 dBm.
myScope.WriteString ":meas:FFT:Peak1 2" ' Meas magnitude of peak 2.
myScope.WriteString ":meas:FFT:magn func4" ' Perform magnitude meas.
myScope.WriteString ":meas:FFT:magn? func4" ' Query for measurement.
varMagnitude = myScope.ReadNumber
Debug.Print FormatNumber(varMagnitude, "Scientific")

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 605

:MEASure:FFT:PEAK1

Command :MEASure:FFT:PEAK1 <1st_peak_number>

The :MEASure:FFT:PEAK1command sets the peak number of the first peak for FFT
measurements. The source is specified with the :MEASure:SOURce command as
FUNCtion<F> or WMEMory<N>.

<1st_peak
_number>

An integer, 1 to 100 specifying the number of the first peak.

<N> WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:FFT:PEAK1?

The :MEASure:FFT:PEAK1? query returns the peak number currently set as the first
peak.

Returned Format [:MEASure:FFT:PEAK1] <1st_peak_number><NL>

See Also :MEASure:FFT:THReshold

Also see the example for :MEASure:FFT:DFRequency in this chapter.

History Legacy command (existed before version 3.10).

606 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:FFT:PEAK2

Command :MEASure:FFT:PEAK2 <2nd_peak_number>

The :MEASure:FFT:PEAK2 command sets the peak number of the second peak for
FFT measurements. The source is specified with the :MEASure:SOURce command
as FUNCtion<F> or WMEMory<N>.

<2nd_peak
_number>

An integer, 1 to 100 specifying the number of the second peak.

<N> WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:FFT:PEAK2?

The :MEASure:FFT:PEAK2? query returns the peak number currently set as the
second peak.

Returned Format [:MEASure:FFT:PEAK1] <2nd_peak_number><NL>

See Also :MEASure:FFT:THReshold

Also see the example for :MEASure:FFT:DFRequency in this chapter.

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 607

:MEASure:FFT:THReshold

Command :MEASure:FFT:THReshold <threshold_value>

The :MEASure:FFT:THReshold command sets the peak search threshold value in
dB. The dB after the threshold value is optional.

<threshold _value> A real number specifying the threshold for peaks.

Query :MEASure:FFT:THReshold?

The :MEASure:FFT:THReshold? query returns the peak search threshold value.

Returned Format [:MEASure:FFT:THReshold] <threshold_value><NL>

These :MEASure commands also operate on FFT functions:

See Also Also see the example for :MEASure:FFT:DFRequency in this chapter.

History Legacy command (existed before version 3.10).

Measure Command Measurement Performed

:TMAX The frequency of the maximum value in the spectrum.

:TMIN The frequency of the minimum value in the spectrum.

:VMAX The maximum value in the spectrum.

:VMIN The minimum value in the spectrum.

:VPP The range of values in the spectrum.

:VTIM The value at a specified frequency.

608 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:FREQuency

Command :MEASure:FREQuency [<source>[,<direction>]]

The :MEASure:FREQuency command measures the frequency of the first complete
cycle on the screen using the mid-threshold levels of the waveform (50% levels if
standard thresholds are selected).

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:FREQuency command.

The algorithm is:

If the first edge on the screen is rising,
then

frequency = 1/(second rising edge time - first rising edge time)
else

frequency = 1/(second falling edge time - first falling edge time)

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<direction> {RISing | FALLing}

Specifies direction of edge for measurement. When <direction> is specified, the
<source> parameter is required.

Using the <direction> parameter will set the "Measure All Edges" mode if it is not
currently set. You can use the :MEASure:JITTer:STATistics command to turn the
"Measure All Edges" mode off (or on again). See ":MEASure:JITTer:STATistics" on
page 636.

Example This example measures the frequency of the channel 1 waveform.

myScope.WriteString ":MEASure:FREQuency CHANnel1"

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 609

Query :MEASure:FREQuency? [<source>[,<direction>]]

The :MEASure:FREQuency? query returns the measured frequency.

Returned Format [:MEASure:FREQuency] <value>[,<result_state>]<NL>

<value> The frequency value in Hertz of the first complete cycle on the screen using the
mid-threshold levels of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current frequency of the waveform in the numeric
variable, varFreq, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:FREQuency? CHANnel1"
varFreq = myScope.ReadNumber
Debug.Print FormatNumber(varFreq, 0)

History Legacy command (existed before version 3.10).

610 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:HISTogram:HITS

Command :MEASure:HISTogram:HITS [<source>]

The :MEASure:HISTogram:HITS command places the histogram hits measurement
into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the number of hits within the
histogram stored in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:HITS WMEMory1"

Query :MEASure:HISTogram:HITS? [<source>]

The :MEASure:HISTogram:HITS? query returns the number of hits within the
histogram.

Returned Format [:MEASure:HISTogram:HITS]<value>[,<result_state>]<NL>

<value> The number of hits in the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the number of hits within the current histogram and prints
the result to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:HITS? WMEMory1"
varHisthits = myScope.ReadNumber
Debug.Print FormatNumber(varHisthits, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 611

:MEASure:HISTogram:M1S

Command :MEASure:HISTogram:M1S [<source>]

The :MEASure:HISTogram:M1S command places the histogram percentage of
points within one standard deviation of the mean measurement into the
Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example measures the percentage of points that are within one standard
deviation of the mean of the histogram of the data stored in waveform memory 3.

myScope.WriteString ":MEASure:HISTogram:M1S WMEMory3"

Query :MEASure:HISTogram:M1S? [<source>]

The :MEASure:HISTogram:M1S? query returns the measurement of the percentage
of points within one standard deviation of the mean of the histogram.

Returned Format [:MEASure:HISTogram:M1S]<value>[,<result_state>]<NL>

<value> The percentage of points within one standard deviation of the mean of the
histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within one standard deviation of the
mean of the current histogram and prints the result to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:M1S? WMEMory1"
varHistm1s = myScope.ReadNumber
Debug.Print FormatNumber(varHistm1s, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

612 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:HISTogram:M2S

Command :MEASure:HISTogram:M2S [<source>]

The :MEASure:HISTogram:M2S command places the histogram percentage of
points within two standard deviations of the mean measurement into the
Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example measures the percentage of points that are within two standard
deviations of the mean of the histogram whose source is specified using the
MEASure:SOURce command.

myScope.WriteString ":MEASure:HISTogram:M2S WMEMory1"

Query :MEASure:HISTogram:M2S? [<source>]

The :MEASure:HISTogram:M2S? query returns the measurement of the percentage
of points within two standard deviations of the mean of the histogram.

Returned Format [:MEASure:HISTogram:M2S]<value>[,<result_state>]<NL>

<value> The percentage of points within two standard deviations of the mean of the
histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within two standard deviations of
the mean of the current histogram and prints the result to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:M2S? WMEMory1"
varHistm2s = myScope.ReadNumber
Debug.Print FormatNumber(varHistm2s, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 613

:MEASure:HISTogram:M3S

Command :MEASure:HISTogram:M3S [<source>]

The :MEASure:HISTogram:M2S command places the histogram percentage of
points within two standard deviations of the mean measurement into the
Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example measures the percentage of points that are within three standard
deviations of the mean of the histogram.

myScope.WriteString ":MEASure:HISTogram:M3S HISTogram"

Query :MEASure:HISTogram:M3S? [<source>]

The :MEASure:HISTogram:M3S? query returns the measurement of the percentage
of points within three standard deviations of the mean of the histogram.

Returned Format [:MEASure:HISTogram:M3S]<value>[,<result_state>]<NL>

<value> The percentage of points within three standard deviations of the mean of the
histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within three standard deviations of
the mean of the current histogram and prints the result to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:M3S? WMEMory1"
varHistm3s = myScope.ReadNumber
Debug.Print FormatNumber(varHistm3s, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

614 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:HISTogram:MAX

Command :MEASure:HISTogram:MAX [<source>]

The :MEASure:HISTogram:MAX command places the histogram maximum value
measurement into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the maximum value of the
histogram stored in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:MAX WMEMory1"

Query :MEASure:HISTogram:MAX? [<source>]

The :MEASure:HISTogram:MAX? query returns the measurement of the maximum
value of the histogram.

Returned Format [:MEASure:HISTogram:MAX]<value>[,<result_state>]<NL>

<value> The maximum value of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the maximum value of the current histogram and prints the
result to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:MAX?"
varHistmax = myScope.ReadNumber
Debug.Print FormatNumber(varHistmax, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 615

:MEASure:HISTogram:MEAN

Command :MEASure:HISTogram:MEAN [<source>]

The :MEASure:HISTogram:MEAN command places the histogram mean
measurement into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the mean of the histogram stored
in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:MEAN WMEMory1"

Query :MEASure:HISTogram:MEAN? [<source>]

The :MEASure:HISTogram:MEAN? query returns the measurement of the mean of
the histogram.

Returned Format [:MEASure:HISTogram:MEAN]<value>[,<result_state>]<NL>

<value> The mean of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the mean of the current histogram and prints the result to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:MEAN? WMEMory1"
varHistmean = myScope.ReadNumber
Debug.Print FormatNumber(varHistmean, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

616 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:HISTogram:MEDian

Command :MEASure:HISTogram:MEDian [<source>]

The :MEASure:HISTogram:MEDian command places the histogram median
measurement into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the median of the histogram
stored in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:MEDian WMEMory1"

Query :MEASure:HISTogram:MEDian? [<source>]

The :MEASure:HISTogram:MEDian? query returns the measurement of the median
of the histogram.

Returned Format [:MEASure:HISTogram:MEDian]<value>[,<result_state>]<NL>

<value> The median of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the median of the current histogram and prints the result to
the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:MEDian? WMEMory1"
varHistmed = myScope.ReadNumber
Debug.Print FormatNumber(varHistmed, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 617

:MEASure:HISTogram:MIN

Command :MEASure:HISTogram:MIN [<source>]

The :MEASure:HISTogram:MIN command places the histogram minimum
measurement into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the minimum the histogram
stored in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:MIN WMEMory1"

Query :MEASure:HISTogram:MIN? [<source>]

The :MEASure:HISTogram:MIN? query returns the measurement of the minimum
value of the histogram.

Returned Format [:MEASure:HISTogram:MIN]<value>[,<result_state>]<NL>

<value> The minimum value of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the minimum value of the current histogram and prints the
result to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:MIN?"
varHistmin = myScope.ReadNumber
Debug.Print FormatNumber(varHistmin, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

618 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:HISTogram:MODE

Command :MEASure:HISTogram:MODE [<source>]

The :MEASure:HISTogram:MODE command places the histogram mode
measurement into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the mode of the histogram stored
in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:MODE WMEMory1"

Query :MEASure:HISTogram:MODE? [<source>]

The :MEASure:HISTogram:MODE? query returns the measurement histogram's
Mode value.

Returned Format [:MEASure:HISTogram:MODE]<value>[,<result_state>]<NL>

<value> The Mode value of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the Mode value of the current histogram and prints the result
to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:MODE? WMEMory1"
varHistMode = myScope.ReadNumber
Debug.Print FormatNumber(varHistMode, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History New in version 3.11.

Version 3.50: Can now use this command with Meas Histogram math functions.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 619

:MEASure:HISTogram:PEAK

Command :MEASure:HISTogram:PEAK [<source>]

The :MEASure:HISTogram:PEAK command places the histogram number of hits in
the greatest peak measurement into the Measurements tab of the oscilloscope's
user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the number of hits in the greatest
peak of the histogram stored in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:PEAK WMEMory1"

Query :MEASure:HISTogram:PEAK? [<source>]

The :MEASure:HISTogram:PEAK? query returns the number of hits in the greatest
peak of the histogram measurement.

Returned Format [:MEASure:HISTogram:PEAK]<value>[,<result_state>]<NL>

<value> The number of hits in the histogram peak.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the number of hits in the greatest peak of the current
histogram and prints the result to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:PEAK? WMEMory1"
varHistpeak = myScope.ReadNumber
Debug.Print FormatNumber(varHistpeak, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

620 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:HISTogram:PP

Command :MEASure:HISTogram:PP [<source>]

The :MEASure:HISTogram:PP command places the histogram width measurement
into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the width of the histogram stored
in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:PP WMEMory1"

Query :MEASure:HISTogram:PP? [<source>]

The :MEASure:HISTogram:PP? query returns the measurement of the width of the
histogram.

Returned Format [:MEASure:HISTogram:PP]<value>[,<result_state>]<NL>

<value> The width of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the width of the current histogram and prints the result to
the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:PP? WMEMory1"
varHistpp = myScope.ReadNumber
Debug.Print FormatNumber(varHistpp, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 621

:MEASure:HISTogram:RESolution

Command :MEASure:HISTogram:RESolution [<source>]

The :MEASure:HISTogram:RESolution command places the histogram bin width
measurement into the Measurements tab of the oscilloscope's user interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the bin width of the histogram
stored in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:RESolution WMEMory1"

Query :MEASure:HISTogram:RES? [<source>]

The :MEASure:HISTogram:RES? query returns the measurement of the bin width
of the histogram.

Returned Format [:MEASure:HISTogram:RES]<value>[,<result_state>]<NL>

<value> The width of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the width of the current histogram and prints the result to
the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:RESolution? WMEMory1"
varHistpp = myScope.ReadNumber
Debug.Print FormatNumber(varHistpp, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History New in version 3.50.

622 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:HISTogram:STDDev

Command :MEASure:HISTogram:STDDev [<source>]

The :MEASure:HISTogram:STDDev command places the histogram standard
deviation measurement into the Measurements tab of the oscilloscope's user
interface.

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the command.

The :MEASure:HISTogram commands only apply to Meas Histogram math
functions, the histogram waveform, or memories containing histograms.

<source> { FUNCtion<F> | WMEMory<N> | HISTogram}

<F> An integer, 1-16.

<N> An integer, 1-4.

Example This example places into the Measurements tab the standard deviation of the
histogram stored in WMEMory1.

myScope.WriteString ":MEASure:HISTogram:STDDev WMEMory1"

Query :MEASure:HISTogram:STDDev? [<source>]

The :MEASure:HISTogram:STDDev? query returns the measurement of standard
deviation of the histogram.

Returned Format [:MEASure:HISTogram:STDDev]<value>[,<result_state>]<NL>

<value> The standard deviation of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the standard deviation of the histogram whose source is
specified using the MEASure:SOURce command and prints the result to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:HISTogram:STDDEV? WMEMory1"
varHiststtd = myScope.ReadNumber
Debug.Print FormatNumber(varHiststtd, 0)

See Also • ":FUNCtion<F>:MHIStogram" on page 383

• ":HISTogram:MODE" on page 408

History Legacy command (existed before version 3.10).

Version 3.50: Can now use this command with Meas Histogram math functions.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 623

:MEASure:HOLDtime

Command

:MEASure:HOLDtime [<data_source>,<data_source_dir>, <clock_source>,<cloc
k_ source_dir>]

The :MEASure:HOLDtime command measures the hold time between the specified
clock and data sources.

<data_source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<clock_source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<data_source
_dir>

{RISing | FALLing | BOTH}

Selects the direction of the data source edge.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

624 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

<clock_source
_dir>

{RISing | FALLing}

Selects the direction of the clock source edge.

Example This example measures the hold time from the rising edge of channel 1 to the
rising edge of channel 2.

myScope.WriteString ":MEASURE:HOLDTIME CHAN1,RIS,CHAN2,RIS"

Query :MEASure:HOLDtime? [<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:HOLDtime? query returns the measured hold time between the
specified clock and data source.

Returned Format {:MEASure:SETuptime] <value><NL>

<value> Hold time in seconds.

Example This example places the current value of hold time in the numeric variable,
varTime, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:HOLDTIME? CHAN1,RIS,CHAN2,RIS"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

See Also Refer to the :MEASure:RESults? query for information on the results returned and
how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 625

:MEASure:JITTer:HISTogram

Command

:MEASure:JITTer:HISTogram {{ON|1} | {OFF|0}}

The :MEASure:JITTer:HISTogram command turns the measurement histogram
display on or off when a jitter measurement is displayed.

Example This example turns the jitter measurement histogram display on.

myScope.WriteString ":MEASURE:JITTER:HISTOGRAM ON"

Query :MEASure:JITTer:HISTogram?

The :MEASure :JITTer:HISTogram? query returns the state of measurement
histogram display.

Returned Format [:MEASure:JITTer:HISTogram] {1 | 0}

Example This example places the current setting of the jitter spectrum mode in the variable
varSetting, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:HISTOGRAM?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

626 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:MEASurement

Command

:MEASure:JITTer:MEASurement {MEASurement<N>}

The :MEASure :JITTer:MEASurement command selects which measurement
displayed on the oscilloscope you are performing the jitter analysis on.
MEASurement1 is the left-most measurement on the display.

<N> {1 | 2 | 3 | 4 | 5}

Example This example assigns measurement 2 to the jitter measurement analysis.

myScope.WriteString ":MEASURE:JITTER:MEASUREMENT MEASUREMENT2"

Query :MEASure:JITTer:MEASurement?

The :MEASure :JITTer:MEASurement? query returns the measurement number you
are performing the jitter analysis on. If no measurements are being displayed on
the oscilloscope, the query will return a null string.

Returned Format [:MEASure:JITTer:MEASurement MEASurement<N>]

Example This example places the current measurement number that you are performing
jitter analysis on in the string variable strSetting, then prints the contents of the
variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:MEASUREMENT?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 627

:MEASure:JITTer:SPECtrum

Command

:MEASure:JITTer:SPECtrum {{ON|1} | {OFF|0}}

The :MEASure:JITTer:SPECtrum command turns the jitter spectrum display on or
off when a jitter measurement is displayed.

Example This example turns the jitter measurement spectrum display on.

myScope.WriteString ":MEASURE:JITTER:SPECTRUM ON"

Query :MEASure:JITTer:SPECtrum?

The :MEASure :JITTer:SPECtrum? query returns the state of jitter spectrum
display.

Returned Format [:MEASure:JITTer:SPECtrum] {1 | 0}

Example This example places the current setting of the jitter spectrum mode in the variable
varSetting, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:SPECTRUM?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

628 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:SPECtrum:HORizontal

Command

:MEASure:JITTer:SPECtrum:HORizontal {AUTO | MANual}

The :MEASure:JITTer:SPECtrum:HORizontal command sets the jitter spectrum
horizontal mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the horizontal scaling and center frequency. In manual
mode, you can set your own horizontal scaling and center frequency values.

Example This example sets the jitter spectrum horizontal mode to automatic.

myScope.WriteString ":MEASURE:JITTER:SPECTRUM:HORIZONTAL AUTO"

Query :MEASure:JITTer:SPECtrum:HORizontal?

The :MEASure:JITTer:SPECtrum:HORizontal? query returns the current jitter
spectrum horizontal mode setting.

Returned Format [:MEASure:JITTer:SPECtrum:HORizontal] {AUTO | MANual}

Example This example places the current setting of the jitter trend horizontal mode in the
string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:SPECTRUM:HORIZONTAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 629

:MEASure:JITTer:SPECtrum:HORizontal:POSition

Command

:MEASure:JITTer:SPECtrum:HORizontal:POSition <position>

The :MEASure:JITTer:SPECtrum:HORizontal:POSition command sets the jitter
spectrum horizontal center frequency position.

<position> A real number for the center frequency position in Hertz.

Example This example sets the jitter spectrum horizontal center frequency position to 250
kHz.

myScope.WriteString ":MEASURE:JITTER:SPECTRUM:HORIZONTAL:POSITION 250E3"

Query :MEASure:JITTer:SPECtrum:HORizontal:POSition?

The :MEASure:JITTer:SPECtrum:HORizontal:POSition? query returns the current
jitter spectrum horizontal center frequency position setting.

Returned Format [:MEASure:JITTer:SPECtrum:HORizontal:POSition] <value><NL>

<value> The jitter spectrum horizontal center frequency setting.

Example This example places the current setting of the jitter trend horizontal center
frequency position in the variable varValue, then prints the contents of the variable
to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:SPECTRUM:HORIZONTAL:POSITION?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

630 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:SPECtrum:HORizontal:RANGe

Command

:MEASure:JITTer:SPECtrum:HORizontal:RANGe <range>

The :MEASure:JITTer:SPECtrum:HORizontal:RANGe command sets the jitter
spectrum horizontal range.

<range> A real number for the horizontal frequency range in Hertz.

Example This example sets the jitter spectrum horizontal range to 10 GHz (1 GHz/div).

myScope.WriteString ":MEASURE:JITTER:SPECTRUM:HORIZONTAL:RANGE 10E9"

Query :MEASure:JITTer:SPECtrum:HORizontal:RANGe?

The :MEASure:JITTer:SPECtrum:HORizontal:RANGe? query returns the current
jitter spectrum horizontal range setting.

Returned Format [:MEASure:JITTer:SPECtrum:HORizontal:RANGe] <value><NL>

<value> The jitter spectrum horizontal range setting.

Example This example places the current setting of the jitter trend horizontal range in the
variable varValue, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:SPECTRUM:HORIZONTAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 631

:MEASure:JITTer:SPECtrum:VERTical

Command

:MEASure:JITTer:SPECtrum:VERTical {AUTO | MANual}

The :MEASure:JITTer:SPECtrum:VERTical command sets the jitter spectrum
vertical mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the vertical scaling and offset. In manual mode, you can set
your own vertical scaling and offset values.

Example This example sets the jitter spectrum vertical mode to automatic.

myScope.WriteString ":MEASURE:JITTER:SPECTRUM:VERTICAL AUTO"

Query :MEASure:JITTer:SPECtrum:VERTical?

The :MEASure:JITTer:SPECtrum:VERTical? query returns the current jitter
spectrum vertical mode setting.

Returned Format [:MEASure:JITTer:SPECtrum:VERTical] {AUTO | MANual}

Example This example places the current setting of the jitter spectrum vertical mode in the
string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:SPECTRUM:VERTICAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

632 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:SPECtrum:VERTical:OFFSet

Command

:MEASure:JITTer:SPECtrum:VERTical:OFFSet <offset>

The :MEASure:JITTer:SPECtrum:VERTical:OFFSet command sets the jitter
spectrum vertical offset.

<offset> A real number for the vertical offset of the jitter measurement spectrum.

Example This example sets the jitter spectrum vertical offset to 2 ns.

myScope.WriteString ":MEASURE:JITTER:SPECTRUM:VERTICAL:OFFSET 10E-9"

Query :MEASure:JITTer:SPECtrum:VERTical:OFFSet?

The :MEASure:JITTer:SPECtrum:VERTical:OFFSet? query returns the jitter
spectrum vertical offset time.

Returned Format [:MEASure:JITTer:SPECtrum:VERTical:OFFSet] <value> [,<result_state>]<NL>

<value> The jitter vertical spectrum offset time setting.

Example This example places the current value of jitter spectrum vertical offset in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:JITTER:SPECTRUM:VERTICAL:OFFSET?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 633

:MEASure:JITTer:SPECtrum:VERTical:RANGe

Command

:MEASure:JITTer:SPECtrum:VERTical:RANGe <range>

The :MEASure:JITTer:SPECtrum:VERTical:RANGe command sets the jitter
spectrum vertical range.

<range> A real number for the full-scale vertical range for the jitter measurement spectrum.

Example This example sets the jitter spectrum vertical range to 4 ns (500 ps/div X 8 div).

myScope.WriteString ":MEASURE:JITTER:SPECTRUM:VERTICAL:RANGE 4E-9"

Query :MEASure:JITTer:SPECtrum:VERTical:RANGe?

The :MEASure:JITTer:SPECtrum:VERTical:RANGe? query returns the jitter
spectrum range time setting.

Returned Format [:MEASure:JITTer:SPECtrum:VERTical:RANGe] <value> [,<result_state>]<NL>

<value> The jitter spectrum vertical range setting.

Example This example places the current value of jitter spectrum vertical range in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:JITTER:SPECTRUM:VERTICAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

634 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:SPECtrum:VERTical:TYPE

Command

:MEASure:JITTer:SPECtrum:VERTical:TYPE {LINear | LOGarithmic}

The :MEASure:JITTer:SPECtrum:VERTical:TYPE command lets you select either a
LINear or a LOGarithmic vertical scale for the jitter spectrum plot.

Example This example sets a linear vertical scale for the jitter spectrum plot.

myScope.WriteString ":MEASure:JITTer:SPECtrum:VERTical:TYPE LINear"

Query :MEASure:JITTer:SPECtrum:VERTical:TYPE?

The :MEASure:JITTer:SPECtrum:VERTical:TYPE? query returns the current jitter
spectrum plot vertical scale setting.

Returned Format [:MEASure:JITTer:SPECtrum:VERTical:TYPE] {LINear | LOGarithmic}

Example This example places the current jitter spectrum plot vertical scale setting in the
string variable strType, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASure:JITTer:SPECtrum:VERTical:TYPE?"
strType = myScope.ReadString
Debug.Print strType

History New in version 3.10.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 635

:MEASure:JITTer:SPECtrum:WINDow

Command

:MEASure:JITTer:SPECtrum:WINDow {RECTangular | HANNing | FLATtop
| BHARris | HAMMing}

The :MEASure:JITTer:SPECtrum:WINDow command sets the jitter spectrum
window mode. For a description of the window modes, see
":FUNCtion<F>:FFT:WINDow" on page 364.

Example This example sets the jitter spectrum window mode to Hanning.

myScope.WriteString ":MEASure:JITTer:SPECtrum:WINDow HANNing"

Query :MEASure:JITTer:SPECtrum:WINDow?

The :MEASure:JITTer:SPECtrum:WINDow? query returns the current jitter
spectrum window mode setting.

Returned Format [:MEASure:JITTer:SPECtrum:WINDow] {RECTangular | HANNing | FLATtop
| BHARris | HAMMing}<NL>

Example This example places the current setting of the jitter spectrum window mode in the
string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASure:JITTer:SPECtrum:WINDow?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Version 3.11: Added the HAMMing window mode selection.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

636 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:STATistics

Command :MEASure:JITTer:STATistics {{ON|1} | {OFF|0}}

The :MEASure:JITTer:STATistics command enables or disables jitter mode and
allows you to view: measurement histogram (:MEASure:JITTer:HISTogram),
measurement trend (:MEASure:JITTer:TRENd), and jitter spectrum
(:MEASure:JITTer:SPsECtrum) if they are enabled.

The :MEASure:JITTer:STATistics command also turns on or off the ability to
measure all edges in the waveform; not just the first edge on screen.

Example This example turns the jitter measurement statistics and the "Measure All Edges"
mode on.

myScope.WriteString ":MEASure:JITTer:STATistics ON"

Query :MEASure:JITTer:STATistics?

The :MEASure:JITTer:STATistics? query returns the state of jitter statistics.

Returned Format [:MEASure:JITTer:STATistics] {1 | 0}

Example This example places the current setting of the jitter statistics mode in the variable
varSetting, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASure:JITTer:STATistics?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 637

:MEASure:JITTer:TRENd

Command

:MEASure:JITTer:TRENd {{ON|1} | {OFF|0}}

The :MEASure:JITTer:TRENd command turns the jitter measurement trend display
on or off. When on, trend plots measurement results time correlated to the
waveform being measured.

Example This example turns the jitter measurement trend display on.

myScope.WriteString ":MEASURE:JITTER:TREND ON"

Query :MEASure:JITTer:TRENd?

The :MEASure :JITTer:TRENd? query returns the state of jitter trend display.

Returned Format [:MEASure:JITTer:TRENd] {1 | 0}

Example This example places the current setting of the jitter trend mode in the string
variable strSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:TREND?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

638 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:TRENd:SMOoth

Command

:MEASure:JITTer:TRENd:SMOoth {{ON|1} | {OFF|0}}

The :MEASure:JITTer:TRENd:SMOoth command sets jitter trend smoothing to on
or off. When on, smoothing creates a running average smoothed by the number of
points set by the :JITTer:TRENd:SMOoth:POINts command.

Example This example sets the jitter trend smoothing mode to on.

myScope.WriteString ":MEASURE:JITTer:TREND:SMOOTH ON"

Query :MEASure:JITTer:TRENd:SMOoth?

The :MEASure:JITTer:TRENd:SMOoth? query returns the current jitter trend
smoothing mode setting.

Returned Format [:MEASure:JITTer:TRENd:SMOoth] {1 | 0}

Example This example places the current setting of the jitter trend smoothing mode in the
string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:TREND:SMOOTH?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 639

:MEASure:JITTer:TRENd:SMOoth:POINts

Command

:MEASure:JITTer:TRENd:SMOoth:POINts <points>

The :MEASure:JITTer:TRENd:SMOoth:POINts command sets the number of points
as a set size for the data smoothing feature.

<points> odd integers, 3 to 1001. If out of range, the number will be rounded to nearest
lower odd integer.

Example This example sets the jitter trend smoothing points to 7.

myScope.WriteString ":MEASURE:JITTER:TREND:SMOOTH:POINTS 7"

Query :MEASure:JITTer:TRENd:SMOoth:POINts?

The :MEASure:JITTer:TRENd:SMOoth:POINts? query returns the current setting for
jitter trend smoothing points.

Returned Format [:MEASure:JITTer:TRENd:SMOoth:POINts] <value><NL>

<value> The jitter offset smoothing points setting.

Example This example places the current value of jitter trend smoothing points in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:JITTER:TREND:SMOOTH:POINTS?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

640 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:TRENd:VERTical

Command

:MEASure:JITTer:TRENd:VERTical {AUTO | MANual}

The :MEASure:JITTer:TRENd:VERTical command sets the jitter trend vertical mode
to automatic or manual. In automatic mode, the oscilloscope automatically selects
the vertical scaling and offset. In manual mode, you can set your own scaling and
offset values.

Example This example sets the jitter trend vertical mode to automatic.

myScope.WriteString ":MEASURE:JITTer:TRENd:VERTical AUTO"

Query :MEASure:JITTer:TRENd:VERTical?

The :MEASure:JITTer:TRENd:VERTical? query returns the current jitter trend
vertical mode setting.

Returned Format [:MEASure:JITTer:TRENd:VERTical] {AUTO | MANual}

Example This example places the current setting of the jitter trend vertical mode in the
string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:JITTER:TREND:VERTICAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 641

:MEASure:JITTer:TRENd:VERTical:OFFSet

Command

:MEASure:JITTer:TRENd:VERTical:OFFSet <offset>

The :MEASure:JITTer:TRENd:VERTical:OFFSet command sets the jitter trend
vertical offset.

<offset> A real number for the vertical offset for the jitter measurement trend.

Example This example sets the jitter trend vertical offset to 100 ps.

myScope.WriteString ":MEASURE:JITTER:TREND:VERTICAL:OFFSET 100E-12"

Query :MEASure:JITTer:TRENd:VERTical:OFFSet?

The :MEASure:JITTer:TRENd:VERTical:OFFSet? query returns the jitter trend
vertical offset setting.

Returned Format [:MEASure:JITTer:TRENd:VERTical:OFFSet] <value><NL>

<value> The jitter vertical trend offset setting.

Example This example places the current value of jitter trend vertical offset in the numeric
variable, varValue, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:JITTER:TREND:VERTICAL:OFFSET?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

642 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:JITTer:TRENd:VERTical:RANGe

Command

:MEASure:JITTer:TRENd:VERTical:RANGe <range>

The :MEASure:JITTer:TRENd:VERTical:RANGe command sets the jitter trend
vertical range.

<range> A real number for the full-scale vertical range for the jitter measurement trend.

Example This example sets the jitter trend vertical range to 4 ns (500 ps/div X 8 div).

myScope.WriteString ":MEASURE:JITTER:TREND:VERTICAL:RANGE 4E-9"

Query :MEASure:JITTer:TRENd:VERTical:RANGe?

The :MEASure:JITTer:TRENd:VERTical:RANGe? query returns the jitter trend
vertical range setting.

Returned Format [:MEASure:JITTer:TRENd:VERTical:RANGe] <value><NL>

<value> The jitter trend vertical range setting.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of jitter trend vertical range in the numeric
variable, varValue, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:JITTER:TREND:VERTICAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 643

:MEASure:NAME

Command :MEASure:NAME {MEAS1 | MEAS2 | MEAS3 | MEAS4}, <name>

The :MEASure:NAME commands sets the name of the specified measurement to
whatever string is given to <name>. This enables you to give specific names to
measurements displayed on the oscilloscope's screen.

<name> a quoted string

Query :MEASure:NAME? {MEAS1 | MEAS2 | MEAS3 | MEAS4}

The :MEASure:NAME? query returns the name of the corresponding measurement.

History Legacy command (existed before version 3.10).

644 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NCJitter

Command

:MEASure:NCJitter <source>,<direction>,<n>,<start>

The :MEASure:NCJitter command measures the N cycle jitter of the waveform.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> {RISing | FALLing}, specifies direction of waveform edge to make measurement.

<n> An integer, 1 to 99, the number of cycles in a group.

<start> An integer, 1 to <n> - 1, typically 1, the cycle to start measuring.

Example This example measures the N cycle jitter on channel 1, rising edge, 5 cycles in a
group, starting on the first cycle of the waveform.

myScope.WriteString ":MEASURE:NCJITTER CHANNEL1,RISING,5,1"

Query :MEASure:NCJitter? <source>,<direction>,<n>,<start>

The :MEASure:NCJitter? query returns the measured N cycle jitter time of the
waveform.

Returned Format [:MEASure:NCJitter] <value>[,<result_state>]<NL>

<value> The N cycle jitter time of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 645

Example This example places the current value of N cycle jitter in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:NCJITTER? CHANNEL1,RIS,5,1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

646 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NOISe

Command

:MEASure:NOISe <source>, {VOLT | UNITamp}, {ZERO | ONE | BOTH}

The :MEASure:NOISe command adds a Noise measurement to the oscilloscope
display.

The parameters specify the input source to be measured, the units (in volts or unit
amplitude), and whether "zeros", "ones", or both "zeros" and "ones" should be
measured.

This command is the equivalent of adding a noise measurement via Measure > Data
> Noise in the front panel user interface.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | EQUalized}

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> In CHANnel<N> and WMEMory<N>, N is an integer, 1-4, representing the selected
channel or waveform memory.

<F> FUNCtion<F> is an integer, 1-16.

Example This example adds a "ones" Noise measurement on channel 1, in volt units, to the
oscilloscope display. The measurement results appear in the Measurements tab.

myScope.WriteString ":MEASure:NOISe CHANnel1,VOLT,ONE"

Query :MEASure:NOISe? <source>, {VOLT | UNIT}, {ZERO | ONE | BOTH}

The :MEASure:NOISe? query returns the measured noise value.

Returned Format [:MEAS:NOIS] <measured_value><NL>

<measured_value> The measured "zeros", "ones", or both noise value in volts or unit amplitude.

Example This example places the measurement result in the varMeasuredNoise variable.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:NOISe? CHANnel1,VOLT,ONE"
varMeasuredNoise = myScope.ReadNumber
Debug.Print FormatNumber(varMeasuredNoise, 0)

History New in version 3.50.

NOTE This command is only available when the EZJIT Complete software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 647

:MEASure:NOISe:ALL?

Query

:MEASure:NOISe:ALL? {ZERO | ONE}

The :MEASure:NOISe:ALL? query returns the NOISe measurement results for the
specified level. These values are returned as comma separated values using the
following format:

Returned Format [:MEASure:NOISe:ALL<space>]
TI(<format>),<result>,<state>,
RN(<format>),<result>,<state>,
DI(<format>),<result>,<state>,
PI(<format>),<result>,<state>,
ABUI(<format>),<result>,<state>,
BUI(<format>),<result>,<state>,
ISI(<format>),<result>,<state>,
Count,<number_of_bits>,<state>,
Level,<nominal_level>,<state>,
Eye Height(<format>),<result>,<state>,<NL>

<space> White space (ASCII 32) character.

<format> The format value tells you something about how the measurement is made. For
instance, TI(1E-12) means that the TI measurement was derived using a bit error
rate of 1E-12. A format of (rms) means the measurement is a root-mean-square
measurement. A format of (dd) means the measurement uses a dual-Dirac delta
model to derive the measurement. A format of (pp) means the measurement is a
peak-to-peak measurement.

<result> The measured results for the NOISe measurements. A value of 9.99999E+37
means that the oscilloscope was unable to make the measurement.

<state> The measurement result state. See Table 14 for a list of values and descriptions of
the result state value.

<number_of_ bits> The number of waveform bits that have been measured.

<nominal_level> The Level line returns the nominal one or zero level. The unit amplitude = the
nominal one level – nominal zero level.

NOTE This command is only available when the EZJIT Complete software is installed.

NOTE Whether some of these values are included or not depends on the setting of
:MEASure:NOISe:METHod and :MEASure:NOISe:REPort.

For example, when :MEASure:NOISe:REPort or :MEASure:NOISe:METHod is SPECtral, the BUI
and ABUI values are not returned, and there are two PI values (one "rms" and one "dd").

648 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

Example This example places the noise measurement result for "ones" in the strResults
variable and displays it on the computer's screen.

Dim strResult As String ' Dimension variable.
myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASURE:NOISe:ALL? ONE"
strResults = myScope.ReadString
Debug.Print strResults

See Also • ":MEASure:NOISe:METHod" on page 651

• ":MEASure:NOISe:REPort" on page 652

History New in version 3.50.

Version 4.10: New results can be returned depending on the
:MEASure:NOISe:METHod and :MEASure:NOISe:REPort settings.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 649

:MEASure:NOISe:BANDwidth

Command

:MEASure:NOISe:BANDwidth {NARRow | WIDE}

The :MEASure:NOISe:BANDwidth command sets the type of filtering used to
separate the data dependent noise from the random noise and the periodic noise.

Example This example sets the RN bandwidth to WIDE.

myScope.WriteString ":MEASURE:NOISe:BANDWIDTH WIDE"

Query :MEASure:NOISe:BANDwidth?

The :MEASure:NOISe:BANDwidth? query returns the RN bandwidth filter setting.

Returned Format [:MEASure:NOISe:BANDwidth] {NARRow | WIDE}<NL>

Example This example places the RN filter setting the strFilter variable and displays it on
the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:NOISe:BANDWIDTH?"
strFilter = myScope.ReadString
Debug.Print strFilter

History New in version 3.50.

NOTE This command is only available when the EZJIT Complete software is installed.

650 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NOISe:LOCation

Command

:MEASure:NOISe:LOCation <location>

The :MEASure:NOISe:LOCation command specifies the measurement location
within the bit where 0% is the beginning of the bit, 50% is the middle of the bit,
and 100% is the end of the bit.

You can specify a location value from 5% to 95%.

Example This example sets the measurement location to 60%.

myScope.WriteString ":MEASURE:NOISe:LOCation 60"

Query :MEASure:NOISe:LOCation?

The :MEASure:NOISe:LOCation? query returns the measurement location setting.

Returned Format [:MEASure:NOISe:LOCation] <location><NL>

Example This example places the measurement location setting the varLocation variable
and displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:NOISe:LOCation?"
varLocation = myScope.ReadNumber
Debug.Print FormatNumber(varLocation, 0)

History New in version 3.50.

NOTE This command is only available when the EZJIT Complete software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 651

:MEASure:NOISe:METHod

Command

:MEASure:NOISe:METHod {SPECtral | BOTH}

The :MEASure:NOISe:METHod command lets you select the method for random
noise (RN) analysis, either the SPECtral method or BOTH the spectral and tail fit
methods.

When analyzing noise with crosstalk or ground bounce effects present in your
signal, select BOTH. When this option is selected, the deterministic interference
(DI) that is uncorrelated to the data pattern, also known as bounded uncorrelated
interference (BUI), is separated into periodic interference (PI) and aperiodic
bounded uncorrelated interference (ABUi). ABUi is caused by crosstalk and ground
bounce effects.

When there are no crosstalk or ground bounce effects present in your signal, you
can select the SPECtral method in order to run faster. When this option is
selected, the deterministic interference (DI) that is uncorrelated to the data pattern
is all reported as periodic interference (PI).

Example This example sets NOISe method to BOTH the spectral and tail fit analysis.

myScope.WriteString ":MEASURE:NOISe:METHod BOTH"

Query :MEASure:NOISe:METHod?

The :MEASure:NOISe:METHod? query returns the selected NOISe method.

Returned Format [:MEASure:NOISe:METHod] {SPEC | BOTH}<NL>

Example This example places the NOISe method setting the strNoiseMethod variable and
displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASURE:NOISe:METHod?"
strNoiseMethod = myScope.ReadString
Debug.Print strNoiseMethod

See Also • ":MEASure:NOISe:REPort" on page 652

History New in version 4.10.

NOTE This command is only available when the EZJIT Complete jitter analysis application is
licensed.

652 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NOISe:REPort

Command

:MEASure:NOISe:REPort {SPECtral | TAILfit}

When the :MEASure:NOISe:METHod BOTH command selects both the spectral
and tail fit methods for random noise analysis, the :MEASure:NOISe:REPort
command specifies which method is used for the reports in the noise graphs /
histograms and Noise tab measurements.

Example This example specifies that the NOISe report include measurements from both the
spectral and tail fit analysis (including aperiodic bounded uncorrelated
interference ABUI measurements).

myScope.WriteString ":MEASURE:NOISe:REPort TAILfit"

Query :MEASure:NOISe:REPort?

The :MEASure:NOISe:REPort? query returns the report setting.

Returned Format [:MEASure:NOISe:REPort] {SPEC | TAIL}<NL>

Example This example places the report setting in the strReportSetting variable and
displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:NOISe:REPort?"
strReportSetting = myScope.ReadString
Debug.Print strReportSetting

See Also • ":MEASure:NOISe:METHod" on page 651

History New in version 4.10.

NOTE This command is only available when the EZJIT Complete jitter analysis application is
licensed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 653

:MEASure:NOISe:RN

Command

:MEASure:NOISe:RN {ON, <RNrms Zero>, <RNrms One> | OFF}

The :MEASure:NOISe:RN command can specify a known amount of random noise.
When used, the remaining amount of the total noise measured is reported as
periodic interference (PI).

This command is used in situations when crosstalk aggressors influence the
random noise measured on a signal. If the random noise on a signal is measured
without the aggressor signal crosstalk, this known amount of random noise can be
specified when measuring the noise again with the crosstalk aggressors.

• ON — Enables a specified amount of random noise.

• <RNrms Zero> — The known amount of "zeros" random noise.

• <RNrms One> — The known amount of "ones" random noise.

• OFF — Disables the specification of random noise amounts.

Specified amounts of "ones" and "zeros" random noise is shown in the noise
measurement results (see page 647) as "RN(rms specified)".

Example This example specifies 100 μV of known "zeros" random noise and 200 μV of
known "ones" random noise.

myScope.WriteString ":MEAS:NOISE:RN ON, 100e-6, 200e-6"

Query :MEASure:NOISe:RN?

The :MEASure:NOISe:RN? query returns the specified RN settings.

Returned Format [:MEASure:NOISe:RN] {ON, <RNrms Zero>, <RNrms One> | OFF}<NL>

Example This example places the specified RN settings in the strKnownRandomNoise
variable and displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:NOISe:RN?"
strKnownRandomNoise = myScope.ReadString
Debug.Print strKnownRandomNoise

History New in version 3.50.

NOTE This command is only available when the EZJIT Complete software is installed.

654 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NOISe:SCOPe:RN

Command

:MEASure:NOISe:SCOPe:RN {ON, <RNrms Zero>, <RNrms One> | OFF}

The :MEASure:NOISe:SCOPe:RN command can specify the removal of the
oscilloscope's calibrated random noise from the reported RN.

• ON — Enables the removal of the oscilloscope's calibrated random noise from
the reported RN.

• <RNrms Zero> — The oscilloscope's "zeros" random noise to remove from the
reported RN.

• <RNrms One> — The oscilloscope's "ones" random noise to remove from the
reported RN.

• OFF — Disables the removal of the oscilloscope's calibrated random noise from
the reported RN.

Running the Calibrate scope jitter / noise from the front panel user interface will set
<RNrms Zero> and <RNrms One> to the measured values; however, the measures
values can be changed by this command.

Example This example specifies 100 μV of oscilloscope "zeros" random noise and 200 μV of
oscilloscope "ones" random noise.

myScope.WriteString ":MEAS:NOISE:SCOPE:RN ON, 100e-6, 200e-6"

Query :MEASure:NOISe:SCOPe:RN?

The :MEASure:NOISe:SCOPe:RN? query returns the oscilloscope RN settings.

Returned Format [:MEASure:NOISe:SCOPe:RN] {ON, <RNrms Zero>, <RNrms One> | OFF}<NL>

Example This example places the oscilloscope RN settings in the strScopeRandomNoise
variable and displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:NOISe:SCOPe:RN?"
strScopeRandomNoise = myScope.ReadString
Debug.Print strScopeRandomNoise

History New in version 3.50.

NOTE This command is only available when the EZJIT Complete software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 655

:MEASure:NOISe:STATe

Command

:MEASure:NOISe:STATe {ON | OFF}

The :MEASure:NOISe:STATe command enables or disables the NOISe
measurements.

Example This example sets the NOISe state to on.

myScope.WriteString ":MEASURE:NOISe:STATe ON"

Query :MEASure:NOISe:STATe?

The :MEASure:NOISe:STATe? query returns the state of the NOISe measurements.

Returned Format [:MEASure:NOISe:STATe] {1 | 0}<NL>

Example This example places the current state of the NOISe measurements in the varState
variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:NOISe:STATE?"
varState = myScope.ReadNumber
Debug.Print FormatNumber(varState, 0)

History New in version 3.50.

NOTE This command is only available when the EZJIT Complete software is installed.

656 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NOISe:UNITs

Command

:MEASure:NOISe:UNITs {VOLT | UNITamplitude}

The :MEASure:NOISe:UNITs command sets the unit of measure for NOISe
measurements to volts or unit amplitude.

Example This example sets the NOISe units to unit amplitude.

myScope.WriteString ":MEASURE:NOISe:UNITs UNITamplitude"

Query :MEASure:NOISe:UNITs?

The :MEASure:NOISe:UNITs? query returns the units of measure being used for the
NOISe measurements.

Returned Format [:MEASure:NOISe:UNITs] {VOLT | UNITamplitude}<NL>

Example This example places the current units of measure for the NOISe measurements in
the strUnits variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:NOISe:UNITs?"
strUnits = myScope.ReadString
Debug.Print strUnits

History New in version 3.50.

NOTE This command is only available when the EZJIT Complete software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 657

:MEASure:NPERiod

Command :MEASure:NPERiod <source>, <slope>, <N>

The :MEASure:NPERiod command measures the span of time of N consecutive
periods. The measurement then moves over one period and measures the span of
time of the next N consecutive periods.

<source> the source on which the measurement is made

<slope> rising or falling

<N> An integer greater than or equal to 1.

Example This example measures the time span of 3 consecutive periods on channel 1 (rising
edge).

myScope.WriteString ":MEASURE:NPERiod CHAN1, rising, 3"

Query :MEASure:NPERiod?

History Legacy command (existed before version 3.10).

658 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NPULses

Command :MEASure:NPULses <source>

The :MEASure:NPULses measures the number of negative pulses on the screen.

<source> the source on which the measurement is made

Example This example measures the number of negative pulses on channel 1.

myScope.WriteString ":MEASURE:NPULses CHAN1"

Query :MEASure:NPULses?

This query returns the result for the NPULses measurement.

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 659

:MEASure:NUI

Command :MEASure:NPERiod <source>, <N>

The :MEASure:NPERiod command measures N consecutive unit intervals. The
measurement then moves over one unit interval and measures the span of time of
the next N consecutive unit intervals.

<source> the source on which the measurement is made

<N> An integer greater than or equal to 1.

Example This example measures the time span of 3 consecutive unit intervals on channel 1.

myScope.WriteString ":MEASURE:NUI CHAN1, 3"

Query :MEASure:NUI?

History Legacy command (existed before version 3.10).

660 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:NWIDth

Command :MEASure:NWIDth [<source>]

The :MEASure:NWIDth command measures the width of the first negative pulse on
the screen using the mid-threshold levels of the waveform (50% levels with
standard threshold selected). Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:NWIDth
command.

The algorithm is:

If the first edge on the screen is rising,
then

nwidth = time at the second rising edge - time at the first
falling edge

else
nwidth = time at the first rising edge - time at the first
falling edge

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example measures the width of the first negative pulse on the screen.

myScope.WriteString ":MEASure:NWIDth CHANnel1"

Query :MEASure:NWIDth? [<source>]

The :MEASure:NWIDth? query returns the measured width of the first negative
pulse of the specified source.

Returned Format [:MEASure:NWIDth] <value>[,<result_state>]<NL>

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 661

<value> The width of the first negative pulse on the screen using the mid-threshold levels
of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current width of the first negative pulse on the screen in
the numeric variable, varWidth, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:NWIDth? CHANnel1"
varWidth = myScope.ReadNumber
Debug.Print FormatNumber(varWidth, 0)

History Legacy command (existed before version 3.10).

662 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:OVERshoot

Command :MEASure:OVERshoot [<source>][,<direction>]

The :MEASure:OVERshoot command measures the overshoot of the first edge on
the screen. Sources are specified with the :MEASure:SOURce command or with
the optional parameter following the :MEASure:OVERshoot command.

The algorithm is:

If the first edge on the screen is rising,

then

overshoot = (Local Vmax - Vtop) / Vamplitude

else

overshoot = (Vbase - Local Vmin) / Vamplitude.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> RISing or FALLing

Example This example measures the overshoot of the first edge on the screen.

myScope.WriteString ":MEASURE:OVERSHOOT CHANNEL1"

Query :MEASure:OVERshoot? [<source>][,<direction>]

The :MEASure:OVERshoot? query returns the measured overshoot of the specified
source.

Returned Format [:MEASure:OVERshoot] <value>[,<result_state>]<NL>

<value> Ratio of overshoot to amplitude, in percent.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 663

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of overshoot in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:OVERSHOOT? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

664 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:PAMPlitude

Command :MEASure:PAMPlitude [<source>, <width>, <direction>]

The :MEASure:PAMPlitude command measures the pulse amplitude around the
specified edge. There is only a single width applied to the top and base for the
amplitude measurement.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<width> width to measure at the top and base of the pulse (in percent, 0-100)

<direction> the edge direction to measure (RISing or FALLing). The pulse measured is to the
left and right of the specified edge.

Example This example measures the pulse amplitude around a rising edge (width set to
50%)

myScope.WriteString ":MEASURE:PAMPlitude CHAN1, 50, RISing"

Query :MEASure:PAMPlitude? <source>, <width>, <direction>

The :MEASure:PAMPlitude? query returns the pulse amplitude around the
specified edge.

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 665

:MEASure:PBASe

Command :MEASure:PBASe <source>, <pulse width percent>

The :MEASure:PBASe command measures the average of the data of a negative
pulse within the pulse window. The pulse window is a range of data centered
within the pulse width using the specified percentage of the data as measured as
the middle threshold level. For example, a 50% window would not include in the
average the first or last 25% of the pulse width as measured at the middle
threshold level. A 100% window would measure the average of the entire positive
or negative pulse. In measure all edges mode and EZJIT, these measurements can
be trended, histogrammed, etc.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<pulse width
percent>

pulse width percent to use in average (in percent, 0-100)

Example This example measures the average of the data of a negative pulse within the
pulse window (width set to 50%)

myScope.WriteString ":MEASURE:PBASe CHAN1, 50"

Query :MEASure:PBASe? <source>, <pulse width percentage>

The :MEASure:PBASe? query returns the average pulse base of the data of a
negative pulse within the specified pulse window.

History Legacy command (existed before version 3.10).

666 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:PERiod

Command :MEASure:PERiod [<source>[,<direction>]]

The :MEASure:PERiod command measures the period of the first complete cycle
on the screen using the mid-threshold levels of the waveform (50% levels with
standard measurements selected).

The source is specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:PERiod command.

The algorithm is:

If the first edge on the screen is rising,
then

period = second rising edge time - first rising edge time
else

period = second falling edge time - first falling edge time

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<direction> {RISing | FALLing}

Specifies direction of edge to start measurement. When <direction> is specified,
the <source> parameter is required.

Using the <direction> parameter will set the "Measure All Edges" mode if it is not
currently set. You can use the :MEASure:JITTer:STATistics command to turn the
"Measure All Edges" mode off (or on again). See ":MEASure:JITTer:STATistics" on
page 636.

Example This example measures the period of the waveform.

myScope.WriteString ":MEASure:PERiod CHANnel1"

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 667

Query :MEASure:PERiod? [<source>],<direction>

The :MEASure:PERiod? query returns the measured period of the specified source.

Returned Format [:MEASure:PERiod] <value>[,<result_state>]<NL>

<value> Period of the first complete cycle on the screen.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current period of the waveform in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:PERiod? CHANnel1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

668 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:PHASe

Command :MEASure:PHASe [<source>[,<source>[,<direction>]]]

The :MEASure:PHASe command measures the phase in degrees between two
edges. If two sources are specified, the phase from the specified edge of the first
source to the specified edge of the second source is measured. If one source is
specified, the phase is always 0.0E0.00°.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> {RISing | FALLing}

Specifies direction of edge to measure. When <direction> is specified, the
<source> parameter is required.

Using the <direction> parameter will set the "Measure All Edges" mode if it is not
currently set. You can use the :MEASure:JITTer:STATistics command to turn the
"Measure All Edges" mode off (or on again). See ":MEASure:JITTer:STATistics" on
page 636.

Example This example measures the phase between channel 1 and channel 2.

myScope.WriteString ":MEASure:PHASe CHANnel1,CHANnel2"

Query :MEASure:PHASe? [<source>[,<source>[,<direction>]]]

The :MEASure:PHASe? query returns the measured phase angle value.

The necessary waveform edges must be present on the display. The query will
return 9.99999E+37 if the necessary edges are not displayed.

Returned Format [:MEASure:PHASe] <value>[,result_state]<NL>

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 669

<value> Phase angle from the first edge on the first source to the first edge on the second
source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current phase angle value between channel 1 and
channel 2 in the variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:PHASe? CHANnel1,CHANnel2"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

670 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:PPULses

Command :MEASure:PPULses <source>

The :MEASure:PPULses measures the number of positive pulses on the screen.

<source> the source on which the measurement is made

Example This example measures the number of positive pulses on channel 1.

myScope.WriteString ":MEASURE:PPULses CHAN1"

Query :MEASure:PPULses?

This query returns the result for the PPULses measurement.

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 671

:MEASure:PREShoot

Command :MEASure:PREShoot [<source>]

The :MEASure:PREShoot command measures the preshoot of the first edge on the
screen. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:PREShoot command.

The algorithm is:

If the first edge on the screen is rising,

then

preshoot = (Vbase - Local Vmin) / Vamplitude

else

preshoot = (Local Vmax - Vtop) / Vamplitude.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the preshoot of the waveform on the screen.

myScope.WriteString ":MEASURE:PRESHOOT CHANNEL1"

Query :MEASure:PREShoot?[<source>]

The :MEASure:PREShoot? query returns the measured preshoot of the specified
source.

Returned Format [:MEASure:PREShoot] <value>[,<result state>]<NL>

<value> Ratio of preshoot to amplitude, in percent.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

672 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

Example This example places the current value of preshoot in the numeric variable,
varPreshoot, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:PRESHOOT? CHANNEL1"
varPreshoot = myScope.ReadNumber
Debug.Print FormatNumber(varPreshoot, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 673

:MEASure:PTOP

Command :MEASure:PTOP <source>, <pulse width percent>

The :MEASure:PTOP command measures the average of the data of a positive
pulse within the pulse window. The pulse window is a range of data centered
within the pulse width using the specified percentage of the data as measured as
the middle threshold level. For example, a 50% window would not include in the
average the first or last 25% of the pulse width as measured at the middle
threshold level. A 100% window would measure the average of the entire positive
or negative pulse. In measure all edges mode and EZJIT, these measurements can
be trended, histogrammed, etc.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<pulse width
percent>

pulse width percent to use in average (in percent, 0-100)

Example This example measures the average of the data of a positive pulse within the pulse
window (width set to 50%)

myScope.WriteString ":MEASURE:PTOP CHAN1, 50"

Query :MEASure:PTOP? <source>, <pulse width percentage>

The :MEASure:PTOP? query returns the average of the data of a positive pulse
within the specified pulse window.

History Legacy command (existed before version 3.10).

674 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:PWIDth

Command :MEASure:PWIDth [<source>]

The :MEASure:PWIDth command measures the width of the first positive pulse on
the screen using the mid-threshold levels of the waveform (50% levels with
standard measurements selected). Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:PWIDth command.

The algorithm is:

If the first edge on the screen is rising,
then

pwidth = time at the first falling edge - time at the
first rising edge

else
pwidth = time at the second falling edge - time at the
first rising edge

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example measures the width of the first positive pulse on the screen.

myScope.WriteString ":MEASure:PWIDth CHANnel1"

Query :MEASure:PWIDth?[<source>]

The :MEASure:PWIDth? query returns the measured width of the first positive
pulse of the specified source.

Returned Format [:MEASure:PWIDth] <value>[,<result_state>]<NL>

<value> Width of the first positive pulse on the screen in seconds.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 675

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the width of the first positive pulse on the screen
in the numeric variable, varWidth, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:PWIDth? CHANnel1"
varWidth = myScope.ReadNumber
Debug.Print FormatNumber(varWidth, 0)

History Legacy command (existed before version 3.10).

676 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:QUALifier<M>:CONDition

Command :MEASure:QUALifier<M>:CONDition {HIGH | LOW |
INSide | OUTSide}

The :MEASure:QUALifier<M>:CONDition command sets the condition when valid
timing measurements are made

• Above Middle Threshold (HIGH)

• Below Middle Threshold (LOW)

• Between Upper, Lower Thresholds (INSide)

• Not Between Thresholds (OUTSide)

<M> An integer, 1-3.

Example This example sets the level qualifier 2 condition to HIGH.

myScope.WriteString ":MEASURE:QUALIFIER2:CONDITION HIGH"

Query :MEASure:QUALifier<M>:CONDition?

The :MEASure:QUALifier<M>:CONDition? query returns the condition being used
of the level qualifier.

Returned Format [:MEASure:QUALifier<M>:CONDition] <source><NL>

Example This example places the current condition of level qualifier for timing
measurements in the source variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:QUALIFIER2:CONDition?"
varSource = myScope.ReadNumber
Debug.Print FormatNumber(varSource, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 677

:MEASure:QUALifier<M>:SOURce

Command

:MEASure:QUALifier<M>:SOURce <source>

The :MEASure:QUALifier<M>:SOURce command sets the source of the level
qualify for timing measurements.

<source> CHANnel<N>

<N> An integer, 1- 4.

<M> An integer, 1-3.

Example This example sets the level qualifier 2 source to the channel 1 waveform.

myScope.WriteString ":MEASURE:QUALIFIER2:SOURce CHANNEL1"

Query :MEASure:QUALifier<M>:SOURce?

The :MEASure:QUALifier<M>:SOURce? query returns the source being used of the
level qualifier for timing measurements.

Returned Format [:MEASure:QUALifier<M>:SOURce] <source><NL>

Example This example places the current source of level qualifier for timing measurements
in the source variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:QUALIFIER2:SOURce?"
varSource = myScope.ReadNumber
Debug.Print FormatNumber(varSource, 0)

History Legacy command (existed before version 3.10).

NOTE The channel being selected must not be used to make a timing measurement and must be
turned on.

678 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:QUALifier<M>:STATe

Command :MEASure:QUALifier<M>:STATe {{ON | 1} | {OFF | 0}}

The :MEASure:QUALifier<M>:STATe command enables or disables level qualifying
for timing measurements.

<M> An integer, 1-3.

Example This example sets the level qualifier 2 state to ON.

myScope.WriteString ":MEASURE:QUALIFIER2:STATE ON"

Query :MEASure:QUALifier<M>:STATe?

The :MEASure:QUALifier<M>:STATe? query returns the state of the level qualifier
for timing measurements.

Returned Format [:MEASure:QUALifier<M>:SOURce] {1 | 0}<NL>

Example This example places the current state of the level qualifier for timing
measurements in the state variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:QUALIFIER2:STATE?"
varstate = myScope.ReadNumber
Debug.Print FormatNumber(varstate, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 679

:MEASure:RESults?

Query :MEASure:RESults?

The :MEASure:RESults? query returns the results of the continuously displayed
measurements. The response to the MEASure:RESults? query is a list of
comma-separated values. If SENDvalid is ON, the results state is returned.

If more than one measurement is running continuously, the values in the
:MEASure:RESults returned are duplicated for each continuous measurement from
the first to last (left to right) result displayed. Each result returned is separated
from the previous result by a comma. There is a maximum of five continuous
measurements that can be continuously displayed at a time.

Returned Format [:MEASure:RESults] <result_list><NL>

<result_list> A list of the measurement results separated with commas. The following shows the
order of values received for a single measurement if :MEASure:STATistics is set to
ON.

Min, max, mean, std dev, and # of meas are only returned if the
:MEASure:STATistics is ON. The result state is only returned if :MEASure:SENDvalid
is ON. See Table 14 for the meaning of the result state codes.

If the :MEASure:STATistics is set to CURRENT, MAX, MEAN, MIN, or STDDEV only
that particular statistic value is returned for each measurement that is on.

Example This example places the current results of the measurements in the string variable,
strResult, then prints the contents of the variable to the computer's screen.

Dim strResult As String ' Dimension variable.
myScope.WriteString ":MEASURE:RESULTS?"
strResult = myScope.ReadString
Debug.Print strResult

Measure
ment
label

current result
state

min max mean std dev # of meas

Table 14 Result States

Code Description

0 Result correct. No problem found.

1 Result questionable but could be measured.

2 Result less than or equal to value returned.

3 Result greater than or equal to value returned.

680 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

4 Result returned is invalid.

5 Result invalid. Required edge not found.

6 Result invalid. Max not found.

7 Result invalid. Min not found.

8 Result invalid. Requested time not found.

9 Result invalid. Requested voltage not found.

10 Result invalid. Top and base are equal.

11 Result invalid. Measurement zone too small.

12 Result invalid. Lower threshold not on waveform.

13 Result invalid. Upper threshold not on waveform.

14 Result invalid. Upper and lower thresholds are too close.

15 Result invalid. Top not on waveform.

16 Result invalid. Base not on waveform.

17 Result invalid. Completion criteria not reached.

18 Result invalid. Measurement invalid for this type of waveform.

19 Result invalid. waveform is not displayed.

20 Result invalid. Waveform is clipped high.

21 Result invalid. Waveform is clipped low.

22 Result invalid. Waveform is clipped high and low.

23 Result invalid. Data contains all holes.

24 Result invalid. No data on screen.

29 Result invalid. FFT peak not found.

30 Result invalid. Eye pattern not found.

31 Result invalid. No NRZ eye pattern found.

33 Result invalid. There is more than one source on creating the database.

35 Signal may be too small to evaluate.

36 Result invalid. Awaiting completion of averaging.

39 Result invalid. Need jitter package to make this measurement or must be
in jitter mode to make this measurement.

40 Current measurement is not on screen.

41 Not enough points available to recover the clock.

Table 14 Result States (continued)

Code Description

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 681

History Legacy command (existed before version 3.10).

42 The loop bandwidth of the PLL is too high to recover the clock.

43 RJDJ pattern not found in data.

45 Clock recovery mode is not permitted.

46 Too much jitter to make a RJDJ separation.

Table 14 Result States (continued)

Code Description

682 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RISetime

Command :MEASure:RISetime [<source>]

The :MEASure:RISetime command measures the rise time of the first displayed
edge by measuring the time at the lower threshold of the rising edge, measuring
the time at the upper threshold of the rising edge, then calculating the rise time
with the following algorithm:

Rise time = time at upper threshold point - time at lower threshold point.

To make this measurement requires 4 or more sample points on the rising edge of
the waveform.

Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the RISetime command. With standard thresholds selected,
the lower threshold is at the 10% point and the upper threshold is at the 90% point
on the rising edge.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the rise time of the channel 1 waveform.

myScope.WriteString ":MEASURE:RISETIME CHANNEL1"

Query :MEASure:RISetime?[<source>]

The :MEASure:RISetime? query returns the rise time of the specified source.

Returned Format [:MEASure:RISetime] <value>[,<result_state>]<NL>

<value> Rise time in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 683

Example This example places the current value of rise time in the numeric variable, varRise,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RISETIME? CHANNEL1"
varRise = myScope.ReadNumber
Debug.Print FormatNumber(varRise, 0)

History Legacy command (existed before version 3.10).

684 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:ALL?

Query

:MEASure:RJDJ:ALL?

The :MEASure:RJDJ:ALL? query returns all of the RJDJ jitter measurements. These
values are returned as comma separated values using the following format:

Returned Format [:MEASure:RJDJ:ALL<space>]
TJ(<format>),<result>,<state>,
RJ(<format>),<result>,<state>,
DJ(<format>),<result>,<state>,
PJ(<format>),<result>,<state>,
BUJ(<format>),<result>,<state>,
DDJ(<format>),<result>,<state>,
DCD,<result>,<state>,
ISI(<format>),<result>,<state>,
Transitions,<number_of_transitions>,<transitions_state>,
Scope RJ(<format>),<result>,<state>,
DDPWS,<result>,<state>,
ABUJ(<format>),<result>,<state><NL>

<space> White space (ASCII 32) character.

<format> The format value tells you something about how the measurement is made. For
instance, TJ(1E-12) means that the TJ measurement was derived using a bit error
rate of 1E-12. A format of (rms) means the measurement is a root-mean-square
measurement. A format of (dd) means the measurement uses a dual-Dirac delta
model to derive the measurement. A format of (pp) means the measurement is a
peak-to-peak measurement.

<result> The measured results for the RJDJ measurements. A value of 9.99999E+37 means
that the oscilloscope was unable to make the measurement.

<state> The measurement result state. See Table 14 for a list of values and descriptions of
the result state value.

<number_of_
transitions>

The number of waveform transitions that have been measured.

NOTE This command is only available when the N5400A/N5401A Software is installed.

NOTE Whether some of these values are included or not depends on the setting of
:MEASure:RJDJ:METHod and :MEASure:RJDJ:REPort.

For example, when :MEASure:RJDJ:REPort or :MEASure:RJDJ:METHod is SPECtral, the BUJ
and ABUJ values are not returned, and there are two PJ values (one "rms" and one "dd").

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 685

Example This example places the jitter measures in the strResults variable and displays it on
the computer's screen.

Dim strResult As String ' Dimension variable.
myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:RJDJ:ALL?"
strResults = myScope.ReadString
Debug.Print strResults

See Also • ":MEASure:RJDJ:METHod" on page 693

• ":MEASure:RJDJ:REPort" on page 696

History Legacy command (existed before version 3.10).

Version 3.50: There are two possible additional measurement results, Scope
RN(rms) and DDPWS.

Version 4.10: New results can be returned depending on the
:MEASure:RJDJ:METHod and :MEASure:RJDJ:REPort settings.

686 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:APLength?

Query

:MEASure:RJDJ:APLength?

The :MEASure:RJDJ:APLength? query returns the determined RjDj pattern length.

Returned Format [:MEASure:RJDJ:APLength] <value><NL>

<value> The determined RjDj pattern length as a numeric data value. Invalid (9.99999E+37)
is returned if there is no data.

Example This example places the calculated pattern length in the strResults variable and
displays it on the computer's screen.

Dim strResult As String ' Dimension variable.
myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:APLength?"
strResults = myScope.ReadString
Debug.Print strResults

History New in version 3.10.

NOTE This command is only available when the N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 687

:MEASure:RJDJ:BANDwidth

Command

:MEASure:RJDJ:BANDwidth {NARRow | WIDE}

The :MEASure:RJDJ:BANDwidth command sets the type of filtering used to
separate the data dependent jitter form the random jitter and the periodic jitter.

Example This example sets the RJ bandwidth to WIDE.

myScope.WriteString ":MEASURE:RJDJ:BANDWIDTH WIDE"

Query :MEASure:RJDJ:BANDwidth?

The :MEASure:RJDJ:BANDwidth? query returns the RJ bandwidth filter setting.

Returned Format [:MEASure:RJDJ:BANDwidth] {NARRow | WIDE}<NL>

Example This example places the RJ filter setting the varFilter variable and displays it on
the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:BANDWIDTH?"
varFilter = myScope.ReadNumber
Debug.Print FormatNumber(varFilter, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

688 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:BER

Command

:MEASure:RJDJ:BER {E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | E14
| E15 | E16 | E17 | E18 | J2 | J9}

The :MEASure:RJDJ:BER command sets the bit error rate for the Total Jitter (TJ)
measurement. The E and J parameters have the following bit error rate meanings:

• E6 = 1E-6

• E7 = 1E-7

• E8 = 1E-8

• E9 = 1E-9

• E10 = 1E-10

• E11 = 1E-11

• E12 = 1E-12

• E13 = 1E-13

• E14 = 1E-14

• E15 = 1E-15

• E16 = 1E-16

• E17 = 1E-17

• E18 = 1E-18

• J2 = 2.5E-3

• J9 = 2.5E-10

Example This example sets the bit error rate to E16.

myScope.WriteString ":MEASURE:RJDJ:BER E16"

Query :MEASure:RJDJ:BER?

The :MEASure:RJDJ:BER? query returns the bit error rate setting.

Returned Format [:MEASure:RJDJ:BER] {E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | E14
| E15 | E16 | E17 | E18 | J2 | J9}<NL>

Example This example places the bit error rate in the varRate variable and displays it on the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:BER?"

NOTE This command is only available when the N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 689

varRate = myScope.ReadNumber
Debug.Print FormatNumber(varRate, 0)

History Legacy command (existed before version 3.10).

Version 3.10: Added J2 and J9 jitter BER levels.

690 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:CLOCk

Command

:MEASure:RJDJ:CLOCk {ON | OFF}

When the :MEASure:RJDJ:CLOCk command is set to ON, it forces the pattern to
be a clock and sets the jitter for edges not examined to zero (0).

To measure jitter on only rising (or falling) edges of a clock, you must also set
:MEASure:CLOCk:METHod:EDGE to RISing or FALLing, and you must set
:MEASure:RJDJ:EDGE to the same RISing or FALLing option.

Example This example turns on the RJDJ clock option.

myScope.WriteString ":MEASURE:RJDJ:CLOCk ON"

Query :MEASure:RJDJ:CLOCk?

The :MEASure:RJDJ:CLOCk? query returns the setting.

Returned Format [:MEASure:RJDJ:CLOCk] {ON | OFF}<NL>

Example This example places the current RJDJ clock setting in the strSetting variable and
displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:RJDJ:CLOCk?"
strSetting = myScope.ReadNumber
Debug.Print strSetting

See Also • ":MEASure:CLOCk:METHod:EDGE" on page 564

• ":MEASure:RJDJ:EDGE" on page 691

History New in version 4.30.

NOTE This command is available when the EZJIT+ or EZJIT Complete jitter analysis software is
installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 691

:MEASure:RJDJ:EDGE

Command

:MEASure:RJDJ:EDGE {RISING | FALLING | BOTH}

The :MEASure:RJDJ:EDGE command sets the edge used for the RJDJ
measurements.

Example This example sets the RJDJ edge to use both edges.

myScope.WriteString ":MEASURE:RJDJ:EDGE BOTH"

Query :MEASure:RJDJ:EDGE?

The :MEASure:RJDJ:EDGE? query returns the edge being used for the RJDJ
measurements.

Returned Format [:MEASure:RJDJ:EDGE] {RISING | FALLING | BOTH}<NL>

Example This example places the current edge being used for RJDJ measurements in the
varEdge variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:EDGE?"
varEdge = myScope.ReadNumber
Debug.Print FormatNumber(varEdge, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

692 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:INTerpolate

Command

:MEASure:RJDJ:INTerpolate {LINear | NONE}

The :MEASure:RJDJ:INTerpolate command sets the interpolation mode used for
the RJDJ measurements.

Example This example sets the RJDJ interpolation to use both linear.

myScope.WriteString ":MEASURE:RJDJ:INTERPOLATE LINEAR"

Query :MEASure:RJDJ:INTerpolate?

The :MEASure:RJDJ:INTerpolate? query returns the edge being used for the RJDJ
measurements.

Returned Format [:MEASure:RJDJ:INTerpolate] {LINear | NONE}<NL>

Example This example places the current interpolation mode being used for RJDJ
measurements in the interpolate variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:INTERPOLATE?"
varinterpolate = myScope.ReadNumber
Debug.Print FormatNumber(varinterpolate, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 693

:MEASure:RJDJ:METHod

Command

:MEASure:RJDJ:METHod {SPECtral | BOTH}

The :MEASure:RJDJ:METHod command lets you select the method for random
jitter (RJ) analysis, either the SPECtral method or BOTH the spectral and tail fit
methods.

When analyzing jitter with crosstalk or ground bounce effects present in your
signal, select BOTH. When this option is selected, the deterministic jitter (DJ) that
is uncorrelated to the data pattern, also known as bounded uncorrelated jitter
(BUJ), is separated into periodic jitter (PJ) and aperiodic bounded uncorrelated
jitter (ABUJ). ABUJ is caused by crosstalk and ground bounce effects.

When there are no crosstalk or ground bounce effects present in your signal, you
can select the SPECtral method in order to run faster. When this option is
selected, the deterministic jitter (DJ) that is uncorrelated to the data pattern is all
reported as periodic jitter (PJ).

Example This example sets the RJDJ method to BOTH the spectral and tail fit analysis.

myScope.WriteString ":MEASURE:RJDJ:METHod BOTH"

Query :MEASure:RJDJ:METHod?

The :MEASure:RJDJ:METHod? query returns the selected RJDJ method.

Returned Format [:MEASure:RJDJ:METHod] {SPEC | BOTH}<NL>

Example This example places the RJDJ method setting the strJitterMethod variable and
displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:RJDJ:METHod?"
strJitterMethod = myScope.ReadString
Debug.Print strJitterMethod

See Also • ":MEASure:RJDJ:REPort" on page 696

History New in version 4.10.

NOTE This command is only available when the EZJIT+ jitter analysis application is licensed.

694 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:MODe

Command

:MEASure:RJDJ:MODe {TIE | PERiod | NUI[,<ui>]}

The :MEASure:RJDJ:MODe command sets the RJDJ measurement mode. If NUI is
selected then <ui> selects the number of unit intervals (for example:
:MEASure:RJDJ:MODe NUI,5.

Example This example sets the RJDJ mode to TIE.

myScope.WriteString ":MEASURE:RJDJ:MODe TIE"

Query :MEASure:RJDJ:MODe?

The :MEASure:RJDJ:MODe? query returns the mode of the RJDJ measurements.

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 695

:MEASure:RJDJ:PLENgth

Command

:MEASure:RJDJ:PLENgth {AUTO
| {ARBitrary,<isi_filter_lead>,<isi_filter_lag>}
| <number_of_bits>}

The :MEASure:RJDJ:PLENgth command sets the number of bits used pattern
length for the RJDJ measurements.

<isi_filter_ lead> An integer number that is less than or equal to 0 that is the number of leading bits
that are used to calculate the ISI filter.

<isi_filter_ lag} An integer number that is greater than or equal to 0 that is the number of trailing
bits used to calculate the ISI filter.

<number_of_ bits> An integer number that is the length of pattern from 2 to 1024.

Example This example sets the RJDJ bits to 5.

myScope.WriteString ":MEASURE:RJDJ:PLENgth 5"

Query :MEASure:RJDJ:PLENgth?

The :MEASure:RJDJ:PLENgth? query returns the number of bits being used for the
RJDJ measurements when Periodic pattern length is set. For Arbitrary pattern
length, the ISI filter lead and filter lag numbers are returned.

Returned Format [MEASure:RJDJ:PLENgth] {AUTO
| ARBitrary,<isi_filter_lead>,<isi_filter_lag>
| <number_of_bits>}<NL>

Example This example places the current number of bits for RJDJ measurements in the
varBits variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:PLENgth?"
varBits = myScope.ReadNumber
Debug.Print FormatNumber(varBits, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

696 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:REPort

Command

:MEASure:RJDJ:REPort {SPECtral | TAILfit}

When the :MEASure:RJDJ:METHod BOTH command selects both the spectral and
tail fit methods for random jitter analysis, the :MEASure:RJDJ:REPort command
specifies which method is used for the reports in the jitter graphs/histograms and
Jitter tab measurements.

Example This example specifies that the RJDJ report include measurements from both the
spectral and tail fit analysis (including aperiodic bounded uncorrelated jitter ABUJ
measurements).

myScope.WriteString ":MEASURE:RJDJ:REPort TAILfit"

Query :MEASure:RJDJ:REPort?

The :MEASure:RJDJ:REPort? query returns the report setting.

Returned Format [:MEASure:RJDJ:REPort] {SPEC | TAIL}<NL>

Example This example places the report setting in the strReportSetting variable and
displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:REPort?"
strReportSetting = myScope.ReadString
Debug.Print strReportSetting

See Also • ":MEASure:RJDJ:METHod" on page 693

History New in version 4.10.

NOTE This command is only available when the EZJIT+ jitter analysis application is licensed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 697

:MEASure:RJDJ:RJ

Command

:MEASure:RJDJ:RJ {ON, <RJrms> | OFF}

The :MEASure:RJDJ:RJ command can specify a known amount of random jitter.
When used, the remaining amount of the total jitter measured is reported as
periodic jitter (PJ).

This command is used in situations when crosstalk aggressors influence the
random jitter measured on a signal. If the random jitter on a signal is measured
without the aggressor signal crosstalk, this known amount of random jitter can be
specified when measuring the jitter again with the crosstalk aggressors.

• ON — Enables a specified amount of random jitter.

• <RJrms> — The known amount of random jitter.

• OFF — Disables the specification of known random jitter.

The amount of random jitter is shown in the jitter measurement results (see
page 684) as "RJ(rms specified)".

Example This example specifies 500 fs of random jitter.

myScope.WriteString ":MEAS:RJDJ:RJ ON, 500e-15"

Query :MEASure:RJDJ:RJ?

The :MEASure:RJDJ:RJ? query returns the specified RJ settings.

Returned Format [:MEASure:RJDJ:RJ] {ON, <RJrms> | OFF}<NL>

Example This example places the specified RJ settings in the strKnownRandomJitter
variable and displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:RJDJ:RJ?"
strKnownRandomJitter = myScope.ReadString
Debug.Print strKnownRandomJitter

History New in version 3.50.

NOTE This command is available when the EZJIT+ software is installed.

698 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:SCOPe:RJ

Command

:MEASure:RJDJ:SCOPe:RJ {ON, <RJrms> | AUTO | OFF}

The :MEASure:RJDJ:SCOPe:RJ command can specify the removal of the
oscilloscope's calibrated random jitter from the reported RJ.

• ON — Enables the "manual" removal of a known oscilloscope random jitter from
the reported RJ.

• <RJrms> — The known oscilloscope random jitter to remove from the reported
RJ.

• AUTO — This option cannot be selected until the scope jitter calibration has
been run (use the Calibrate scope jitter button in the front panel user interface).
When selected, the calculated oscilloscope random jitter is removed from the
reported RJ.

The calculated oscilloscope random jitter is shown in the jitter measurement
results (see page 684) as "Scope RJ(rms)".

• OFF — Disables the removal of the oscilloscope's calibrated random jitter from
the reported RJ.

Example This example specifies 300 fs of known oscilloscope random jitter.

myScope.WriteString ":MEASure:RJDJ:SCOPe:RJ ON, 300e-15"

Query :MEASure:RJDJ:SCOPe:RJ?

The :MEASure:RJDJ:SCOPe:RJ? query returns the oscilloscope RJ settings.

Returned Format [:MEASure:RJDJ:SCOPe:RJ] {ON, <RJrms> | OFF}<NL>

Example This example places the oscilloscope RJ settings in the strScopeRJSettings
variable and displays it on the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:RJDJ:SCOPe:RJ?"
strScopeRJSettings = myScope.ReadString
Debug.Print strScopeRJSettings

History New in version 3.50.

NOTE This command is available when the EZJIT+ software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 699

:MEASure:RJDJ:SOURce

Command

:MEASure:RJDJ:SOURce <source>

The :MEASure:RJDJ:SOURce command sets the source for the RJDJ
measurements.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example sets the RJDJ source to the channel 1 waveform.

myScope.WriteString ":MEASURE:RJDJ:SOURce CHANNEL1"

Query :MEASure:RJDJ:SOURce?

The :MEASure:RJDJ:SOURce? query returns the source being used for the RJDJ
measurements.

Returned Format [:MEASure:RJDJ:SOURce] <source><NL>

Example This example places the current source for RJDJ measurements in the varSource
variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:SOURce?"
varSource = myScope.ReadNumber
Debug.Print FormatNumber(varSource, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

700 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:STATe

Command

:MEASure:RJDJ:STATe {ON | OFF}

The :MEASure:RJDJ:STATe command enables or disables the RJDJ
measurements.

Example This example sets the RJDJ state to on.

myScope.WriteString ":MEASURE:RJDJ:STATE ON"

Query :MEASure:RJDJ:STATe?

The :MEASure:RJDJ:STATe? query returns the state of the RJDJ measurements.

Returned Format [:MEASure:RJDJ:STATe] {1 | 0}<NL>

Example This example places the current state of the RJDJ measurements in the varState
variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:STATE?"
varState = myScope.ReadNumber
Debug.Print FormatNumber(varState, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 701

:MEASure:RJDJ:TJRJDJ?

Query

:MEASure:RJDJ:TJRJDJ?

The :MEASure:RJDJ:TJRJDJ? query returns the Total Jitter (TJ), Random Jitter
(RJ), and the Deterministic Jitter (DJ) measurements. These values are returned as
comma separated values using the following format:

Returned Format [:MEASure:RJDJ:TJRJDJ] TJ(<tj_format>),<tj_result>,<tj_state>,
RJ(<rj_format>),<rj_result>,rj_state,
DJ(<dj_format>),<dj_result>,<dj_state><NL>

<tj_format>
<rj_format>

<dj_format>

The format value tells you something about how the measurement is made. For
instance, TJ(1E-12) means that the TJ measurement was derived using a bit error
rate of 1E-12. A format of (rms) means the measurement is a root-mean-square
measurement. A format of (d-d) means the measurement uses from a dual-Dirac
delta model used to derive the measurement. A format of (p-p) means the
measurement is a peak-to-peak measurement.

<tj_result>
<rj_result>

<dj_result>

The measured results for the RJDJ measurements. A value of 9.99999E+37 means
that the oscilloscope was unable to make the measurement.

<tj_state>
<rj_state>

<dj_state>

The measurement result state. See Table 14 for a list of values and descriptions of
the result state value.

Example This example places the Total Jitter (TJ), Random Jitter (RJ), and the Deterministic
Jitter (DJ) measurements in the strResults variable and displays it on the
computer's screen.

Dim strResult As String ' Dimension variable.
myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:TJRJDJ?"
strResult = myScope.ReadString
Debug.Print strResult

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

702 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:RJDJ:UNITs

Command

:MEASure:RJDJ:UNITs {SECond | UNITinterval}

The :MEASure:RJDJ:UNITs command sets the unit of measure for RJDJ
measurements to seconds or unit intervals.

Example This example sets the RJDJ units to unit interval.

myScope.WriteString ":MEASURE:RJDJ:UNITS UNITINTERVAL"

Query :MEASure:RJDJ:UNITs?

The :MEASure:RJDJ:UNITs? query returns the units of measure being used for the
RJDJ measurements.

Returned Format [:MEASure:RJDJ:UNITs] {SECond | UNITinterval}<NL>

Example This example places the current units of measure for the RJDJ measurements in
the varUnits variable and displays it on the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:RJDJ:UNITS?"
varUnits = myScope.ReadNumber
Debug.Print FormatNumber(varUnits, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the N5400A/N5401A Software is installed.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 703

:MEASure:SCRatch

Command :MEASure:{SCRatch | CLEar}

The :MEASure:SCRatch command clears the measurement results from the
screen. This command performs the same function as :MEASure:CLEar.

Example This example clears the current measurement results from the screen.

myScope.WriteString ":MEASURE:SCRATCH"

History Legacy command (existed before version 3.10).

704 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:SENDvalid

Command :MEASure:SENDvalid {{OFF|0} | {ON|1}}

The :MEASure:SENDvalid command enables the result state code to be returned
with the :MEASure:RESults? query and all other measurement queries.

Example This example turns the send valid function on.

myScope.WriteString ":MEASURE:SENDVALID ON"

Query :MEASure:SENDvalid?

The :MEASure:SENDvalid? query returns the state of the send valid control.

Returned Format {:MEASure:SENDvalid] {0 | 1}<NL>

Example This example places the current mode for SENDvalid in the string variable,
strMode, then prints the contents of the variable to the computer's screen.

Dim strMode As String ' Dimension variable.
myScope.WriteString ":MEASURE:SENDVALID?"
strMode = myScope.ReadString
Debug.Print strMode

See Also Refer to the :MEASure:RESults? query for information on the results returned and
how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 705

:MEASure:SETuptime

Command

:MEASure:SETuptime [<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:SETuptime command measures the setup time between the
specified clock and data source.

<data_source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<clock_source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<data_source
_dir>

{RISing | FALLing | BOTH}

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/5401A Software is installed.

706 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

Selects the direction of the data source edge. BOTH selects both edges to be
measured.

<clock_source
_dir>

{RISing | FALLing}

Selects the direction of the clock source edge.

Example This example measures the setup time from the rising edge of channel 1 to the
rising edge of channel 2.

myScope.WriteString ":MEASure:SETuptime CHAN1,RIS,CHAN2,RIS"

Query :MEASure:SETuptime? [<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:SETuptime query returns the measured setup time between the
specified clock and data source.

Returned Format {:MEASure:SETuptime] <value><NL>

<value> Setup time in seconds.

Example This example places the current value of setup time in the numeric variable,
varTime, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:SETuptime? CHAN1,RIS,CHAN2,RIS"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 707

:MEASure:SLEWrate

Command

:MEASure:SLEWrate [<data_source>, <edge_dir>]

The :MEASure:SLEWrate command measures the slew rate of the specified data
source.

<data_source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> An integer, 1-4.

<F> An integer, 1-16.

<edge_dir> {RISing | FALLing | BOTH}

Example This example measures the slew rate of channel 1.

myScope.WriteString ":MEASure:SLEWrate CHANnel1,RISing"

Query :MEASure:SLEWrate? [<data_source>, <edge_dir>]

The :MEASure:SLEWrate? query returns the measured slew rate for the specified
source.

Returned Format {:MEASure:SLEWrate] <value><NL>

<value> Slew rate in volts per second.

Example This example places the channel 1 value of slew rate in the numeric variable,
varTime, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:SLEWrate? CHANnel1,RISing"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

History Legacy command (existed before version 3.10).

NOTE This command is only available when the E2681A Jitter Analysis Software is installed.

708 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:SOURce

Command :MEASure:SOURce {<source>[,<source>]}

The :MEASure:SOURce command selects the source for measurements. You can
specify one or two sources with this command. All measurements except
:MEASure:HOLDtime, :MEASure:SETUPtime, and :MEASure:DELTatime are made
on the first specified source. The delta time measurement uses two sources if two
are specified.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example selects channel 1 as the source for measurements.

myScope.WriteString ":MEASure:SOURce CHANnel1"

Query :MEASure:SOURce?

The :MEASure:SOURce? query returns the current source selection.

Returned Format [:MEASure:SOURce] <source>[,<source>]<NL>

Example This example places the currently specified sources in the string variable,
strSource, then prints the contents of the variable to the computer's screen.

Dim strSource As String ' Dimension variable.
myScope.WriteString ":MEASure:SOURce?"
strSource = myScope.ReadString
Debug.Print strSource

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 709

:MEASure:STATistics

Command :MEASure:STATistics {{ON | 1} | CURRent | MAXimum |
MEAN | MINimum | STDDev}

The :MEASure:STATistics command determines the type of information returned by
the :MEASure:RESults? query. ON means all the statistics are on.

Example This example turns all the statistics function on.

myScope.WriteString ":MEASURE:STATISTICS ON"

Query :MEASure:STATistics?

The :MEASure:STATistics? query returns the current statistics mode.

Returned Format [:MEASure:STATistics] {ON | CURRent | MAXimum | MEAN | MINimum | STDDev}
<NL>

Example This example places the current mode for statistics in the string variable, strMode,
then prints the contents of the variable to the computer's screen.

Dim strMode As String ' Dimension variable.
myScope.WriteString ":MEASURE:STATISTICS?"
strMode = myScope.ReadString
Debug.Print strMode

See Also Refer to the :MEASure:RESults? query for information on the result returned and
how it is affected by the STATistics command.

History Legacy command (existed before version 3.10).

710 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:TEDGe

Command :MEASure:TEDGe <meas_thres_txt>,[<slope>]<occurrence>[,<source>]

The :MEASure:TEDGe command measures the time interval between the trigger
event and the specified edge (threshold level, slope, and transition). Sources are
specified with the :MEASure:SOURce command or with the optional parameter
following the :MEASure:TEDGe command.

<meas_thres _txt> UPPer, MIDDle, or LOWer to identify the threshold.

<slope> { - (minus) for falling | + (plus) for rising | <none> (the slope is optional; if no slope
is specified, + (plus) is assumed) }

<occurrence> An integer value representing the edge of the occurrence. The desired edge must
be present on the display. Edges are counted with 1 being the first edge from the
left on the display, and a maximum value of 65534.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :MEASure:TEDGe? <meas_thres_txt>,<slope><occurrence> [,<source>]

The :MEASure:TEDGe? query returns the time interval between the trigger event
and the specified edge (threshold level, slope, and transition).

Returned Format [:MEASure:TEDGe] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event and the specified voltage level and
transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 711

Example This example returns the time interval between the trigger event and the 90%
threshold on the second rising edge of the source waveform to the numeric
variable, varTime. The contents of the variable are then printed to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:TEDGe? UPPER,+2,CHANnel1"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

History Legacy command (existed before version 3.10).

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

712 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:ABSolute

Command :MEASure:THResholds:ABSolute <source>,
<upper_volts>,<middle_volts>,<lower_volts>

The :MEASure:THResholds:ABSolute command sets the upper level, middle level,
and lower level voltages that are used to calculate the measurements that use
them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_volts>
<middle_volts>

<lower_volts>

A real number specifying voltage thresholds.

Example This example sets the custom voltage thresholds to 0.9 volts for the upper level,
0.5 volts for the middle level and 0.1 volts for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:ABSolute CHANnel2,0.9,0.5,0.1"

Query :MEASure:THResholds:ABSolute? <source>

The :MEASure:THResholds:ABSolute? query returns the current settings for upper
level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:ABSolute] <upper_volts>,<middle_volts>,<lower_volts
><NL>

Example This example returns the upper level, middle level, and lower level voltages used to
calculate the measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:ABSolute? CHANnel1"

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 713

strThresholds = myScope.ReadString
Debug.Print strThresholds

History Legacy command (existed before version 3.10).

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

714 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:GENeral:ABSolute

Command :MEASure:THResholds:GENeral:ABSolute <source>,
<upper_volts>,<middle_volts>,<lower_volts>

The :MEASure:THResholds:GENeral:ABSolute command sets the upper level,
middle level, and lower level voltages that are used to calculate the measurements
that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_volts>
<middle_volts>

<lower_volts>

A real number specifying voltage thresholds.

Example This example sets the custom voltage thresholds to 0.9 volts for the upper level,
0.5 volts for the middle level and 0.1 volts for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:ABSolute CHANnel2,0.9,0
.5,0.1"

Query :MEASure:THResholds:GENeral:ABSolute? <source>

The :MEASure:THResholds:GENeral:ABSolute? query returns the current settings
for upper level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:GENeral:ABSolute] <upper_volts>,<middle_volts>,<low
er_volts><NL>

NOTE These general-purpose threshold settings are used for everything except rise/fall
measurements and protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 715

Example This example returns the upper level, middle level, and lower level voltages used to
calculate the measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:ABSolute? CHANnel1"
strThresholds = myScope.ReadString
Debug.Print strThresholds

See Also • ":MEASure:THResholds:ABSolute" on page 712

• ":MEASure:THResholds:RFALl:ABSolute" on page 732

• ":MEASure:THResholds:SERial:ABSolute" on page 744

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

716 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:GENeral:HYSTeresis

Command :MEASure:THResholds:GENeral:HYSTeresis <source>,<range>,<level>

The :MEASure:THResholds:GENeral:HYSTeresis command sets the range and level
voltages that are used to calculate the measurements that use them. The range is
added to the level to determine the upper level voltage for measurements that use
it. The range is subtracted from the level to determine the lower level voltage. The
level is the middle level voltage.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<range> A real number specifying voltage range for the hysteresis around the level value.

<level> A real number specifying voltage level.

Example This example sets the hysteresis range to 0.9 volts and 0.1 volts for the level on
channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:HYSTeresis CHANNEL2,0.9
,0.1"

Query :MEASure:THResholds:GENeral:HYSTeresis? <source>

The :MEASure:THResholds:GENeral:HYSTeresis? query returns the current
settings for upper level, middle level, and lower level voltages for the custom
thresholds.

NOTE These general-purpose threshold settings are used for everything except rise/fall
measurements and protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 717

Returned Format [:MEASure:THResholds:GENeral:HYSTeresis]<range>,<level><NL>

Example This example returns the range and level voltages used to calculate the
measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:HYSTeresis? CHANNEL1"
strRangeLevel = myScope.ReadString
Debug.Print strRangeLevel

See Also • ":MEASure:THResholds:HYSTeresis" on page 726

• ":MEASure:THResholds:RFALl:HYSTeresis" on page 734

• ":MEASure:THResholds:SERial:HYSTeresis" on page 746

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

718 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:GENeral:METHod

Command :MEASure:THResholds:GENeral:METHod <source>,{ABSolute | PERCent | HYSTer
esis}

The :MEASure:THResholds:GENeral:METHod command determines the way that
the top and base of a waveform are calculated for all of the measurements that
use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to calculate the top and base of a waveform to
hysteresis.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:METHod CHANnel1,HYSTere
sis"

Query :MEASure:THResholds:GENeral:METHod? <source>

The :MEASure:THResholds:GENeral:METHod? query returns the current method
being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:GENeral:METHod <source>,] {ABSolute | PERCent | HYS
Teresis}

Example This example returns the method used to calculate the top and base of a waveform
to hysteresis.

NOTE These general-purpose threshold settings are used for everything except rise/fall
measurements and protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 719

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:METHod?"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

See Also • ":MEASure:THResholds:METHod" on page 728

• ":MEASure:THResholds:RFALl:METHod" on page 736

• ":MEASure:THResholds:SERial:METHod" on page 748

History New in version 3.10.

720 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:GENeral:PERCent

Command :MEASure:THResholds:GENeral:PERCent <source>,<upper_pct>,<middle_pct>,<l
ower_pct>

The :MEASure:THResholds:GENeral:PERCent command sets the upper level,
middle level, and lower level voltages as a percentage of the top and base
voltages which are used to calculate the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_pct>
<middle_pct>

<lower_pct>

A real number specifying upper percentage from -24.8 to 125.0 A real number
specifying the middle percentage from -24.9 to 124.9. A real number specifying
the lower percentage from -25.0 to 125.8

Example This example sets the percentage to 100% for the upper level, 50% for the middle
level and 0% for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:PERCent CHANnel2,100,50
,0"

Query :MEASure:THResholds:GENeral:PERCent? <source>

The :MEASure:THResholds:GENeral:PERCent? query returns the current settings
for upper level, middle level, and lower level percentages.

Returned Format [:MEASure:THResholds:GENeral:PERCent] <upper_pct>,<middle_pcts>,<lower_p
ct><NL>

NOTE These general-purpose threshold settings are used for everything except rise/fall
measurements and protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 721

Example This example returns the upper level, middle level, and lower level percentages
used to calculate the measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:PERCent? CHANnel1"
strThresholdsPct = myScope.ReadString
Debug.Print strThresholdsPct

See Also • ":MEASure:THResholds:PERCent" on page 730

• ":MEASure:THResholds:RFALl:PERCent" on page 738

• ":MEASure:THResholds:SERial:PERCent" on page 750

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

722 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:GENeral:TOPBase:ABSolute

Command :MEASure:TOPBase:THResholds:GENeral:ABSolute <source>,<top_volts>,<base_
volts>

The :MEASure:TOPBase:THResholds:GENeral:ABSolute command sets the top
level and base level voltages that are used to calculate the measurements that use
them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<top_volts>
<base_volts>

A real number specifying voltage levels. The top voltage level must be greater than
the base voltage level.

Example This example sets the voltage level for the top to 0.9 volts and the voltage level for
the base to 0.1 volts on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:TOPBase:ABSolute CHANne
l2,0.9,0.1"

Query :MEASure:THResholds:GENeral:TOPBase:ABSolute? <source>

The :MEASure:THResholds:GENeral:TOPBase:ABSolute? query returns the current
settings for top level and base level voltages.

Returned Format [:MEASure:THResholds:GENeral:TOPBase:ABSolute] <top_volts>,<base_volts><
NL>

NOTE These general-purpose threshold settings are used for everything except rise/fall
measurements and protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 723

Example This example returns the top level and base level voltages used to calculate the
measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:TOPBase:ABSolute? CHANn
el1"
strTopBase = myScope.ReadString
Debug.Print strTopBase

See Also • ":MEASure:THResholds:TOPBase:ABSolute" on page 756

• ":MEASure:THResholds:RFALl:TOPBase:ABSolute" on page 740

• ":MEASure:THResholds:SERial:TOPBase:ABSolute" on page 752

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

724 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:GENeral:TOPBase:METHod

Command :MEASure:THResholds:GENeral:TOPBase:METHod <source>,{ABSolute | HISTONLY
| MINmax | STANdard}

The :MEASure:THResholds:GENeral:TOPBase:METHod command determines the
way that the top and base of a waveform are derived for all of the measurements
that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to derive the top and base of a waveform to
the histogram method.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:TOPBase:METHod CHANnel1
,HISTONLY"

Query :MEASure:THResholds:GENeral:TOPBase:METHod?

The :MEASure:THResholds:GENeral:TOPBase:METHod? query returns the current
method being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:GENeral:TOPBase:METHod] {ABSolute | HISTONLY | MINm
ax | STANdard}

Example This example returns the method used to derive the top and base of a waveform
for channel 1.

NOTE These general-purpose threshold settings are used for everything except rise/fall
measurements and protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 725

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:GENeral:TOPBase:METHod CHANnel1
"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

See Also • ":MEASure:THResholds:TOPBase:METHod" on page 758

• ":MEASure:THResholds:RFALl:TOPBase:METHod" on page 742

• ":MEASure:THResholds:SERial:TOPBase:METHod" on page 754

History New in version 3.10.

726 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:HYSTeresis

Command :MEASure:THResholds:HYSTeresis <source>,<range>,<level>

The :MEASure:THResholds:HYSTeresis command sets the range and level voltages
that are used to calculate the measurements that use them. The range is added to
the level to determine the upper level voltage for measurements that use it. The
range is subtracted from the level to determine the lower level voltage. The level is
the middle level voltage.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<range> A real number specifying voltage range for the hysteresis around the level value.

<level> A real number specifying voltage level.

Example This example sets the hysteresis range to 0.9 volts and 0.1 volts for the level on
channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:HYSTeresis CHANNEL2,0.9,0.1"

Query :MEASure:THResholds:HYSTeresis? <source>

The :MEASure:THResholds:HYSTeresis? query returns the current settings for
upper level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:HYSTeresis]<range>,<level><NL>

Example This example returns the range and level voltages used to calculate the
measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:HYSTeresis? CHANNEL1"

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 727

strRangeLevel = myScope.ReadString
Debug.Print strRangeLevel

History Legacy command (existed before version 3.10).

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

728 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:METHod

Command :MEASure:THResholds:METHod <source>,{ABSolute | PERCent | HYSTeresis}

The :MEASure:THResholds:METHod command determines the way that the top
and base of a waveform are calculated for all of the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to calculate the top and base of a waveform to
hysteresis.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:METHod CHANnel1,HYSTeresis"

Query :MEASure:THResholds:METHod? <source>

The :MEASure:THResholds:METHod? query returns the current method being used
to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:METHod <source>,] {ABSolute | PERCent | HYSTeresis}

Example This example returns the method used to calculate the top and base of a waveform
to hysteresis.

NOTE This command changes the threshold settings used for rise/fall time measurements, protocol
decode, and all other general-purpose measurements that use thresholds. To change the
settings used for these types of measurements individually, see:

• ":MEASure:THResholds:GENeral:METHod" on page 718
• ":MEASure:THResholds:RFALl:METHod" on page 736
• ":MEASure:THResholds:SERial:METHod" on page 748

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 729

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:METHod?"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

History Legacy command (existed before version 3.10).

730 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:PERCent

Command :MEASure:THResholds:PERCent <source>,<upper_pct>,<middle_pct>,<lower_pct
>

The :MEASure:THResholds:PERCent command sets the upper level, middle level,
and lower level voltages as a percentage of the top and base voltages which are
used to calculate the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_pct>
<middle_pct>

<lower_pct>

A real number specifying upper percentage from -24.8 to 125.0 A real number
specifying the middle percentage from -24.9 to 124.9. A real number specifying
the lower percentage from -25.0 to 125.8

Example This example sets the percentage to 100% for the upper level, 50% for the middle
level and 0% for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:PERCent CHANnel2,100,50,0"

Query :MEASure:THResholds:PERCent? <source>

The :MEASure:THResholds:PERCent? query returns the current settings for upper
level, middle level, and lower level percentages.

Returned Format [:MEASure:THResholds:PERCent] <upper_pct>,<middle_pcts>,<lower_pct><NL>

Example This example returns the upper level, middle level, and lower level percentages
used to calculate the measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:PERCent? CHANnel1"
strThresholdsPct = myScope.ReadString
Debug.Print strThresholdsPct

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 731

History Legacy command (existed before version 3.10).

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

732 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:RFALl:ABSolute

Command :MEASure:THResholds:RFALl:ABSolute <source>,
<upper_volts>,<middle_volts>,<lower_volts>

The :MEASure:THResholds:RFALl:ABSolute command sets the upper level, middle
level, and lower level voltages that are used to calculate the measurements that
use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_volts>
<middle_volts>

<lower_volts>

A real number specifying voltage thresholds.

Example This example sets the custom voltage thresholds to 0.9 volts for the upper level,
0.5 volts for the middle level and 0.1 volts for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:ABSolute CHANnel2,0.9,0.5
,0.1"

Query :MEASure:THResholds:RFALl:ABSolute? <source>

The :MEASure:THResholds:RFALl:ABSolute? query returns the current settings for
upper level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:RFALl:ABSolute] <upper_volts>,<middle_volts>,<lower
_volts><NL>

NOTE These threshold settings are used for rise/fall measurements.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 733

Example This example returns the upper level, middle level, and lower level voltages used to
calculate the rise/fall measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:ABSolute? CHANnel1"
strThresholds = myScope.ReadString
Debug.Print strThresholds

See Also • ":MEASure:THResholds:ABSolute" on page 712

• ":MEASure:THResholds:GENeral:ABSolute" on page 714

• ":MEASure:THResholds:SERial:ABSolute" on page 744

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

734 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:RFALl:HYSTeresis

Command :MEASure:THResholds:RFALl:HYSTeresis <source>,<range>,<level>

The :MEASure:THResholds:RFALl:HYSTeresis command sets the range and level
voltages that are used to calculate the measurements that use them. The range is
added to the level to determine the upper level voltage for measurements that use
it. The range is subtracted from the level to determine the lower level voltage. The
level is the middle level voltage.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<range> A real number specifying voltage range for the hysteresis around the level value.

<level> A real number specifying voltage level.

Example This example sets the hysteresis range to 0.9 volts and 0.1 volts for the level on
channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:HYSTeresis CHANNEL2,0.9,0
.1"

Query :MEASure:THResholds:RFALl:HYSTeresis? <source>

The :MEASure:THResholds:RFALl:HYSTeresis? query returns the current settings
for upper level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:RFALl:HYSTeresis]<range>,<level><NL>

NOTE These threshold settings are used for rise/fall measurements.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 735

Example This example returns the range and level voltages used to calculate the rise/fall
measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:HYSTeresis? CHANNEL1"
strRangeLevel = myScope.ReadString
Debug.Print strRangeLevel

See Also • ":MEASure:THResholds:HYSTeresis" on page 726

• ":MEASure:THResholds:GENeral:HYSTeresis" on page 716

• ":MEASure:THResholds:SERial:HYSTeresis" on page 746

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

736 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:RFALl:METHod

Command :MEASure:THResholds:RFALl:METHod <source>,{ABSolute | PERCent | HYSTeres
is}

The :MEASure:THResholds:RFALl:METHod command determines the way that the
top and base of a waveform are calculated for all of the measurements that use
them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to calculate the top and base of a waveform to
hysteresis.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:METHod CHANnel1,HYSTeresi
s"

Query :MEASure:THResholds:RFALl:METHod? <source>

The :MEASure:THResholds:RFALl:METHod? query returns the current method
being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:RFALl:METHod <source>,] {ABSolute | PERCent | HYSTe
resis}

Example This example returns the method used to calculate the top and base of a waveform
to hysteresis.

NOTE These threshold settings are used for rise/fall measurements.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 737

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:METHod?"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

See Also • ":MEASure:THResholds:METHod" on page 728

• ":MEASure:THResholds:GENeral:METHod" on page 718

• ":MEASure:THResholds:SERial:METHod" on page 748

History New in version 3.10.

738 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:RFALl:PERCent

Command :MEASure:THResholds:RFALl:PERCent <source>,<upper_pct>,<middle_pct>,<low
er_pct>

The :MEASure:THResholds:RFALl:PERCent command sets the upper level, middle
level, and lower level voltages as a percentage of the top and base voltages which
are used to calculate the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_pct>
<middle_pct>

<lower_pct>

A real number specifying upper percentage from -24.8 to 125.0 A real number
specifying the middle percentage from -24.9 to 124.9. A real number specifying
the lower percentage from -25.0 to 125.8

Example This example sets the percentage to 100% for the upper level, 50% for the middle
level and 0% for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:PERCent CHANnel2,100,50,0
"

Query :MEASure:THResholds:RFALl:PERCent? <source>

The :MEASure:THResholds:RFALl:PERCent? query returns the current settings for
upper level, middle level, and lower level percentages.

Returned Format [:MEASure:THResholds:RFALl:PERCent] <upper_pct>,<middle_pcts>,<lower_pct
><NL>

NOTE These threshold settings are used for rise/fall measurements.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 739

Example This example returns the upper level, middle level, and lower level percentages
used to calculate the rise/fall measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:PERCent? CHANnel1"
strThresholdsPct = myScope.ReadString
Debug.Print strThresholdsPct

See Also • ":MEASure:THResholds:PERCent" on page 730

• ":MEASure:THResholds:GENeral:PERCent" on page 720

• ":MEASure:THResholds:SERial:PERCent" on page 750

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

740 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:RFALl:TOPBase:ABSolute

Command :MEASure:TOPBase:THResholds:RFALl:ABSolute <source>,<top_volts>,<base_vo
lts>

The :MEASure:TOPBase:THResholds:RFALl:ABSolute command sets the top level
and base level voltages that are used to calculate the measurements that use
them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<top_volts>
<base_volts>

A real number specifying voltage levels. The top voltage level must be greater than
the base voltage level.

Example This example sets the voltage level for the top to 0.9 volts and the voltage level for
the base to 0.1 volts on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:TOPBase:ABSolute CHANnel2
,0.9,0.1"

Query :MEASure:THResholds:RFALl:TOPBase:ABSolute? <source>

The :MEASure:THResholds:RFALl:TOPBase:ABSolute? query returns the current
settings for top level and base level voltages.

Returned Format [:MEASure:THResholds:RFALl:TOPBase:ABSolute] <top_volts>,<base_volts><NL
>

NOTE These threshold settings are used for rise/fall measurements.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 741

Example This example returns the top level and base level voltages used to calculate the
rise/fall measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:TOPBase:ABSolute? CHANnel
1"
strTopBase = myScope.ReadString
Debug.Print strTopBase

See Also • ":MEASure:THResholds:TOPBase:ABSolute" on page 756

• ":MEASure:THResholds:GENeral:TOPBase:ABSolute" on page 722

• ":MEASure:THResholds:SERial:TOPBase:ABSolute" on page 752

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

742 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:RFALl:TOPBase:METHod

Command :MEASure:THResholds:RFALl:TOPBase:METHod <source>,{ABSolute | HISTONLY
| MINmax | STANdard}

The :MEASure:THResholds:RFALl:TOPBase:METHod command determines the
way that the top and base of a waveform are derived for all of the measurements
that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to derive the top and base of a waveform to
the histogram method.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:TOPBase:METHod CHANnel1,H
ISTONLY"

Query :MEASure:THResholds:RFALl:TOPBase:METHod?

The :MEASure:THResholds:RFALl:TOPBase:METHod? query returns the current
method being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:RFALl:TOPBase:METHod] {ABSolute | HISTONLY | MINmax
| STANdard}

Example This example returns the method used to derive the top and base of a waveform
for channel 1.

NOTE These threshold settings are used for rise/fall measurements.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 743

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:RFALl:TOPBase:METHod CHANnel1"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

See Also • ":MEASure:THResholds:TOPBase:METHod" on page 758

• ":MEASure:THResholds:GENeral:TOPBase:METHod" on page 724

• ":MEASure:THResholds:SERial:TOPBase:METHod" on page 754

History New in version 3.10.

744 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:SERial:ABSolute

Command :MEASure:THResholds:SERial:ABSolute <source>,
<upper_volts>,<middle_volts>,<lower_volts>

The :MEASure:THResholds:SERial:ABSolute command sets the upper level, middle
level, and lower level voltages that are used for protocol decode.

<source> {ALL | CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_volts>
<middle_volts>

<lower_volts>

A real number specifying voltage thresholds.

Example This example sets the custom voltage thresholds to 0.9 volts for the upper level,
0.5 volts for the middle level and 0.1 volts for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:ABSolute CHANnel2,0.9,0.
5,0.1"

Query :MEASure:THResholds:SERial:ABSolute? <source>

The :MEASure:THResholds:SERial:ABSolute? query returns the current settings for
upper level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:SERial:ABSolute] <upper_volts>,<middle_volts>,<lowe
r_volts><NL>

NOTE These serial threshold settings are used for protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 745

Example This example returns the upper level, middle level, and lower level voltages used
for protocol decode on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:ABSolute? CHANnel1"
strThresholds = myScope.ReadString
Debug.Print strThresholds

See Also • ":MEASure:THResholds:ABSolute" on page 712

• ":MEASure:THResholds:GENeral:ABSolute" on page 714

• ":MEASure:THResholds:RFALl:ABSolute" on page 732

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

746 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:SERial:HYSTeresis

Command :MEASure:THResholds:SERial:HYSTeresis <source>,<range>,<level>

The :MEASure:THResholds:SERial:HYSTeresis command sets the range and level
voltages that are used for protocol decode. The range is added to the level to
determine the upper level voltage. The range is subtracted from the level to
determine the lower level voltage. The level is the middle level voltage.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<range> A real number specifying voltage range for the hysteresis around the level value.

<level> A real number specifying voltage level.

Example This example sets the hysteresis range to 0.9 volts and 0.1 volts for the level on
channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:HYSTeresis CHANNEL2,0.9,
0.1"

Query :MEASure:THResholds:SERial:HYSTeresis? <source>

The :MEASure:THResholds:SERial:HYSTeresis? query returns the current settings
for upper level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:SERial:HYSTeresis]<range>,<level><NL>

NOTE These serial threshold settings are used for protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 747

Example This example returns the range and level voltages used for protocol decode on
channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:HYSTeresis? CHANNEL1"
strRangeLevel = myScope.ReadString
Debug.Print strRangeLevel

See Also • ":MEASure:THResholds:HYSTeresis" on page 726

• ":MEASure:THResholds:GENeral:HYSTeresis" on page 716

• ":MEASure:THResholds:RFALl:HYSTeresis" on page 734

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

748 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:SERial:METHod

Command :MEASure:THResholds:SERial:METHod <source>,{ABSolute | PERCent | HYSTere
sis}

The :MEASure:THResholds:SERial:METHod command determines the way that the
top and base of a waveform are calculated for protocol decode.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to calculate the top and base of a waveform to
hysteresis.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:METHod CHANnel1,HYSTeres
is"

Query :MEASure:THResholds:SERial:METHod? <source>

The :MEASure:THResholds:SERial:METHod? query returns the current method
being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:SERial:METHod <source>,] {ABSolute | PERCent | HYST
eresis}

Example This example returns the method used to calculate the top and base of a waveform
to hysteresis.

NOTE These serial threshold settings are used for protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 749

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:METHod?"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

See Also • ":MEASure:THResholds:METHod" on page 728

• ":MEASure:THResholds:GENeral:METHod" on page 718

• ":MEASure:THResholds:RFALl:METHod" on page 736

History New in version 3.10.

750 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:SERial:PERCent

Command :MEASure:THResholds:SERial:PERCent <source>,<upper_pct>,<middle_pct>,<lo
wer_pct>

The :MEASure:THResholds:SERial:PERCent command sets the upper level, middle
level, and lower level voltages as a percentage of the top and base voltages which
are used for protocol decode.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<upper_pct>
<middle_pct>

<lower_pct>

A real number specifying upper percentage from -24.8 to 125.0 A real number
specifying the middle percentage from -24.9 to 124.9. A real number specifying
the lower percentage from -25.0 to 125.8

Example This example sets the percentage to 100% for the upper level, 50% for the middle
level and 0% for the lower level on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:PERCent CHANnel2,100,50,
0"

Query :MEASure:THResholds:SERial:PERCent? <source>

The :MEASure:THResholds:SERial:PERCent? query returns the current settings for
upper level, middle level, and lower level percentages.

Returned Format [:MEASure:THResholds:SERial:PERCent] <upper_pct>,<middle_pcts>,<lower_pc
t><NL>

NOTE These serial threshold settings are used for protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 751

Example This example returns the upper level, middle level, and lower level percentages
used for protocol decode on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:PERCent? CHANnel1"
strThresholdsPct = myScope.ReadString
Debug.Print strThresholdsPct

See Also • ":MEASure:THResholds:PERCent" on page 730

• ":MEASure:THResholds:GENeral:PERCent" on page 720

• ":MEASure:THResholds:RFALl:PERCent" on page 738

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

752 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:SERial:TOPBase:ABSolute

Command :MEASure:TOPBase:THResholds:SERial:ABSolute <source>,<top_volts>,<base_v
olts>

The :MEASure:TOPBase:THResholds:SERial:ABSolute command sets the top level
and base level voltages that are used for protocol decode.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<top_volts>
<base_volts>

A real number specifying voltage levels. The top voltage level must be greater than
the base voltage level.

Example This example sets the voltage level for the top to 0.9 volts and the voltage level for
the base to 0.1 volts on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:TOPBase:ABSolute CHANnel
2,0.9,0.1"

Query :MEASure:THResholds:SERial:TOPBase:ABSolute? <source>

The :MEASure:THResholds:SERial:TOPBase:ABSolute? query returns the current
settings for top level and base level voltages.

Returned Format [:MEASure:THResholds:SERial:TOPBase:ABSolute] <top_volts>,<base_volts><N
L>

NOTE These serial threshold settings are used for protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 753

Example This example returns the top level and base level voltages used for protocol
decode on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:TOPBase:ABSolute? CHANne
l1"
strTopBase = myScope.ReadString
Debug.Print strTopBase

See Also • ":MEASure:THResholds:TOPBase:ABSolute" on page 756

• ":MEASure:THResholds:GENeral:TOPBase:ABSolute" on page 722

• ":MEASure:THResholds:RFALl:TOPBase:ABSolute" on page 740

History New in version 3.10.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

754 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:SERial:TOPBase:METHod

Command :MEASure:THResholds:SERial:TOPBase:METHod <source>,{ABSolute | HISTONLY
| MINmax | STANdard}

The :MEASure:THResholds:SERial:TOPBase:METHod command determines the
way that the top and base of a waveform are derived for protocol decode.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to derive the top and base of a waveform to
the histogram method.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:TOPBase:METHod CHANnel1,
HISTONLY"

Query :MEASure:THResholds:SERial:TOPBase:METHod?

The :MEASure:THResholds:SERial:TOPBase:METHod? query returns the current
method being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:SERial:TOPBase:METHod] {ABSolute | HISTONLY | MINma
x | STANdard}

Example This example returns the method used to derive the top and base of a waveform
for channel 1.

NOTE These serial threshold settings are used for protocol decode.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 755

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:SERial:TOPBase:METHod CHANnel1"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

See Also • ":MEASure:THResholds:TOPBase:METHod" on page 758

• ":MEASure:THResholds:GENeral:TOPBase:METHod" on page 724

• ":MEASure:THResholds:RFALl:TOPBase:METHod" on page 742

History New in version 3.10.

756 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:TOPBase:ABSolute

Command :MEASure:TOPBase:THResholds:ABSolute <source>,<top_volts>,<base_volts>

The :MEASure:TOPBase:THResholds:ABSolute command sets the top level and
base level voltages that are used to calculate the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

<top_volts>
<base_volts>

A real number specifying voltage levels. The top voltage level must be greater than
the base voltage level.

Example This example sets the voltage level for the top to 0.9 volts and the voltage level for
the base to 0.1 volts on channel 2.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:TOPBase:ABSolute CHANnel2,0.9,0
.1"

Query :MEASure:THResholds:TOPBase:ABSolute? <source>

The :MEASure:THResholds:TOPBase:ABSolute? query returns the current settings
for top level and base level voltages.

Returned Format [:MEASure:THResholds:TOPBase:ABSolute] <top_volts>,<base_volts><NL>

Example This example returns the top level and base level voltages used to calculate the
measurements on channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:TOPBase:ABSolute? CHANnel1"
strTopBase = myScope.ReadString
Debug.Print strTopBase

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 757

History Legacy command (existed before version 3.10).

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

758 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:THResholds:TOPBase:METHod

Command :MEASure:THResholds:TOPBase:METHod <source>,{ABSolute | HISTONLY
| MINmax | STANdard}

The :MEASure:THResholds:TOPBase:METHod command determines the way that
the top and base of a waveform are derived for all of the measurements that use
them.

<source> {ALL | CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk |
MTRend | MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source. Setting the source to ALL does not affect the individual channel settings
which is the behavior as the user interface.

<N> An integer, 1-4.

<F> An integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example sets the method used to derive the top and base of a waveform to
the histogram method.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:TOPBase:METHod CHANnel1,HISTONL
Y"

Query :MEASure:THResholds:TOPBase:METHod?

The :MEASure:THResholds:TOPBase:METHod? query returns the current method
being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:TOPBase:METHod] {ABSolute | HISTONLY | MINmax | STA
Ndard}

Example This example returns the method used to derive the top and base of a waveform
for channel 1.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:THResholds:TOPBase:METHod CHANnel1"
varMethod = myScope.ReadNumber
Debug.Print FormatNumber(varMethod, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 759

:MEASure:TIEClock2

Command

:MEASure:TIEClock2 <source>,{SECond | UNITinterval},
<direction>,{AUTO | CUSTOM,<frequency>} | {VARiable,<frequency>,<bandwid
th>} | CLOCk}

The :MEASure:TIEClock2 command measures time interval error on a clock. You
can set the units of the measurement by selecting SECond (seconds) or
UNITinterval. If AUTO is selected, the oscilloscope selects the ideal constant clock
frequency. If CUSTom is selected, you can enter your own ideal clock frequency. If
VARiable is selected, a first order PLL clock recovery is used at the give clock
frequency and loop bandwidth. If CLOCk is given, clock recovery is specified with
the :MEASure:CLOCk:METHod command.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are only available on MSO models.

<direction> {RISing | FALLing | BOTH}

Specifies direction of clock edge. BOTH selects the first edge from the left-hand
side of the waveform viewing area.

NOTE Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/5401A Software is installed.

760 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

<frequency> A real number for the ideal clock frequency for clock recovery.

<bandwidth> A real number for the loop bandwidth of the PLL clock recovery method.

Example This example measures the clock time interval error on the rising edge of channel
1, ideal clock frequency set to automatic, units set to seconds.

myScope.WriteString ":MEASURE:TIECLOCK2 CHANNEL1,SECOND,RISING,AUTO"

Query :MEASure:TIEClock2? <source>,{SECond | UNITinterval},<direction>,{AUTO |
CUSTOM,<frequency> | {VARiable,<frequency>,<bandwidth>} | CLOCk}

The :MEASure:TIEClock2? query returns the current value of the clock time interval
error.

Returned Format [:MEASure:TIEClock2] <value>[,<result_state>]<NL>

<value> The clock time interval error value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of the clock time interval error in the
variable strValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:TIECLOCK2? CHANNEL1,SECOND,FALLING,CUSTOM,
2.5E9"
strValue = myScope.ReadString
Debug.Print strValue

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 761

:MEASure:TIEData

Command

:MEASure:TIEData <source>,{SECond | UNITinterval}, {AUTO
| CUSTOM,<data_rate> | VARiable,<data_rate>,<bandwidth>
| CLOCk}

The :MEASure:TIEData command measures data time interval error. You can set
the units of the measurement by selecting SECond (seconds) or UNITinterval. If
AUTO is selected, the oscilloscope selects the ideal data rate. If CUSTom is
selected, you can enter your own ideal constant data rate. If VARiable is selected,
a first order PLL clock recovery is used at a given data rate and loop bandwidth. If
CLOCk is given, clock recovery as specified with the :MEASure:CLOCk:METHod is
used.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are only available on MSO models.

<data_rate> A real number for the ideal data rate for clock recovery.

<bandwidth> A real number for the loop bandwidth of the PLL clock recovery method.

Example This example measures the data time interval error on channel 1, ideal data rate
set to automatic, units set to seconds.

myScope.WriteString ":MEASURE:TIEDATA CHANNEL1,SECOND,AUTO"

Query :MEASure:TIEData? <source>,(SECond | UNITinterval},
{AUTO | CUSTom,<frequency> | VARiable,<frequency>,<bandwidth> | CLOCk}

NOTE This command is only available when the E2681A Jitter Analysis Software, Serial Data
Analysis, or the N5400A/5401A Software is installed.

762 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

The :MEASure:TIEData? query returns the current value of the data time interval
error.

Returned Format [:MEASure:TIEData] <value>[,<result_state>]<NL>

<value> The data time interval error value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of the data time interval error in the variable
strValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:TIEDATA? CHANNEL1,SECOND,CUSTOM,1E9"
strValue = myScope.ReadString
Debug.Print strValue

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 763

:MEASure:TIEFilter:SHAPe

Command :MEASure:TIEFilter:SHAPe {RECTangular | DB20 | DB40}

The :MEASure:TIEFilter:SHAPe command specifies the shape of the TIE filter
edge(s):

• RECTangular — The TIE filter is a brickwall filter.

• DB20 — The TIE filter edge(s) roll off at 20 dB per decade.

• DB40 — The TIE filter edge(s) roll off at 40 dB per decade.

Example This example specifies that the TIE filter edge(s) roll off at 40 dB per decade.

myScope.WriteString ":MEASURE:TIEFilter:SHAPe DB40"

Query :MEASure:TIEFilter:SHAPe?

The :MEASure:TIEFilter:SHAPe? query returns the specified shape of the TIE filter
edge(s).

Returned Format [:MEASure:TIEFilter:SHAPe] {RECTangular | DB20 | DB40}<NL>

Example This example places the specified shape of the TIE filter edge(s) in the string
variable, strShape, then prints the contents of the variable to the computer's
screen.

Dim strShape As String ' Dimension variable.
myScope.WriteString ":MEASure:TIEFilter:SHAPe?"
strShape = myScope.ReadString
Debug.Print strShape

See Also • ":MEASure:TIEFilter:STATe" on page 765

• ":MEASure:TIEFilter:TYPE" on page 767

• ":MEASure:TIEFilter:STARt" on page 764

• ":MEASure:TIEFilter:STOP" on page 766

History New in version 4.10.

764 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:TIEFilter:STARt

Command :MEASure:TIEFilter:STARt <start_frequency>

The :MEASure:TIEFilter:STARt command sets the starting frequency for the TIE
filter.

<start_ frequency> A real number.

Query :MEASure:TIEFilter:STARt?

The :MEASure:TIEFilter:STARt? query returns the current value of the starting
frequency of the TIE filter.

Returned Format [:MEASure:TIEFilter:STARt] <value><NL>

<value> The start frequency for the TIE filter.

Example This example returns the current value of the starting frequency for the TIE filter
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:TIEFilter:STARt?"
varStart = myScope.ReadNumber
Debug.Print FormatNumber(varStart, 0)

See Also • ":MEASure:TIEFilter:STATe" on page 765

• ":MEASure:TIEFilter:TYPE" on page 767

• ":MEASure:TIEFilter:SHAPe" on page 763

• ":MEASure:TIEFilter:STOP" on page 766

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 765

:MEASure:TIEFilter:STATe

Command :MEASure:TIEFilter:STATe {{ON | 1} | {OFF | 0}}

The :MEASure:TIEFilter:STATe command enables the TIE filter for TIE data
measurements.

Query :MEASure:TIEFilter:STATe?

The :MEASure:TIEFilter:STATe? query returns the current state of the TIE data
filter.

Returned Format [:MEASure:TIEFilter:STATe] {0 | 1}<NL>

Example This example returns the current state of the TIE data filter then prints the contents
of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:TIEFilter:STATe?"
varState = myScope.ReadNumber
Debug.Print FormatNumber(varState, 0)

See Also • ":MEASure:TIEFilter:TYPE" on page 767

• ":MEASure:TIEFilter:SHAPe" on page 763

• ":MEASure:TIEFilter:STARt" on page 764

• ":MEASure:TIEFilter:STOP" on page 766

History Legacy command (existed before version 3.10).

766 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:TIEFilter:STOP

Command :MEASure:TIEFilter:STOP <stop_frequency>

The :MEASure:TIEFilter:STOP command sets the stopping frequency for the TIE
filter.

<stop_ frequency> A real number.

Query :MEASure:TIEFilter:STOP?

The :MEASure:TIEFilter:STOP? query returns the current value of the stopping
frequency of the TIE filter.

Returned Format [:MEASure:TIEFilter:STOP] <value><NL>

<value> The stop frequency for the TIE filter.

Example This example returns the current value of the stopping frequency for the TIE filter
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":MEASure:TIEFilter:STOP?"
varStop = myScope.ReadNumber
Debug.Print FormatNumber(varStop, 0)

See Also • ":MEASure:TIEFilter:STATe" on page 765

• ":MEASure:TIEFilter:TYPE" on page 767

• ":MEASure:TIEFilter:SHAPe" on page 763

• ":MEASure:TIEFilter:STARt" on page 764

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 767

:MEASure:TIEFilter:TYPE

Command :MEASure:TIEFilter:TYPE {BANDpass | LOWPass | HIGHpass}

The :MEASure:TIEFilter:TYPE command sets the type of TIE filter to be used.

Example This example sets the TIE filter to highpass.

myScope.WriteString ":MEASURE:TIEFilter:TYPE HIGHpass"

Query :MEASure:TIEFilter:TYPE?

The :MEASure:TIEFilter:TYPE? query returns the current type of TIE filter being
used.

Returned Format [:MEASure:TIEFilter:TYPE] {BANDpass | LOWPass | HIGHpass}<NL>

Example This example places the current mode for TIEFilter:TYPE in the string variable,
strMode, then prints the contents of the variable to the computer's screen.

Dim strMode As String ' Dimension variable.
myScope.WriteString ":MEASURE:TIEFilter:TYPE?"
strMode = myScope.ReadString
Debug.Print strMode

See Also • ":MEASure:TIEFilter:STATe" on page 765

• ":MEASure:TIEFilter:SHAPe" on page 763

• ":MEASure:TIEFilter:STARt" on page 764

• ":MEASure:TIEFilter:STOP" on page 766

History Legacy command (existed before version 3.10).

768 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:TMAX

Command :MEASure:TMAX [<source>]

The :MEASure:TMAX command measures the first time at which the maximum
voltage of the source waveform occurred. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:TMAX command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:TMAX? [<source>]

The :MEASure:TMAX? query returns the time at which the first maximum voltage
occurred.

Returned Format [:MEASure:TMAX] <time>[,<result_state>]<NL>

<time> Time at which the first maximum voltage occurred or frequency where the
maximum FFT amplitude occurred.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time at which the first maximum voltage occurred to the
numeric variable, varTime, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:TMAX? CHANNEL1"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 769

:MEASure:TMIN

Command :MEASure:TMIN [<source>]

The :MEASure:TMIN command measures the time at which the first minimum
voltage occurred. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:TMIN command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:TMIN? [<source>]

The :MEASure:TMIN? query returns the time at which the first minimum voltage
occurred or the frequency where the minimum FFT amplitude occurred.

Returned Format [:MEASure:TMIN] <time>[,<result_state>]<NL>

<time> Time at which the first minimum voltage occurred.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time at which the first minimum voltage occurred to the
numeric variable, varTime, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:TMIN? CHANNEL1"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

History Legacy command (existed before version 3.10).

770 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:TVOLt

Command :MEASure:TVOLt <voltage>,[<slope>]<occurrence> [,<source>]

The :MEASure:TVOLt command measures the time interval between the trigger
event and the defined voltage level and transition. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:TVOLt command.

The TEDGe command can be used to get the time of edges.

Query :MEASure:TVOLt? <voltage>,<slope><occurrence> [,<source>]

The :MEASure:TVOLt? query returns the time interval between the trigger event
and the specified voltage level and transition.

<voltage> Voltage level at which time will be measured.

<slope> The direction of the waveform change when the specified voltage is crossed -
rising (+) or falling (-). If no +/- sign is present, + is assumed.

<occurrence> The number of the crossing to be reported (if one, the first crossing is reported; if
two, the second crossing is reported, etc.). The desired crossing must be present
on the display. Occurrences are counted with 1 being the first occurrence from the
left of the display, and a maximum value of 65534.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Returned Format [:MEASure:TVOLt] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event and the specified voltage level and
transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 771

Example This example returns the time interval between the trigger event and the transition
through -0.250 Volts on the third rising occurrence of the source waveform to the
numeric variable, varTime. The contents of the variable are then printed to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:TVOLT? -0.250,+3,CHANNEL1"
varTime = myScope.ReadNumber
Debug.Print FormatNumber(varTime, 0)

History Legacy command (existed before version 3.10).

772 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:UITouijitter

Command :MEASure:UITouijitter <source>, <N>

The :MEASure:UITouijitter command measures the difference between two
consecutive N-UI measurements. The measurement then moves over one unit
interval and makes another measurement. When N=1, this is analogous to
cycle-cycle jitter, but measures unit intervals instead of periods. When N>1, this is
analogous to N-Cycle jitter but measures unit intervals instead of periods.

<source> the source on which the measurement is made

<N> An integer greater than or equal to 1.

Example This example measures the UI-UI jitter for 3 consecutive unit intervals on channel
1.

myScope.WriteString ":MEASURE:UITouijitter CHAN1, 3"

Query :MEASure:UITouijitter?

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 773

:MEASure:UNITinterval

Command

:MEASure:UNITinterval <source>[,{AUTO | (SEMI,<data_rate>)}]

The :MEASure:UNITinterval command measures the unit interval value of the
selected source. Use the :MEASure:DATarate command/query to measure the data
rate of the source

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are only available on MSO models.

<data_rate> A real number representing the data rate.

Example This example measures the unit interval of channel 1.

myScope.WriteString ":MEASURE:UNITINTERVAL CHANNEL1"

Query :MEASure:UNITinterval? <source>[,{AUTO | (SEMI,<data_rate>)}]

The :MEASure:UNITinterval? query returns the measured unit interval.

Returned Format [:MEASure:UNITinterval] <value>[,<result_state>]<NL>

<value> Unit interval of the source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/5401A Software is installed.

774 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

Example This example places the current unit interval of the channel 1 waveform in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:UNITINTERVAL? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 775

:MEASure:VAMPlitude

Command :MEASure:VAMPlitude [<source>]

The :MEASure:VAMPlitude command calculates the difference between the top
and base voltage of the specified source. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VAMPlitude command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example calculates the difference between the top and base voltage of the
specified source.

myScope.WriteString ":MEASURE:VAMPLITUDE CHANNEL1"

Query :MEASure:VAMPlitude? [<source>]

The :MEASure:VAMPlitude? query returns the calculated difference between the
top and base voltage of the specified source.

Returned Format [:MEASure:VAMPlitude] <value>[,<result_state>]<NL>

<value> Calculated difference between the top and base voltage.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current Vamplitude value in the numeric variable,
varValue, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VAMPLITUDE? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

776 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 777

:MEASure:VAVerage

Command :MEASure:VAVerage {CYCLe | DISPlay}[,<source>]

The :MEASure:VAVerage command calculates the average voltage over the
displayed waveform. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:VAVerage command.

CYCLe The CYCLe parameter instructs the average measurement to measure the average
voltage across the first period on the display.

DISPlay The DISPlay parameter instructs the average measurement to measure all the data
on the display.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example calculates the average voltage over the displayed waveform.

myScope.WriteString ":MEASURE:VAVERAGE DISPLAY,CHANNEL1"

Query :MEASure:VAVerage? {CYCLe | DISPlay}[,<source>]

The :MEASure:VAVerage? query returns the calculated average voltage of the
specified source. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:VAVerage command.

Returned Format [:MEASure:VAVerage] <value>[,<result_state>]<NL>

<value> The calculated average voltage.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current average voltage in the numeric variable,
varAverage, then prints the contents of the variable to the computer's screen.

778 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VAVERAGE? DISPLAY,CHANNEL1 CHANNEL1"
varAverage = myScope.ReadNumber
Debug.Print FormatNumber(varAverage, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 779

:MEASure:VBASe

Command :MEASure:VBASe [<source>]

The :MEASure:VBASe command measures the statistical base of the waveform.
Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:VBASe command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the voltage at the base of the waveform.

myScope.WriteString ":MEASURE:VBASE CHANNEL1"

Query :MEASure:VBASe? [<source>]

The :MEASure:VBASe? query returns the measured voltage value at the base of
the specified source.

Returned Format [:MEASure:VBASe] <value>[,<result_state>]<NL>

<value> Voltage at the base of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the current voltage at the base of the waveform to the
numeric variable, varVoltage, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VBASE? CHANNEL1"
varVoltage = myScope.ReadNumber
Debug.Print FormatNumber(varVoltage, 0)

History Legacy command (existed before version 3.10).

780 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:VLOWer

Command :MEASure:VLOWer [<source>]

The :MEASure:VLOWer command measures the voltage value at the lower
threshold of the waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VLOWer
command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Query :MEASure:VLOWer?

The :MEASure:VLOWer? query returns the measured lower threshold of the
selected source.

Returned Format [:MEASure:VLOWer] <value>[,<result_state>]<NL>

<value> Voltage value at the lower threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured voltage at the lower threshold of the waveform
to the numeric variable, varVlower, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VLOW? CHANNEL1"
varVlower = myScope.ReadNumber
Debug.Print FormatNumber(varVlower, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 781

:MEASure:VMAX

Command :MEASure:VMAX [<source>]

The :MEASure:VMAX command measures the absolute maximum voltage present
on the selected source waveform. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VMAX command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the absolute maximum voltage on the waveform.

myScope.WriteString ":MEASURE:VMAX CHANNEL1"

Query :MEASure:VMAX? [<source>]

The :MEASure:VMAX? query returns the measured absolute maximum voltage or
maximum FFT amplitude present on the selected source waveform.

Returned Format [:MEASure:VMAX] <value>[,<result_state>]<NL>

<value> Absolute maximum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured absolute maximum voltage on the waveform to
the numeric variable, varMaximum, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VMAX? CHANNEL1"
varMaximum = myScope.ReadNumber
Debug.Print FormatNumber(varMaximum, 0)

782 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 783

:MEASure:VMIDdle

Command :MEASure:VMIDdle [<source>]

The :MEASure:VMIDdle command measures the voltage level at the middle
threshold of the waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VMIDdle
command.

Query :MEASure:VMIDdle? [<source>]

The :MEASure:VMIDdle? query returns the voltage value at the middle threshold of
the waveform.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Returned Format [MEASure:VMIDdle] <value>[,<result_state>]<NL>

<value> The middle voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured middle voltage on the waveform to the
numeric variable, varMiddle, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VMID? CHANNEL1"
varMiddle = myScope.ReadNumber
Debug.Print FormatNumber(varMiddle, 0)

History Legacy command (existed before version 3.10).

784 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:VMIN

Command :MEASure:VMIN [<source>]

The :MEASure:VMIN command measures the absolute minimum voltage present
on the selected source waveform. Sources are specified with :MEASure:SOURce or
with the optional parameter following the :MEASure:VMIN command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the absolute minimum voltage on the waveform.

myScope.WriteString ":MEASURE:VMIN CHANNEL1"

Query :MEASure:VMIN? [<source>]

The :MEASure:VMIN? query returns the measured absolute minimum voltage or
minimum FFT amplitude present on the selected source waveform.

Returned Format [:MEASure:VMIN] <value>[,<result_state>]<NL>

<value> Absolute minimum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured absolute minimum voltage on the waveform to
the numeric variable, varMinimum, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VMIN? CHANNEL1"
varMinimum = myScope.ReadNumber
Debug.Print FormatNumber(varMinimum, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 785

:MEASure:VOVershoot

Command :MEASure:VOVershoot <source>[,<direction>]

The :MEASure:VOVershoot command is similar to the overshoot measurement, but
instead of returning the ratio of overshoot voltage to amplitude as a percent, it
returns the local voltage of the overshoot.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> RISing or FALLing

Example This example measures the local voltage of the overshoot.

myScope.WriteString ":MEASURE:VOVershoot CHAN1"

Query :MEASure:VOVershoot? <source>[,<direction>]

The :MEASure:VOVershoot? query returns the local voltage of the overshoot.

History Legacy command (existed before version 3.10).

786 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:VPP

Command :MEASure:VPP [<source>]

The :MEASure:VPP command measures the maximum and minimum voltages on
the selected source, then calculates the peak-to-peak voltage as the difference
between the two voltages. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VPP command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the peak-to-peak voltage or FFT amplitude range of the
previously selected source.

myScope.WriteString ":MEASURE:VPP CHANNEL1"

Query :MEASure:VPP? [<source>]

The :MEASure:VPP? query returns the specified source peak-to-peak voltage.

Returned Format [:MEASure:VPP] <value>[,<result_state>]<NL>

<value> Peak-to-peak voltage of the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current peak-to-peak voltage in the numeric variable,
varVoltage, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VPP? CHANNEL1"
varVoltage = myScope.ReadNumber
Debug.Print FormatNumber(varVoltage, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 787

:MEASure:VPReshoot

Command :MEASure:VPReshoot <source>[,<direction>]

The :MEASure:VPReshoot command is similar to the preshoot measurement, but
instead of returning the ratio of preshoot voltage to amplitude as a percent, it
returns the local voltage of the preshoot.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<direction> RISing or FALLing

Example This example measures the local voltage of the preshoot.

myScope.WriteString ":MEASURE:VPReshoot CHAN1"

Query :MEASure:VPReshoot? <source>[,<direction>]

History Legacy command (existed before version 3.10).

788 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:VRMS

Command :MEASure:VRMS {CYCLe | DISPlay},{AC | DC} [,<source> [,{VOLT | DBM}]]

The :MEASure:VRMS command measures the RMS voltage of the selected
waveform by subtracting the average value of the waveform from each data point
on the display. Sources are specified with the :MEASure:SOURce command or with
the optional parameter following the :MEASure:VRMS command.

CYCLe The CYCLe parameter instructs the RMS measurement to measure the RMS
voltage across the first period of the display.

DISPlay The DISPlay parameter instructs the RMS measurement to measure all the data on
the display. Generally, RMS voltage is measured across one waveform or cycle,
however, measuring multiple cycles may be accomplished with the DISPlay
option. The DISPlay parameter is also useful when measuring noise.

AC The AC parameter is used to measure the RMS voltage subtracting the DC
component.

DC The DC parameter is used to measure RMS voltage including the DC component.

The AC RMS, DC RMS, and VAVG parameters are related as in this formula:

DCVRMS2 = ACVRMS2 + VAVG2

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

VOLT | DBM Specifies the units of the measurement as either volts or decibels.

Example This example measures the RMS voltage of the previously selected waveform.

myScope.WriteString ":MEASURE:VRMS CYCLE,AC,CHANNEL1"

Query :MEASure:VRMS? {CYCLe | DISPlay},{AC | DC} [,<source> [,{VOLT | DBM}]]

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 789

The :MEASure:VRMS? query returns the RMS voltage of the specified source.

Returned Format [:MEASure:VRMS] <value>[,<result_state>]<NL>

<value> RMS voltage of the selected waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current AC RMS voltage over one period of the waveform
in the numeric variable, varVoltage, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VRMS? CYCLE,AC,CHANNEL1"
varVoltage = myScope.ReadNumber
Debug.Print FormatNumber(varVoltage, 0)

History Legacy command (existed before version 3.10).

Version 3.10: Added the VOLT and DBM parameters for specifying the
measurement units.

790 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:VTIMe

Command :MEASure:VTIMe <time>[,<source>]

The :MEASure:VTIMe command measures the voltage at the specified time. The
time is referenced to the trigger event and must be on the screen. When an FFT
function is the specified source, the amplitude at the specified frequency is
measured. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:VTIMe command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<time> A real number for time from trigger in seconds, or frequency in Hertz for an FFT
(when a function is set to FFT or a waveform memory contains an FFT).

Query :MEASure:VTIMe? <time>[,<source>]

The :MEASure:VTIMe? query returns the measured voltage or amplitude.

Returned Format [:MEASure:VTIMe] <value>[,<result_state>]<NL>

<value> Voltage at the specified time. When the source is an FFT function, the returned
value is the vertical value at the horizontal setting passed in the VTIMe <time>
parameter. The time parameter is in Hertz when an FFT function is the source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the voltage at 500 ms in the numeric variable, varValue, then
prints the contents to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VTIME? 500E-3,CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 791

History Legacy command (existed before version 3.10).

792 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASure:VTOP

Command :MEASure:VTOP [<source>]

The :MEASure:VTOP command measures the statistical top of the selected source
waveform. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:VTOP command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the voltage at the top of the waveform.

myScope.WriteString ":MEASURE:VTOP CHANNEL1"

Query :MEASure:VTOP? [<source>]

The :MEASure:VTOP? query returns the measured voltage at the top of the
specified source.

Returned Format [:MEASure:VTOP] <value>[,<result_state>]<NL>

<value> Voltage at the top of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the voltage at the top of the waveform in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VTOP? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 793

:MEASure:VUPPer

Command :MEASure:VUPPer [<source>]

The :MEASure:VUPPer command measures the voltage value at the upper
threshold of the waveform. Sources are specified with the MEASure:SOURce
command or with the optional parameter following the :MEASure:VUPPer
command.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the voltage at the upper threshold of the waveform.

myScope.WriteString ":MEASURE:VUPPer CHANNEL1"

Query :MEASure:VUPPer? [<source>]

The :MEASure:VUPPer? query returns the measured upper threshold value of the
selected source.

Returned Format [:MEASure:VUPPer] <value>[,<result_state>]<NL>

<value> Voltage at the upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See
the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the voltage at the upper threshold of the
waveform in the numeric variable, varValue, then prints the contents of the
variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:VUPPER? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

794 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

History Legacy command (existed before version 3.10).

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 795

:MEASure:WINDow

Command :MEASure:WINDow {ZOOM | CGRade | {MAIN | ALL}}, {MEAS<N>}

The :MEASure:WINDow command specifies whether measurements are made in
the ZOOM window (measurement gating), the CGRade (color grade) view, or over
the entire acquisition (MAIN or ALL). The MAIN and ALL parameters are equivalent.

Not all measurements can be applied to the color grade view.

If MEAS<N> is omitted, the command attempts to apply the selected window to all
active measurements.

<N> Can be an integer from 1 – 20.

Example This example gates Measurement 1 to the zoom window.

myScope.WriteString ":MEASURE:WINDow ZOOM, MEAS1"

Query :MEASure:WINDow? {MEASN}

This query returns whether the measurement is being performed on the zoomed
portion of the waveform (ZOOM), the color grade view of the waveform (CGR) or
the entire acquisition (MAIN or ALL).

If MEAS<N> is omitted on the query, it returns the window of the first
measurement.

History Legacy command (existed before version 3.10).

Version 3.10: The short form of the command was changed from :MEAS:WIN to
:MEAS:WIND.

Version 5.00: Added the CGRade (color grade) view as a measurement window
option.

796 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

:MEASurement<N>:NAME

Command :MEASurement<N>:NAME <name>

The :MEASurement<N>:NAME commands sets the name of the specified
measurement to whatever string is given to <name>. This lets you give specific
names to measurements displayed on the oscilloscope's screen.

<N> An integer, 1-10. This number represents the position of the measurement on
screen in the Measurements tab.

<name> A quoted string.

Query :MEASurement<N>:NAME?

The :MEASurement<N>:NAME? query returns the name of the corresponding
measurement.

History New in version 4.50.

Measure Commands 25

Keysight Infiniium Oscilloscopes Programmer's Guide 797

:MEASurement<N>:SOURce

Command :MEASurement<N>:SOURce <source>[,<source>]

The :MEASurement<N>:SOURce command changes the source of an existing
measurement in the Measurements tab of the user interface.

<N> An integer, 1-10. This number represents the position of the measurement on
screen in the Measurements tab.

<source> {CHANnel<N> | FUNCtion<F> | DIGital<M> | WMEMory<N> | CLOCk | MTRend |
MSPectrum | EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :MEASurement<N>:SOURce?

The :MEASurement<N>:SOURce? query returns the source(s) of the selected
measurement.

Returned Format [:MEASurement<N>:SOURce] <source>[,<source>]<NL>

Example This example places the currently specified measurement 1 source(s) in the string
variable, strSource, then prints the contents of the variable to the computer's
screen.

Dim strSource As String ' Dimension variable.
myScope.WriteString ":MEASurement1:SOURce?"
strSource = myScope.ReadString
Debug.Print strSource

See Also • ":MEASurement<N>:NAME" on page 796

History New in version 4.50.

798 Keysight Infiniium Oscilloscopes Programmer's Guide

25 Measure Commands

799

Keysight Infiniium Oscilloscopes
Programmer's Guide

26 Pod Commands

:POD<N>:DISPlay / 800
:POD<N>:PSKew / 801
:POD<N>:THReshold / 802

NOTE The POD commands only apply to the MSO oscilloscopes.

800 Keysight Infiniium Oscilloscopes Programmer's Guide

26 Pod Commands

:POD<N>:DISPlay

Command

:POD<N>[:DISPlay] {ON | OFF | 1 | 0}

The :POD<N>:DISPlay command enables or disables the view for the selected
digital channel pod. Pod 1 has the digital channels 0 through 7, and pod 2 has the
digital channels 8 through 15.

Displaying a pod automatically enables digital channels. See ENABle command in
the root subsystem.

<N> An integer, 1-2.

Example This example turns on the display of bit 5 for the digital channels.

myScope.WriteString ":ENABle DIGital"
myScope.WriteString ":POD2:DISPlay ON"

Query :POD<N>[:DISPlay]?

The :POD<N>:DISPlay? query returns the value of the display setting for the pod.

Returned Format [:POD<N>:DISPlay] {1 | 0}<NL>

See Also • ":DIGital<N>:DISPlay" on page 294

• ":ENABle DIGital" on page 821

History Legacy command (existed before version 3.10).

NOTE The POD commands only apply to the MSO oscilloscopes.

Pod Commands 26

Keysight Infiniium Oscilloscopes Programmer's Guide 801

:POD<N>:PSKew

Command :POD<N>:PSKew <skew_value>

The :POD<N>:PSKew command lets you adjust the digital channels with respect to
the analog channels when there is a time delay between the analog and digital
channels. This can occur when different length cables are used.

<N> An integer, 1-2.

<skew_value> A real number for the skew value, in the range -1 ms to +1 ms.

Example This example sets the probe skew for all digital channels to 10 μs.

myScope.WriteString ":POD1:PSKew 10E-6"

Query :POD<N>:PSKew?

The :POD<N>:PSKew? query returns the current probe skew setting for all digital
channels.

Returned Format [:POD<N>:PSKew] <skew_value><NL>

History Legacy command (existed before version 3.10).

802 Keysight Infiniium Oscilloscopes Programmer's Guide

26 Pod Commands

:POD<N>:THReshold

Command

:POD<N>:THReshold {CMOS50 | CMOS33 | CMOS25 | ECL | PECL | TTL
| DIFFerential | <value>}

The :POD<N>:THReshold command sets the logic threshold value for a pod. Pod 1
has the digital channels 0 through 7, and pod 2 has the digital channels 8 through
15. This command is equivalent to the :DIGital<N>:THReshold command.

The threshold is used for triggering purposes and for displaying the digital data as
high (above the threshold) or low (below the threshold). The voltage values for the
predefined thresholds are:

• CMOS50 = 2.5 V

• CMOS33 = 1.65 V

• CMOS25 = 1.25 V

• ECL = -1.3 V

• PECL = 3.7 V

• TTL = 1.4 V

• DIFFerential = 0 V

<N> An integer, 1-2.

<value> A real number representing the voltage value which distinguishes a 1 logic level
from a 0 logic level. Waveform voltages greater than the threshold are 1 logic
levels while waveform voltages less than the threshold are 0 logic levels.

On 9000 Series, 9000H Series, and S-Series mixed-signal oscilloscopes, the range
of the threshold voltage is from -8 volts to 8 volts.

On 90000 X-Series mixed-signal oscilloscopes, the range of the threshold voltage
is from -3.75 volts to 3.75 volts.

Example This example sets the threshold to 1.8 volts for pod 2 (digital channels D15
through D8).

myScope.WriteString ":POD2:THReshold 1.8"

Query :POD<N>:THREShold?

The :POD<N>:THReshold? query returns the threshold value for the specified pod.

Returned Format [:POD<N>:THReshold] {CMOS50 | CMOS33 | CMOS25 | ECL | PECL | TTL
| DIFF | <value>}<NL>

NOTE The POD commands only apply to the MSO oscilloscopes.

Pod Commands 26

Keysight Infiniium Oscilloscopes Programmer's Guide 803

See Also • ":DIGital<N>:THReshold" on page 297

History Legacy command (existed before version 3.10).

Version 4.50: Added the DIFFerential parameter for specifying the threshold
voltage.

804 Keysight Infiniium Oscilloscopes Programmer's Guide

26 Pod Commands

805

Keysight Infiniium Oscilloscopes
Programmer's Guide

27 Root Level Commands

:ADER? / 807
:AER? / 808
:ASTate? / 809
:ATER? / 810
:AUToscale / 811
:AUToscale:CHANnels / 812
:AUToscale:PLACement / 813
:AUToscale:VERTical / 814
:BEEP / 815
:BLANk / 816
:CDISplay / 817
:DIGitize / 818
:DISable DIGital / 820
:ENABle DIGital / 821
:MTEE / 823
:MTER? / 824
:MODel? / 822
:OPEE / 825
:OPER? / 826
:OVLRegister? / 827
:PDER? / 828
:PRINt / 829
:RECall:SETup / 830
:RSTate? / 831
:RUN / 832
:SERial / 833
:SINGle / 834
:STATus? / 835
:STOP / 837
:STORe:JITTer / 838
:STORe:SETup / 839
:STORe:WAVeform / 840

806 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:TER? / 841
:VIEW / 842

Root level commands control many of the basic operations of the oscilloscope that
you can select by pressing the labeled keys on the front panel. These commands
are always recognized by the parser if they are prefixed with a colon, regardless of
the current tree position. After executing a root level command, the parser is
positioned at the root of the command tree.

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 807

:ADER?

Acquisition Done Event Register

Query :ADER?

The :ADER? query reads the Acquisition Done Event Register and returns 1 or 0.
After the Acquisition Done Event Register is read, the register is cleared. The
returned value 1 indicates an acquisition completed event has occurred and 0
indicates an acquisition completed event has not occurred.

Once the Done bit is set, it is cleared only by doing :ADER? or by sending a *CLS
command.

Returned Format {1 | 0}<NL>

History Legacy command (existed before version 3.10).

808 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:AER?

Arm Event Register

Query :AER?

The :AER? query reads the Arm Event Register and returns 1 or 0. After the Arm
Event Register is read, the register is cleared. The returned value 1 indicates a
trigger armed event has occurred and 0 indicates a trigger armed has not
occurred.

Once the AER bit is set, it is cleared only by doing :AER? or by sending a *CLS
command.

Returned Format {1 | 0}<NL>

History Legacy command (existed before version 3.10).

NOTE Arm Event Returns

:AER? will allow the Arm Event to return either immediately (if you have armed but not
triggered) or on the next arm (if you have already triggered). However, *CLS is always required
to get an SRQ again.

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 809

:ASTate?

Query :ASTate?

The :ASTate? query returns the acquisition state:

• ARM — The trigger is armed and the oscilloscope has acquired all of the
pre-trigger data.

• TRIG — The trigger condition has occurred and the oscilloscope is acquiring
post trigger data.

• ATRIG — The trigger condition has not been met, but the oscilloscope has auto
triggered and is acquiring post trigger data.

• ADONE — The acquisition is done, and the data has been processed and is
ready to be unloaded.

Returned Format {ARM | TRIG | ATRIG | ADONE}<NL>

See Also • ":RSTate?" on page 831

History New in version 4.60.

810 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:ATER?

Auto Trigger Event Register

Query :ATER?

The :ATER? query reads the Auto Trigger Event Register and returns 1 or 0. After
the Auto Trigger Event Register is read, the register is cleared. The returned value
1 indicates an auto trigger event has occurred and 0 indicates an auto trigger
event has not occurred.

Returned Format {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 811

:AUToscale

Command :AUToscale

The :AUToscale command causes the oscilloscope to evaluate all input waveforms
and find the optimum conditions for displaying the waveform. It searches each of
the channels for input waveforms and shuts off channels where no waveform is
found. It adjusts the vertical gain and offset for each channel that has a waveform
and sets the time base on the lowest numbered input channel that has a
waveform.

The trigger is found by searching each channel, starting with channel 4, then
channel 3, channel 2, and channel 1, until a trigger waveform is detected. If
waveforms cannot be found on any vertical input, the oscilloscope is returned to
its former state.

Autoscale sets the following:

• Channel Display, Scale, and Offset

• Trigger Sweep, Mode, Edge, Source, Level, Slope, Hysteresis, and Holdoff

• Acquisition Sampling Rate and Memory Depth

• Time Base Scale and Position

• Marker Mode Set to Measurement

• Resets Acquisition Completion Criteria to 90%

Autoscale turns off the following:

• Measurements on sources that are turned off

• Functions

• Windows

• Memories

• InfiniiSim

Autoscale does not turn off:

• PrecisionProbe/PrecisionCable

No other controls are affected by Autoscale.

Example This example automatically scales the oscilloscope for the input waveform.

myScope.WriteString ":AUToscale"

History Legacy command (existed before version 3.10).

812 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:AUToscale:CHANnels

Command :AUToscale:CHANnels {ALL | DISPlayed}

The :AUToscale:CHANnels command selects whether to apply autoscale to all of
the input channels or just the input channels that are currently displayed.

Example This example automatically scales only the displayed channels.

myScope.WriteString ":AUTOSCALE:CHANnels DISPlayed"

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 813

:AUToscale:PLACement

Command :AUToscale:PLACement {STACk | SEParate | OVERlay}

The :AUToscale:PLACement command controls how the waveforms are displayed
on the oscilloscope when the autoscale command is used. If Stack is chosen then
each waveform's amplitude is decreased and then the waveforms are offset so
each takes up a different vertical portion of the screen. This makes it easier to view
them, but decreases the accuracy of any measurements performed on the
waveforms because they no longer take up the full dynamic range of th ADC
(analog to digital converter). If Separate is chosen then the screen is divided into
the same number of grids that there are waveforms (for example, if three
waveforms are displayed then the screen will be divided into three grids). Each
grid represents the full dynamic range of the ADC so this choice maximizes
measurement accuracy while still separating the waveforms so they are easy to
see. If the Overlay option is chosen then the waveforms are displayed on top of
each other. This maximizes measurement accuracy, but can making viewing
difficult.

Example This example automatically overlays the waveforms after an autoscale.

myScope.WriteString ":AUTOSCALE:OVERlay ON"

Query :AUToscale:PLACement?

History Legacy command (existed before version 3.10).

814 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:AUToscale:VERTical

Command :AUToscale:VERTical {CHANnel<N>}

The :AUToscale:VERTical command autoscales the vertical position and scaling for
the corresponding channel without changing anything else (for example, trigger or
timebase settings).

Example This example automatically autoscales the vertical position and scale for the
waveform on Channel 1.

myScope.WriteString ":AUTOSCALE:VERTical CHAN1"

History Legacy command (existed before version 3.10).

NOTE If you are using software 2.10 or earlier, the command syntax is (lower-case "t" in "vertical"):

AUToscale:VERTical <CHANnel 1 | CHANnel 2 | CHANnel 3 | CHANnel 4>

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 815

:BEEP

Command :BEEP <frequency>,<duration>

The :BEEP command makes the oscilloscope beep at a defined frequency and
duration.

<frequency> A real number representing frequency of beep in Hertz.

<duration> A real number representing duration of beep in milliseconds.

Example This example will create a beep at 1000 Hz for 500 ms.

myScope.WriteString ":BEEP 1000,500"

History Legacy command (existed before version 3.10).

816 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:BLANk

Command :BLANk {CHANnel<N> | BUS<N> | DIFF<P> | COMMonmode<P>
| DIGital<M> | FUNCtion<F> | HISTogram | WMEMory<N>
| MTRend | MSPectrum | EQUalize | POD<P> | ALL}

The :BLANk command turns off an active channel, function, histogram, waveform
memory, measurement trend, measurement spectrum, or Feed-Forward Equalized
waveform. The :VIEW command turns them on.

<N> An integer, 1-4.

<P> An integer, 1-2.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<F> An integer, 1-16.

<M> An integer, 0-15.

Example This example turns off channel 1.

myScope.WriteString ":BLANk CHANnel1"

See Also • ":VIEW" on page 842

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 817

:CDISplay

Command :CDISplay

The :CDISplay command clears the display and resets all associated
measurements. If the oscilloscope is stopped, all currently displayed data is
erased. If the oscilloscope is running, all of the data in active channels and
functions is erased; however, new data is displayed on the next acquisition.
Waveform memories are not erased.

Example This example clears the oscilloscope display.

myScope.WriteString ":CDISPLAY"

History Legacy command (existed before version 3.10).

818 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:DIGitize

Command :DIGitize [CHANnel<N> | DIGital<M> | COMMonmode<P> | DIFF<P>
| POD<P>][,...]

<N> An integer, 1-4.

<M> An integer, 0-15.

<P> An integer, 1-2.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

The :DIGitize command invokes a special mode of data acquisition that is more
efficient than using the :RUN command. This command initializes the selected
channels or functions, then acquires them according to the current oscilloscope
settings. When all waveforms are completely acquired, the oscilloscope is
stopped. The waveform completion criteria is set with the ":ACQuire:COMPlete"
command.

If you specify channel parameters, then these are the only waveforms acquired and
the display waveforms of the specified channels are turned off.

If you use the :DIGitize command with no parameters, the digitize operation is
performed on the channels that are being displayed in the Infiniium waveform
viewing area. In this case, the display state of the acquired waveforms is not
changed after the :DIGitize command is completed. Because the command
executes more quickly without parameters, this form of the command is useful for
repetitive measurement sequences. You can also use this mode if you want to view
the digitize results because the display state of the digitized waveforms is not
affected.

See the Chapter 38, “Sample Programs,” starting on page 1287 for examples of
how to use :DIGitize and its related commands.

Example This example acquires data on channel 1.

NOTE Full Range of Measurement and Math Operators are Available

Even though digitized waveforms are not displayed, you may perform the full range of
measurement and math operators on them.

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 819

myScope.WriteString ":DIGitize CHANnel1"

The ACQuire subsystem commands set up conditions such as COUNt for the next
:DIGitize command. The WAVeform subsystem commands determine how the data
is transferred out of the oscilloscope, and how to interpret the data.

History Legacy command (existed before version 3.10).

820 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:DISable DIGital

Command :DISable DIGital

The :DISable DIGital command disables the digital channels 0-15.

Example This example will disable the digital channels.

myScope.WriteString ":DISable DIGital"

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 821

:ENABle DIGital

Command :ENABle DIGital

The :ENABle DIGital command enables the digital channels 0-15.

Example This example will enable the digital channels.

myScope.WriteString ":ENABle DIGital"

History Legacy command (existed before version 3.10).

822 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:MODel?

Query :MODel?

The :MODel? query returns the model number for the oscilloscope.

Returned Format A six-character alphanumeric model number in quotation marks. Output is
determined by header and longform status as in Table 15.

Example This example places the model number in a string variable, strModel, then prints
the contents of the variable on the computer's screen.

Dim strModel As String ' Dimension variable.
myScope.WriteString ":MODel?"
strModel = myScope.ReadString
Debug.Print strModel

History Legacy command (existed before version 3.10).

Table 15 MODel? Returned Format

:SYSTem:HEADer :SYSTem:LONGform Response (for
example)

ON OFF ON OFF

X X DSO90804A

X X DSO90804A

X X :MOD
DSO90804A

X X :MODEL
DSO90804A

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 823

:MTEE

Mask Test Enable Register

Command :MTEE <enable_mask>

The :MTEE command is used to set bits in the Mask Test Enable Register.

<enable_mask> The <enable_mask> is a 16-bit signed decimal value that enables the following
bits of the Mask Test Event Register:

Query :MTEE?

The :MTEE? query returns the value stored in the Mask Test Enable Register.

Returned Format [:MTEE] <enable_mask>

Example Suppose your application requires an interrupt whenever a Mask Test Fail occurs
in the mask test register. You can enable this bit to generate the summary bit by
sending:

myScope.WriteString "MTEE 2"

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation
Status Register. Because the bits in the Operation Status Enable Register are all
enabled, a summary bit is generated to set bit 7 (OPER) in the Status Byte
Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

History Legacy command (existed before version 3.10).

Bit 0 Mask Test Complete

Bit 1 Mask Test Fail

Bit 2 Mask Low Amplitude

Bit 3 Mask High Amplitude

Bit 4 Mask Align Complete

Bit 5 Mask Align Fail

Bits 6-14 are not used

824 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:MTER?

Mask Test Event Register

Query :MTER?

The :MTER? query returns the value stored in the Mask Test Event Register. The
bits stored in the register have the following meanings:

The Mask Test Event Register is read and cleared by the MTER? query. The register
output is enabled or disabled using the mask value supplied with the MTEE
command.

Returned Format 0-63 decimal value.

History Legacy command (existed before version 3.10).

Bit 0 Mask Test Complete bit is set whenever the mask test is complete.

Bit 1 Mask Test Fail bit is set whenever the mask test failed.

Bit 2 Mask Low Amplitude bit is set whenever the signal is below the mask
amplitude.

Bit 3 Mask High Amplitude bit is set whenever the signal is above the mask
amplitude.

Bit 4 Mask Align Complete bit is set whenever the mask align is complete.

Bit 5 Mask Align Fail bit is set whenever the mask align failed.

NOTE Disabled Mask Test Event Register Bits Respond, but Do Not Generate a Summary
Bit

Mask Test Event Register bits that are not enabled still respond to their corresponding
conditions (that is, they are set if the corresponding event occurs). However, because they are
not enabled, they do not generate a summary bit in the Operation Status Register.

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 825

:OPEE

Operation Status Enable

Command :OPEE <mask>

<mask> The decimal weight of the enabled bits.

The :OPEE command sets a mask in the Operation Status Enable register. Each bit
that is set to a "1" enables that bit to set bit 7 in the status byte register, and
potentially causes an SRQ to be generated. Bit 5, Wait for Trig is used. Other bits
are reserved.

Query :OPEE?

The query returns the current value contained in the Operation Status Enable
register as a decimal number.

Returned Format [OPEE] <value><NL>

History Legacy command (existed before version 3.10).

826 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:OPER?

Operation Status Register

Query :OPER?

The :OPER? query returns the value contained in the Operation Status Register as
a decimal number. This register contains the WAIT TRIG bit (bit 5) and the OVLR
bit (bit 11).

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates that
the trigger is armed. The OVLR bit is set by the Overload Event Register.

Returned Format <value><NL>

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 827

:OVLRegister?

Query :OVLRegister?

The :OVLRegister? query returns the value stored in the Overload Event Register.

The integer value returned by this query represents the channels as follows:

• Bit 0 - Channel 1

• Bit 1 - Channel 2

• Bit 2 - Channel 3

• Bit 3 - Channel 4

• Bits 7-4 are not used and are set to zero (0)

Returned Format <value><NL>

History Legacy command (existed before version 3.10).

828 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:PDER?

Processing Done Event Register

Query :PDER?

The :PDER? query reads the Processing Done Event Register and returns 1 or 0.
After the Processing Done Event Register is read, the register is cleared. The
returned value 1 indicates indicates that all math and measurements are complete
and 0 indicates they are not complete. :PDER? is non-blocking.

:PDER? can be used in place of :ADER?.

Returned Format {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 829

:PRINt

Command :PRINt

The :PRINt command outputs a copy of the screen to a printer or other device
destination specified in the HARDcopy subsystem. You can specify the selection of
the output and the printer using the HARDcopy subsystem commands.

Example This example outputs a copy of the screen to a printer or a disk file.

myScope.WriteString ":PRINT"

History Legacy command (existed before version 3.10).

830 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:RECall:SETup

Command :RECall:SETup <setup_memory_num>

<setup
_memory_num>

Setup memory number, an integer, 0 through 9.

The :RECall:SETup command recalls a setup that was saved in one of the
oscilloscope's setup memories. You can save setups using either the
:STORe:SETup command or the front panel.

Examples This command recalls a setup from setup memory 2.

myScope.WriteString ":RECall:SETup 2"

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 831

:RSTate?

Query :RSTate?

The :RSTate? query returns the run state:

• RUN — The oscilloscope is acquiring and displaying new waveforms.

• STOP — The oscilloscope is no longer acquiring new waveforms.

• SING — A single acquisition has been started and the oscilloscope is waiting for
the trigger condition to be met.

These are the same run states displayed on the front panel and in the user
interface.

Returned Format {RUN | STOP | SING}<NL>

See Also • ":ASTate?" on page 809

History New in version 4.60.

832 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:RUN

Command :RUN

The :RUN command starts the oscilloscope running. When the oscilloscope is
running, it acquires waveform data according to its current settings. Acquisition
runs repetitively until the oscilloscope receives a :STOP command, or until there is
only one acquisition if Trigger Sweep is set to Single. However, the
:TRIGger:SWEep SINGle should not be used in new programs. The :SINGle
command should be used instead to acquire a single acquisition.

Example This example causes the oscilloscope to acquire data repetitively.

myScope.WriteString ":RUN"

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 833

:SERial

Serial Number

Command :SERial {<serial_number>}

The :SERial command sets the serial number of the oscilloscope. A serial number
was entered in your oscilloscope by Keysight Technologies before it was shipped
to you. Therefore, setting the serial number is not normally required unless the
oscilloscope is serialized for a different application.

The oscilloscope's serial number is part of the string returned for the *IDN? query
described in the Common Commands chapter.

<serial _number> A ten-character alphanumeric serial number enclosed with quotation marks.

Example This example sets the serial number for the oscilloscope to "US12345678".

myScope.WriteString ":SERIAL ""US12345678"""

Query :SERial?

The query returns the current serial number string for the oscilloscope.

Returned Format [:SERial] US12345678

Example This example places the serial number for the oscilloscope in the string variable
strSerial, then prints the contents of the variable to the computer's screen.

Dim strSerial As String ' Dimension variable.
myScope.WriteString ":SERIAL?"
strSerial = myScope.ReadString
Debug.Print strSerial

History Legacy command (existed before version 3.10).

834 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:SINGle

Command :SINGle

The :SINGle command causes the oscilloscope to make a single acquisition when
the next trigger event occurs. However, this command does not set the
:TRIGger:SWEep to SINGle.

Example This example sets up the oscilloscope to make a single acquisition when the next
trigger event occurs.

myScope.WriteString ":SINGLE"

See Also :TRIGger:SWEep AUTO|TRIGgered|SINGle for how to turn the single sweep off.

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 835

:STATus?

Query :STATus? {CHANnel<N> | COMMonmode<P> | DIFF<P> | FUNCtion<F>
| HISTogram | WMEMory<N> | CLOCk | MTRend | MSPectrum
| EQUalized | BUS<N> | DIGital<M> | POD<L>}

The :STATus? query shows whether the specified channel, function, wmemory,
histogram, measurement trend, measurement spectrum, or equalized waveform is
on or off. A return value of 1 means on and a return value of 0 means off.

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

POD<L> refers to the two digital channel pods - one that includes all of the
activated digital channels in the D0-D7 range and the other that includes all of the
activated digital channels in the D8-D15 range.

<N> CHANnel<N> is an integer, 1-4.

BUS<N> is an integer, 1-4

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<P> An integer, 1-2.

<M> An integer, 0-15.

Returned Format [:STATus] {0 | 1}<NL>

Example This example returns and prints the current status of channel 1.

myScope.WriteString ":STATus? CHANnel1"
strCurrent = myScope.ReadString
Debug.Print strCurrent

836 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

See Also • ":BLANk" on page 816

• ":VIEW" on page 842

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 837

:STOP

Command :STOP

The :STOP command causes the oscilloscope to stop acquiring data. To restart the
acquisition, use the :RUN or :SINGle command.

Example This example stops the current data acquisition.

myScope.WriteString ":STOP"

History Legacy command (existed before version 3.10).

838 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:STORe:JITTer

Command :STORe:JITTer <file_name>

The :STORe:JITTer command saves all of the RJ/DJ jitter measurement data to the
specified file name. The file that is created has a header section followed by the
RJ/DJ measurement results section. After the RJ/DJ measurement results section
is the data for each of the measurements. Each data section has a header showing
what the measurement data is that follows.

<file_name> A character-quoted ASCII string which can include subdirectories with the name of
the file.

Example This example stores the RJ/DJ jitter measurements to a file.

myScope.WriteString _
":STORE:JITTer ""c:\Document and Settings\All Users\Shared Documents\
Infiniium\Data\jitter"""

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 839

:STORe:SETup

Command :STORe:SETup <setup_memory_num>

<setup
_memory_num>

Setup memory number, an integer, 0 through 9.

The :STORe:SETup command saves the current oscilloscope setup in one of the
setup memories.

Example This example stores the current oscilloscope setup to setup memory 0.

myScope.WriteString ":STORE:SETUP 0"

History Legacy command (existed before version 3.10).

840 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:STORe:WAVeform

Command :STORe:WAVeform {{CHANnel<N> | COMMonmode<P> | DIFF<P>
| FUNCtion<F> | WMEMory<N> | MTRend | MSPectrum},
{WMEMory<N>}}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

<N> An integer, 1-4.

<P> An integer, 1-2.

<F> An integer, 1-16.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

The :STORe:WAVeform command copies a channel, function, stored waveform,
measurement trend, or measurement spectrum to a waveform memory. The
parameter preceding the comma specifies the source and can be any channel,
function, or waveform memory. The parameter following the comma is the
destination, and can be any waveform memory.

The :WAVeform:VIEW command determines the view of the data being stored.

Example This example copies channel 1 to waveform memory 3.

myScope.WriteString ":STORE:WAVEFORM CHANNEL1,WMEMORY3"

History Legacy command (existed before version 3.10).

Root Level Commands 27

Keysight Infiniium Oscilloscopes Programmer's Guide 841

:TER?

Trigger Event Register

Query :TER?

The :TER? query reads the Trigger Event Register. A "1" is returned if a trigger has
occurred. A "0" is returned if a trigger has not occurred. The autotrigger does not
set this register. The register is set to a value of 1 only when the waveform meets
the trigger criteria.

Returned Format {1 | 0}<NL>

Example This example checks the current status of the Trigger Event Register, places the
status in the string variable, strCurrent, then prints the contents of the variable to
the computer's screen.

Dim strCurrent As String ' Dimension variable.
myScope.WriteString ":TER?"
strCurrent = myScope.ReadString
Debug.Print strCurrent

Once this bit is set, you can clear it only by reading the register with the :TER?
query, or by sending a *CLS common command. After the Trigger Event Register is
read, it is cleared.

History Legacy command (existed before version 3.10).

842 Keysight Infiniium Oscilloscopes Programmer's Guide

27 Root Level Commands

:VIEW

Command :VIEW {CHANnel<N> | COMMonmode<P> | DIFF<P> | FUNCtion<F>
| HISTogram | WMEMory<N> | MSTrend | MSPectrum | BUS<N>
| DIGital<M> | POD<P>}

The :VIEW command turns on a channel, function, histogram, or waveform
memory. The :BLANk command turns them off.

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

<N> An integer, 1-4.

<P> An integer, 1-2.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<F> An integer, 1-16.

<M> An integer, 0-15.

Example This example turns on channel 1.

myScope.WriteString ":VIEW CHANnel1"

See Also • ":BLANk" on page 816

History Legacy command (existed before version 3.10).

843

Keysight Infiniium Oscilloscopes
Programmer's Guide

28 Serial Bus Commands

General :SBUS<N> Commands / 844
:SBUS<N>:CAN Commands / 847
:SBUS<N>:FLEXray Commands / 863
:SBUS<N>:HS Commands / 873
:SBUS<N>:IIC Commands / 878
:SBUS<N>:LIN Commands / 889
:SBUS<N>:SPI Commands / 898

The :SBUS<N> subsystem commands control the serial decode bus viewing,
mode, and other options.

NOTE These commands are only valid when the corresponding serial decode option has been
licensed.

844 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

General :SBUS<N> Commands

• ":SBUS<N>[:DISPlay]" on page 845

• ":SBUS<N>:MODE" on page 846

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 845

:SBUS<N>[:DISPlay]

Command :SBUS<N>[:DISPlay] <display>

<display> ::= {{1 | ON} | {0 | OFF}}

The :SBUS<N>[:DISPlay] command turns displaying of the serial decode bus on or
off.

Query :SBUS<N>[:DISPlay]?

The :SBUS<N>[:DISPlay]? query returns the current display setting of the serial
decode bus.

Returned Format [:SBUS<N>[:DISPlay]] <display><NL>

<display> ::= {0 | 1}

See Also • ":SBUS<N>:MODE" on page 846

History New in version 3.50.

NOTE This command is only valid when a serial decode option has been licensed.

846 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:MODE

Command :SBUS<N>:MODE <mode>

<mode> ::= {CAN | IIC | SPI | FLEXray | LIN}

The :SBUS<N>:MODE command determines the decode mode for the serial bus.

Query :SBUS<N>:MODE?

The :SBUS<n>:MODE? query returns the current serial bus decode mode setting.

Returned Format [:SBUS<N>:MODE] <mode><NL>

<mode> ::= {CAN | IIC | SPI | FLEXray | LIN}

See Also • ":SBUS<N>:CAN Commands" on page 847

• ":SBUS<N>:FLEXray Commands" on page 863

• ":SBUS<N>:IIC Commands" on page 878

• ":SBUS<N>:LIN Commands" on page 889

• ":SBUS<N>:SPI Commands" on page 898

History New in version 3.50.

Version 4.60: Added CAN mode option.

Version 5.20: Added the FLEXray and LIN mode options.

NOTE This command is only valid when a serial decode option has been licensed.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 847

:SBUS<N>:CAN Commands

• ":SBUS<N>:CAN:SAMPlepoint" on page 848

• ":SBUS<N>:CAN:SIGNal:BAUDrate" on page 849

• ":SBUS<N>:CAN:SIGNal:DEFinition" on page 850

• ":SBUS<N>:CAN:SOURce" on page 851

• ":SBUS<N>:CAN:TRIGger" on page 852

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA" on page 855

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth" on page 857

• ":SBUS<N>:CAN:TRIGger:PATTern:ID" on page 859

• ":SBUS<N>:CAN:TRIGger:PATTern:ID:MODE" on page 861

See Also • ":SBUS<N>:MODE" on page 846

NOTE These commands are only valid when the automotive CAN serial decode option has been
licensed.

848 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:CAN:SAMPlepoint

Command :SBUS<N>:CAN:SAMPlepoint <value>

<value><NL>

<value> ::= {60 | 62.5 | 65 | 67.5 | 68 | 70 | 72.5 | 75 | 77.5
| 80 | 82.5 | 85 | 87.5} in NR3 format

The :SBUS<N>:CAN:SAMPlepoint command sets the point during the bit time
where the bit level is sampled to determine whether the bit is dominant or
recessive. The sample point represents the percentage of time between the
beginning of the bit time to the end of the bit time.

<N> An integer, 1-4.

Query :SBUS<N>:CAN:SAMPlepoint?

The :SBUS<N>:CAN:SAMPlepoint? query returns the current CAN sample point
setting.

Returned Format <value><NL>

<value> ::= {60 | 62.5 | 65 | 67.5 | 68 | 70 | 72.5 | 75 | 77.5
| 80 | 82.5 | 85 | 87.5} in NR3 format

See Also • ":SBUS<N>:MODE" on page 846

History New in version 4.60.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 849

:SBUS<N>:CAN:SIGNal:BAUDrate

Command :SBUS<N>:CAN:SIGNal:BAUDrate <baudrate>

<baudrate> ::= a real number from 10E3 to 5E6

The :SBUS<N>:CAN:SIGNal:BAUDrate command sets the standard baud rate of
the CAN signal from 10 kb/s to 5 Mb/s.

If the baud rate you select does not match the system baud rate, false triggers
may occur.

<N> An integer, 1-4.

Query :SBUS<N>:CAN:SIGNal:BAUDrate?

The :SBUS<N>:CAN:SIGNal:BAUDrate? query returns the current CAN baud rate
setting.

Returned Format <baudrate><NL>

<baudrate> ::= a real number from 10E3 to 5E6

See Also • ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:SIGNal:DEFinition" on page 850

• ":SBUS<N>:CAN:SOURce" on page 851

History New in version 4.60.

850 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:CAN:SIGNal:DEFinition

Command :SBUS<N>:CAN:SIGNal:DEFinition <value>

<value> ::= {CANH | CANL | DIFFerential | DIFL}

The :SBUS<N>:CAN:SIGNal:DEFinition command sets the CAN signal type when
:SBUS<N>:CAN:TRIGger is set to SOF (start of frame). These signals can be set to:

Dominant high signals:

• CANH — the actual CAN_H differential bus signal.

Dominant low signals:

• CANL — the actual CAN_L differential bus signal.

• DIFL — the CAN differential (L-H) bus signal connected to an analog source
channel using a differential probe.

• DIFFerential — the CAN differential bus signal connected to an analog source
channel using a differential probe. This is the same as DIFL.

<N> An integer, 1-4.

Query :SBUS<N>:CAN:SIGNal:DEFinition?

The :SBUS<N>:CAN:SIGNal:DEFinition? query returns the current CAN signal type.

Returned Format <value><NL>

<value> ::= {CANH | CANL | DIFL}

See Also • ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:SIGNal:BAUDrate" on page 849

• ":SBUS<N>:CAN:SOURce" on page 851

History New in version 4.60.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 851

:SBUS<N>:CAN:SOURce

Command :SBUS<N>:CAN:SOURce <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:CAN:SOURce command sets the source for the CAN signal.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:CAN:SOURce?

The :SBUS<N>:CAN:SOURce? query returns the current source for the CAN signal.

Returned Format <source><NL>

See Also • ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:SIGNal:DEFinition" on page 850

History New in version 4.60.

Version 5.20: The NONE parameter was added.

852 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:CAN:TRIGger

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 853

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:CAN:TRIGger <condition>

<condition> ::= {SOF | DATA | ERRor | IDData | IDRemote | ALLerrors
| OVERload | ACKerror}

The :SBUS<N>:CAN:TRIGger command sets the CAN trigger on condition:

• SOF - will trigger on the Start of Frame (SOF) bit of a Data frame, Remote
Transfer Request (RTR) frame, or an Overload frame.

• DATA - will trigger on CAN Data frames matching the specified Id, Data, and
the DLC (Data length code).

• ERRor — will trigger on CAN Error frame.

• IDData — will trigger on CAN frames matching the specified Id of a Data frame.

• IDRemote — will trigger on CAN frames matching the specified Id of a Remote
frame.

• ALLerrors — will trigger on CAN active error frames and unknown bus
conditions.

• OVERload — will trigger on CAN overload frames.

• ACKerror — will trigger on a data or remote frame acknowledge bit that is
recessive.

The table below shows the programming parameter and the corresponding
front-panel softkey selection:

NOTE You must set the proper :SBUS<N>:MODE, :SBUS<N>:CAN:TRIGger, and
:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE before setting any other trigger values.

Remote <cond ition> parameter Front-panel Trigger on: softkey selection
(softkey text - softkey popup text)

SOF SOF - Start of Frame

DATA ID & Data - Data Frame ID and Data

ERRor Error - Error frame

IDData ID & ~RTR - Data Frame ID (~RTR)

IDRemote ID & RTR - Remote Frame ID (RTR)

ALLerrors All Errors - All Errors

OVERload Overload - Overload Frame

ACKerror Ack Error - Acknowledge Error

854 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

CAN Id specification is set by the :SBUS<N>:CAN:TRIGger:PATTern:ID
and:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE commands.

CAN Data specification is set by the :SBUS<N>:CAN:TRIGger:PATTern:DATA
command.

CAN Data Length Code is set by the
:SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth command.

<N> An integer, 1-4.

Example To enable the SBUS1 trigger, set the trigger to CAN Data frame matching the
specified Standard ID 0x1f, Data 0x7fffff, and DLC 3.

myScope.WriteString ":TRIGger:MODE SBUS1"
myScope.WriteString ":SBUS1:MODE CAN"
myScope.WriteString ":SBUS1:CAN:TRIGger DATA"
myScope.WriteString ":SBUS1:CAN:TRIGger:PATTern:ID:MODE STANdard"
myScope.WriteString ":SBUS1:CAN:TRIGger:PATTern:ID '0x1f'"
myScope.WriteString ":SBUS1:CAN:TRIGger:PATTern:DATA:LENGth 3"
myScope.WriteString ":SBUS1:CAN:TRIGger:PATTern:DATA '0x7fffff'"

Query :SBUS<N>:CAN:TRIGger?

The :SBUS<N>:CAN:TRIGger? query returns the current CAN trigger on condition.

Returned Format <condition><NL>

<condition> ::= {SOF | DATA | ERR | IDD | IDE | IDR | ALL | OVER | ACK}

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA" on page 855

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth" on page 857

• ":SBUS<N>:CAN:TRIGger:PATTern:ID" on page 859

• ":SBUS<N>:CAN:TRIGger:PATTern:ID:MODE" on page 861

• ":SBUS<N>:CAN:SIGNal:DEFinition" on page 850

• ":SBUS<N>:CAN:SOURce" on page 851

History New in version 4.60.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 855

:SBUS<N>:CAN:TRIGger:PATTern:DATA

856 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:CAN:TRIGger:PATTern:DATA <string>

<string> ::= "nn...n" where n ::= {0 | 1 | X | $}

<string ::= "0xnn...n" where n ::= {0,..,9 | A,..,F | X | $}

The :SBUS<N>:CAN:TRIGger:PATTern:DATA command defines the CAN data
pattern resource according to the string parameter. This pattern, along with the
data length (set by the :SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth
command), control the data pattern searched for in each CAN message.

If the string parameter starts with "0x", it is a hexadecimal string made up of
hexadecimal and X (don't care) characters; otherwise, it is a binary string made up
of 0, 1, and X (don't care) characters.

<N> An integer, 1-4.

Query :SBUS<N>:CAN:TRIGger:PATTern:DATA?

The :SBUS<N>:CAN:TRIGger:PATTern:DATA? query returns the current settings of
the specified CAN data pattern resource in the binary string format.

Returned Format <string><NL> in nondecimal format

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:TRIGger" on page 852

• ":SBUS<N>:CAN:TRIGger:PATTern:ID:MODE" on page 861

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth" on page 857

• ":SBUS<N>:CAN:TRIGger:PATTern:ID" on page 859

History New in version 4.60.

NOTE You must set the proper :SBUS<N>:MODE, :SBUS<N>:CAN:TRIGger, and
:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE before setting any other trigger values.

NOTE If more bits are sent for <string> than specified by the
:SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth command, the most significant bits will be
truncated.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 857

:SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth

858 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth <length>

<length> ::= integer from 1 to 8 in NR1 format

The :SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth command sets the number of
8-bit bytes in the CAN data string. The number of bytes in the string can be
anywhere from 1 bytes to 8 bytes (64 bits). The value for these bytes is set by the
:SBUS<N>:CAN:TRIGger:PATTern:DATA command.

<N> An integer, 1-4.

Query :SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth?

The :SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth? query returns the current
CAN data pattern length setting.

Returned Format <count><NL>

<count> ::= integer from 1 to 8 in NR1 format

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:TRIGger" on page 852

• ":SBUS<N>:CAN:TRIGger:PATTern:ID:MODE" on page 861

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA" on page 855

• ":SBUS<N>:CAN:SOURce" on page 851

History New in version 4.60.

NOTE You must set the proper :SBUS<N>:MODE, :SBUS<N>:CAN:TRIGger, and
:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE before setting any other trigger values.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 859

:SBUS<N>:CAN:TRIGger:PATTern:ID

860 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:CAN:TRIGger:PATTern:ID <string>

<string> ::= "nn...n" where n ::= {0 | 1 | X | $}

<string ::= "0xnn...n" where n ::= {0,..,9 | A,..,F | X | $}

The :SBUS<N>:CAN:TRIGger:PATTern:ID command defines the CAN identifier
pattern resource according to the string parameter. This pattern, along with the
identifier mode (set by the :SBUS<N>:CAN:TRIGger:PATTern:ID:MODE command),
control the identifier pattern searched for in each CAN message.

If the string parameter starts with "0x", it is a hexadecimal string made up of
hexadecimal and X (don't care) characters; otherwise, it is a binary string made up
of 0, 1, and X (don't care) characters.

<N> An integer, 1-4.

Query :SBUS<N>:CAN:TRIGger:PATTern:ID?

The :SBUS<N>:CAN:TRIGger:PATTern:ID? query returns the current settings of the
specified CAN identifier pattern resource in the 29-bit binary string format.

Returned Format <string><NL> in 29-bit binary string format

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:TRIGger" on page 852

• ":SBUS<N>:CAN:TRIGger:PATTern:ID:MODE" on page 861

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA" on page 855

History New in version 4.60.

NOTE You must set the proper :SBUS<N>:MODE, :SBUS<N>:CAN:TRIGger, and
:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE before setting this value; otherwise, this value is
defaulted to "don't care" when the mode is changed.

NOTE The ID pattern resource string size changes based on the
:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE setting; it is 11 bits when the mode is STANdard,
and it is 29 bits when the mode is EXTended.

A string longer than 29 bits is truncated to 29 bits when setting the ID pattern resource.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 861

:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE

862 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:CAN:TRIGger:PATTern:ID:MODE <value>

<value> ::= {STANdard | EXTended}

The :SBUS<N>:CAN:TRIGger:PATTern:ID:MODE command sets the CAN identifier
mode. STANdard selects the standard 11-bit identifier. EXTended selects the
extended 29-bit identifier. The CAN identifier is set by the
:SBUS<N>:CAN:TRIGger:PATTern:ID command.

<N> An integer, 1-4.

Query :SBUS<N>:CAN:TRIGger:PATTern:ID:MODE?

The :SBUS<N>:CAN:TRIGger:PATTern:ID:MODE? query returns the current setting
of the CAN identifier mode.

Returned Format <value><NL>

<value> ::= {STAN | EXT}

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:CAN:TRIGger" on page 852

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA" on page 855

• ":SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth" on page 857

• ":SBUS<N>:CAN:TRIGger:PATTern:ID" on page 859

History New in version 4.60.

NOTE You must set the proper :SBUS<N>:MODE, :SBUS<N>:CAN:TRIGger, and
:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE before setting any other trigger values.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 863

:SBUS<N>:FLEXray Commands

• ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

See Also • ":SBUS<N>:MODE" on page 846

NOTE These commands are only valid when the automotive FLEXray serial decode option has been
licensed.

864 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:FLEXray:BAUDrate

Command :SBUS<N>:FLEXray:BAUDrate <baudrate>

<baudrate> ::= {2500000 | 5000000 | 10000000}

The :SBUS<n>:FLEXray:BAUDrate command specifies the baud rate as 2.5 Mb/s,
5 Mb/s, or 10 Mb/s.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:BAUDrate?

The :SBUS<n>:FLEXray:BAUDrate? query returns the current baud rate setting.

Returned Format <baudrate><NL>

<baudrate> ::= {2500000 | 5000000 | 10000000}

See Also • ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 865

:SBUS<N>:FLEXray:CHANnel

Command :SBUS<N>:FLEXray:CHANnel <channel>

<channel> ::= {A | B}

The :SBUS<n>:FLEXray:CHANnel command specifies the bus channel, A or B, of
the FlexRay signal.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:CHANnel?

The :SBUS<n>:FLEXray:CHANnel? query returns the current bus channel setting.

Returned Format <channel><NL>

<channel> ::= {A | B}

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

866 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:FLEXray:SOURce

Command :SBUS<N>:FLEXray:SOURce <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:FLEXray:SOURce command sets the source for the FlexRay signal.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:FLEXray:SOURce?

The :SBUS<n>:FLEXray:SOURce? query returns the source of the FlexRay signal.

Returned Format <source><NL>

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 867

:SBUS<N>:FLEXray:TRIGger

Command :SBUS<N>:FLEXray:TRIGger <condition>

<condition> ::= {FRAMe | ERRor}

The :SBUS<n>:FLEXray:TRIGger command sets the FLEXray "trigger on"
condition:

• FRAMe — triggers on specified frames (without errors).

• ERRor — triggers on selected active error frames and unknown bus conditions.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:TRIGger?

The :SBUS<n>:FLEXray:TRIGger? query returns the current FLEXray "trigger on"
condition.

Returned Format <condition><NL>

<condition> ::= {FRAM | ERR}

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

868 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE

Command :SBUS<N>:FLEXray:TRIGger:ERRor:TYPE <error_type>

<error_type> ::= {ALL | HCRC | FCRC}

Selects the FlexRay error type to trigger on. The error type setting is only valid
when the FlexRay trigger mode is set to ERRor.

• ALL — triggers on ALL errors.

• HCRC — triggers on only Header CRC errors.

• FCRC — triggers on only Frame CRC errors.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:TRIGger:ERRor:TYPE?

The :SBUS<n>:FLEXray:TRIGger:ERRor:TYPE? query returns the currently selected
FLEXray error type.

Returned Format <error_type><NL>

<error_type> ::= {ALL | HCRC | FCRC}

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 869

:SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase

Command :SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase <cycle_count_base>

<cycle_count_base> ::= integer from 0-63

The :SBUS<n>:FLEXray:TRIGger:FRAMe:CCBase command sets the base of the
FlexRay cycle count (in the frame header) to trigger on. The cycle count base
setting is only valid when the FlexRay trigger mode is set to FRAME.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase?

The :SBUS<n>:FLEXray:TRIGger:FRAMe:CCBase? query returns the current cycle
count base setting for the FlexRay frame trigger setup.

Returned Format <cycle_count_base><NL>

<cycle_count_base> ::= integer from 0-63

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

870 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition

Command :SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition <cycle_count_repetition>

<cycle_count_repetition> ::= {ALL | <rep_#>}

<rep_#> ::= integer values 2, 4, 8, 16, 32, or 64

The :SBUS<n>:FLEXray:TRIGger:FRAMe:CCRepetition command sets the
repetition number of the FlexRay cycle count (in the frame header) to trigger on.
The cycle count repetition setting is only valid when the FlexRay trigger mode is
set to FRAME.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition?

The :SBUS<n>:FLEXray:TRIGger:FRAMe:CCRepetition? query returns the current
cycle count repetition setting for the FlexRay frame trigger setup.

Returned Format <cycle_count_repetition><NL>

<cycle_count_repetition> ::= {ALL | <rep_#>}

<rep_#> ::= integer values 2, 4, 8, 16, 32, or 64

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 871

:SBUS<N>:FLEXray:TRIGger:FRAMe:ID

Command :SBUS<N>:FLEXray:TRIGger:FRAMe:ID <frame_id>

<frame_id> ::= {ALL | <frame_#>}

<frame_#> ::= integer from 1-2047

The :SBUS<n>:FLEXray:TRIGger:FRAMe:ID command sets the FlexRay frame ID to
trigger on. The frame ID setting is only valid when the FlexRay trigger mode is set
to FRAMe.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:TRIGger:FRAMe:ID?

The :SBUS<n>:FLEXray:TRIGger:FRAMe:ID? query returns the current frame ID
setting for the FlexRay frame trigger setup.

Returned Format <frame_id><NL>

<frame_id> ::= {ALL | <frame_#>}

<frame_#> ::= integer from 1-2047

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE" on page 872

History New in version 5.20.

872 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE

Command :SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE <frame_type>

<frame_type> ::= {NORMal | STARtup | NULL | SYNC | NNULl | ALL}

The :SBUS<n>:FLEXray:TRIGger:FRAMe:TYPE command sets the FlexRay frame
type to trigger on. The frame type setting is only valid when the FlexRay trigger
mode is set to FRAME.

• NORMal — will trigger on only normal (NSTArtup & NNULl & NSYNc) frames.

• STARtup — will trigger on only startup frames.

• NULL — will trigger on only null frames.

• SYNC — will trigger on only sync frames.

• NNULl — will trigger on frames other than null frames.

• ALL — will trigger on all FlexRay frame types.

<N> An integer, 1-4.

Query :SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE?

The :SBUS<n>:FLEXray:TRIGger:FRAMe:TYPE? query returns the current frame
type setting for the FlexRay frame trigger setup.

Returned Format <frame_type><NL>

<frame_type> ::= {NORM | STAR | NULL | SYNC | NNUL | ALL}

See Also • ":SBUS<N>:FLEXray:BAUDrate" on page 864

• ":SBUS<N>:FLEXray:CHANnel" on page 865

• ":SBUS<N>:FLEXray:SOURce" on page 866

• ":SBUS<N>:FLEXray:TRIGger" on page 867

• ":SBUS<N>:FLEXray:TRIGger:ERRor:TYPE" on page 868

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase" on page 869

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition" on page 870

• ":SBUS<N>:FLEXray:TRIGger:FRAMe:ID" on page 871

History New in version 5.20.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 873

:SBUS<N>:HS Commands

• ":SBUS<N>:HS:DESCramble" on page 874

• ":SBUS<N>:HS:FORMat" on page 875

• ":SBUS<N>:HS:IDLE" on page 876

• ":SBUS<N>:HS:SOURce<S>" on page 877

See Also • ":BUS:B<N>:TYPE" on page 192

NOTE These commands are only valid when the high-speed (HS) serial decode type has been
licensed and set with the :BUS:B<N>:TYPE command.

874 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:HS:DESCramble

Command :SBUS<N>:HS:DESCramble {{0 | OFF} | {1 | ON}}

The :SBUS<N>:HS:DESCramble command turns high-speed descrambling on or
off if supported by the protocol type.

Query :SBUS<N>:HS:DESCramble?

The :SBUS<N>:HS:DESCramble? query returns the current descrambling setting
of the high-speed serial decode bus.

Returned Format [:SBUS<N>:HS:DESCramble] {0 | 1}<NL>

See Also • ":BUS:B<N>:TYPE" on page 192

• ":SBUS<N>:HS:FORMat" on page 875

• ":SBUS<N>:HS:IDLE" on page 876

• ":SBUS<N>:HS:SOURce<S>" on page 877

History New in version 5.00.

NOTE This command is only valid when a serial decode option has been licensed.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 875

:SBUS<N>:HS:FORMat

Command :SBUS<N>:HS:FORMat <value>

<value> ::= {KDCode | LABel | F8Bit | F10Bit}

The :SBUS<N>:HS:FORMat command specifies the high-speed symbol display
format.

<N> Is an integer, 1-4.

Example This example sets the K/D Code symbol display format.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":SBUS<N>:HS:FORMat KDCode"

Query :SBUS<N>:HS:FORMat?

The :SBUS<N>:HS:FORMat? query returns the high-speed symbol display format
setting.

Returned Format [:SBUS<N>:HS:FORMat] <value><NL>

<value> ::= {KDCode | LABel | F8Bit | F10Bit}

See Also • ":BUS:B<N>:TYPE" on page 192

• ":SBUS<N>:HS:DESCramble" on page 874

• ":SBUS<N>:HS:IDLE" on page 876

• ":SBUS<N>:HS:SOURce<S>" on page 877

History New in version 5.00.

876 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:HS:IDLE

Command :SBUS<N>:HS:IDLE {{0 | OFF} | {1 | ON}}

The :SBUS<N>:HS:IDLE command specifies whether electrical idles are present in
the signal.

Query :SBUS<N>:HS:IDLE?

The :SBUS<N>:HS:IDLE? query returns the current ".electrical idles are present"
setting.

Returned Format [:SBUS<N>:HS:IDLE] {0 | 1}<NL>

See Also • ":BUS:B<N>:TYPE" on page 192

• ":SBUS<N>:HS:DESCramble" on page 874

• ":SBUS<N>:HS:FORMat" on page 875

• ":SBUS<N>:HS:SOURce<S>" on page 877

History New in version 5.00.

NOTE This command is only valid when a serial decode option has been licensed.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 877

:SBUS<N>:HS:SOURce<S>

Command :SBUS<N>:HS:SOURce<S> <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | NONE}

The :SBUS<N>:HS:SOURce<S> command specifies the signal that is the
high-speed data source.

<N> SBUS<N> is an integer, 1-4.

CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<S> Is an integer, 1-4, for the high-speed serial source.

<F> FUNCtion<F> is an integer, 1-16.

Example This example specifies channel 2 is the high-speed data source 3 signal.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":SBUS1:HS:SOURce3 CHANnel2"

Query :SBUS<N>:HS:SOURce<S>?

The :SBUS<N>:HS:SOURce<S>? query returns the current signal for the
high-speed data source.

Returned Format [:SBUS<N>:HS:SOURce<S>] <source><NL>

<source> ::= {CHAN<N> | FUNC<F> | WMEM<N> | NONE}

See Also • ":BUS:B<N>:TYPE" on page 192

• ":SBUS<N>:HS:DESCramble" on page 874

• ":SBUS<N>:HS:FORMat" on page 875

• ":SBUS<N>:HS:IDLE" on page 876

History New in version 5.00.

878 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:IIC Commands

• ":SBUS<N>:IIC:ASIZe" on page 879

• ":SBUS<N>:IIC:SOURce:CLOCk" on page 880

• ":SBUS<N>:IIC:SOURce:DATA" on page 881

• ":SBUS<N>:IIC:TRIGger:PATTern:ADDRess" on page 882

• ":SBUS<N>:IIC:TRIGger:PATTern:DATA" on page 884

• ":SBUS<N>:IIC:TRIGger:TYPE" on page 886

See Also • ":SBUS<N>:MODE" on page 846

NOTE These commands are only valid when the low-speed IIC and SPI serial decode option has been
licensed.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 879

:SBUS<N>:IIC:ASIZe

Command :SBUS<N>:IIC:ASIZe <size>

<size> ::= {BIT7 | BIT8}

The :SBUS<N>:IIC:ASIZe command determines whether the Read/Write bit is
included as the LSB in the display of the IIC address field of the decode bus.

<N> An integer, 1-4.

Query :SBUS<N>:IIC:ASIZe?

The :SBUS<N>:IIC:ASIZe? query returns the current IIC address width setting.

Returned Format [:SBUS<N>:IIC:ASIZe] <size><NL>

See Also • ":SBUS<N>:IIC:TRIGger:PATTern:ADDRess" on page 882

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

880 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:IIC:SOURce:CLOCk

Command :SBUS<N>:IIC:SOURce:CLOCk <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:IIC:SOURce:CLOCk command sets the source for the IIC serial
clock (SCL).

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example selects channel 2 as the source for IIC serial clock.

myScope.WriteString ":SBUS1:IIC:SOURce:CLOCk CHANnel2"

Query :SBUS<N>:IIC:SOURce:CLOCk?

The :SBUS<N>:IIC:SOURce:CLOCk? query returns the current source for the IIC
serial clock.

Returned Format [:SBUS<N>:IIC:SOURce:CLOCk] <source><NL>

See Also • ":SBUS<N>:IIC:SOURce:DATA" on page 881

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Version 5.20: The NONE parameter was added.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 881

:SBUS<N>:IIC:SOURce:DATA

Command :SBUS<N>:IIC:SOURce:DATA <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:IIC:SOURce:DATA command sets the source for IIC serial data
(SDA).

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Example This example selects channel 1 as the source for IIC serial data.

myScope.WriteString ":SBUS1:IIC:SOURce:DATA CHANnel1"

Query :SBUS<N>:IIC:SOURce:DATA?

The :SBUS<N>:IIC:SOURce:DATA? query returns the current source for IIC serial
data.

Returned Format [:SBUS<N>:IIC:SOURce:DATA] <source><NL>

See Also • ":SBUS<N>:IIC:SOURce:CLOCk" on page 880

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Version 5.20: The NONE parameter was added.

882 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:IIC:TRIGger:PATTern:ADDRess

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 883

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:IIC:TRIGger:PATTern:ADDRess <quoted_string>

The :SBUS<n>:IIC:TRIGger:PATTern:ADDRess command specifies the IIC address
value to trigger on.The address can be a 7-, 8-, 10-, or 11-bit address depending
upon the :SBUS<n>IIC:TRIGger:TYPE specification and the :SBUS<n>IIC:ASIZe
setting.

The :SBUS<N>:IIC:TRIGger:TYPE command must select a type that includes an
address value before you can use the :SBUS<N>:IIC:TRIGger:PATTern:ADDRess
commands.

<N> An integer, 1-4.

<quoted_string> If the quoted string parameter starts with "0x", it is a hexadecimal string made up
of hexadecimal and X (don't care) characters (for example, "0x34XF"); otherwise, it
is a binary string made up of 0, 1, and X (don't care) characters (for example,
"00110100XXXX1111").

Example To enable the SBUS1 trigger, set the trigger type to a 7-bit address frame read,
and specify an address value of 0x3F:

myScope.WriteString ":CHANnel1:DISPlay ON"
myScope.WriteString ":CHANnel2:DISPlay ON"
myScope.WriteString ":SBUS1:MODE IIC"
myScope.WriteString ":SBUS1:IIC:SOURce:DATA CHANnel1"
myScope.WriteString ":SBUS1:IIC:SOURce:CLOCk CHANnel2"
myScope.WriteString ":TRIGger:MODE SBUS1"
myScope.WriteString ":SBUS1:IIC:TRIGger:TYPE READ7"
myScope.WriteString ":SBUS1:IIC:TRIGger:PATTern:ADDRess '0x3f'"
myScope.WriteString ":SBUS1:IIC:TRIGger:PATTern:DATA '0x7fffff'"

Query :SBUS<N>:IIC:TRIGger:PATTern:ADDRess?

The :SBUS<N>:IIC:TRIGger:PATTern:ADDRess? query returns the current pattern
for the IIC address.

Returned Format [:SBUS<N>:IIC:TRIGger:PATTern:ADDRess] <binary_string><NL>

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:IIC:TRIGger:TYPE" on page 886

• ":SBUS<N>:IIC:ASIZe" on page 879

History New in version 3.50.

NOTE You must set :SBUS<N>:MODE to IIC before you can send other :SBUS<N>:IIC:TRIGger
commands.

884 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:IIC:TRIGger:PATTern:DATA

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 885

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:IIC:TRIGger:PATTern:DATA <quoted_string>

The :SBUS<N>:IIC:TRIGger:PATTern:DATA command sets IIC data.

You can specify 1 to 20 bytes of data in binary or hex format.

The :SBUS<N>:IIC:TRIGger:TYPE command must select a type that includes a data
value before you can use the :SBUS<N>:IIC:TRIGger:PATTern:DATA commands.

<N> An integer, 1-4.

<quoted_string> If the quoted string parameter starts with "0x", it is a hexadecimal string made up
of hexadecimal and X (don't care) characters (for example, "0x34XF"); otherwise, it
is a binary string made up of 0, 1, and X (don't care) characters (for example,
"00110100XXXX1111").

Example To enable the SBUS1 trigger, set the trigger type to a 7-bit address frame read,
and specify a data value of 0x7FFFFF:

myScope.WriteString ":CHANnel1:DISPlay ON"
myScope.WriteString ":CHANnel2:DISPlay ON"
myScope.WriteString ":SBUS1:MODE IIC"
myScope.WriteString ":SBUS1:IIC:SOURce:DATA CHANnel1"
myScope.WriteString ":SBUS1:IIC:SOURce:CLOCk CHANnel2"
myScope.WriteString ":TRIGger:MODE SBUS1"
myScope.WriteString ":SBUS1:IIC:TRIGger:TYPE READ7"
myScope.WriteString ":SBUS1:IIC:TRIGger:PATTern:ADDRess '0x3f'"
myScope.WriteString ":SBUS1:IIC:TRIGger:PATTern:DATA '0x7fffff'"

Query :SBUS<N>:IIC:TRIGger:PATTern:DATA?

The :SBUS<n>:IIC:TRIGger:PATTern:DATA? query returns the current pattern for IIC
data.

Returned Format [:SBUS<N>:IIC:TRIGger:PATTern:DATA] <binary_string><NL>

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:IIC:TRIGger:TYPE" on page 886

History New in version 3.50.

NOTE You must set :SBUS<N>:MODE to IIC before you can send other :SBUS<N>:IIC:TRIGger
commands.

886 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:IIC:TRIGger:TYPE

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 887

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:IIC:TRIGger:TYPE {STARt | STOP | RESTart7 | RESTart10 | AACK
| ANACk | READ7| WRITe7 | WRITe10}

The :SBUS<N>:IIC:TRIGger:TYPE command sets the IIC trigger type:

• STARt — Start condition.

• STOP — Stop condition.

• RESTart7 — Another 7-bit start condition occurs before a stop condition.

• RESTart10 — Another 10-bit start condition occurs before a stop condition.

• AACK — Address with acknowledge.

• ANACk — Address with no acknowledge.

• READ7 — 7-bit address frame containing (Start:Address7:Read:Ack:Data).

• WRITe7 — 7-bit address frame containing (Start:Address7:Write:Ack:Data).

• WRITe10 — 10-bit address frame containing (Start:Address
byte1:Write:Ack:Address byte 2:Data).

The :SBUS<N>:IIC:TRIGger:TYPE command must be sent before the
:SBUS<N>:IIC:TRIGger:PATTern:ADDRess or :SBUS<N>:IIC:TRIGger:PATTern:DATA
commands.

<N> An integer, 1-4.

Example To enable the SBUS1 trigger and set the IIC trigger type to a 7-bit address frame
read:

myScope.WriteString ":CHANnel1:DISPlay ON"
myScope.WriteString ":CHANnel2:DISPlay ON"
myScope.WriteString ":SBUS1:MODE IIC"
myScope.WriteString ":SBUS1:IIC:SOURce:DATA CHANnel1"
myScope.WriteString ":SBUS1:IIC:SOURce:CLOCk CHANnel2"
myScope.WriteString ":TRIGger:MODE SBUS1"
myScope.WriteString ":SBUS1:IIC:TRIGger:TYPE READ7"
myScope.WriteString ":SBUS1:IIC:TRIGger:PATTern:ADDRess '0x3f'"
myScope.WriteString ":SBUS1:IIC:TRIGger:PATTern:DATA '0x7fffff'"

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

NOTE You must set :SBUS<N>:MODE to IIC before you can send other :SBUS<N>:IIC:TRIGger
commands.

NOTE The short form of READ7 (READ7), WRITe7 (WRIT7), WRITe10 (WRIT10), RESTart7 (REST7),
and RESTart10 (REST10) do not follow the defined long form to short form truncation rules.

888 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

• ":SBUS<N>:IIC:TRIGger:PATTern:ADDRess" on page 882

• ":SBUS<N>:IIC:TRIGger:PATTern:DATA" on page 884

History New in version 3.50.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 889

:SBUS<N>:LIN Commands

• ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

See Also • ":SBUS<N>:MODE" on page 846

NOTE These commands are only valid when the automotive LIN serial decode option has been
licensed.

890 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:LIN:SAMPlepoint

Command :SBUS<N>:LIN:SAMPlepoint <value>

<value> ::= {60 | 62.5 | 68 | 70 | 75 | 80 | 87.5} in NR3 format

The :SBUS<n>:LIN:SAMPlepoint command sets the point during the bit time
where the bit level is sampled to determine whether the bit is dominant or
recessive. The sample point represents the percentage of time between the
beginning of the bit time to the end of the bit time.

<N> An integer, 1-4.

Query :SBUS<N>:LIN:SAMPlepoint?

The :SBUS<n>:LIN:SAMPlepoint? query returns the current LIN sample point
setting.

Returned Format <value><NL>

<value> ::= {60 | 62.5 | 68 | 70 | 75 | 80 | 87.5} in NR3 format

See Also • ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

History New in version 5.20.

NOTE The sample point values are not limited by the baud rate.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 891

:SBUS<N>:LIN:SIGNal:BAUDrate

Command :SBUS<N>:LIN:SIGNal:BAUDrate <baudrate>

<baudrate> ::= integer from 2400 to 625000 in 100 b/s increments

The :SBUS<n>:LIN:SIGNal:BAUDrate command sets the standard baud rate of the
LIN signal from 2400 b/s to 625 kb/s in 100 b/s increments. If you enter a baud
rate that is not divisible by 100 b/s, the baud rate is set to the nearest baud rate
divisible by 100 b/s.

<N> An integer, 1-4.

Query :SBUS<N>:LIN:SIGNal:BAUDrate?

The :SBUS<n>:LIN:SIGNal:BAUDrate? query returns the current LIN baud rate
setting.

Returned Format <baudrate><NL>

<baudrate> ::= integer from 2400 to 625000 in 100 b/s increments

See Also • ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

History New in version 5.20.

892 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:LIN:SOURce

Command :SBUS<N>:LIN:SOURce <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<n>:LIN:SOURce command sets the source for the LIN signal.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:LIN:SOURce?

The :SBUS<n>:LIN:SOURce? query returns the current source for the LIN signal.

Returned Format <source><NL>

See Also • ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

History New in version 5.20.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 893

:SBUS<N>:LIN:STANdard

Command :SBUS<N>:LIN:STANdard <std>

<std> ::= {LIN13 | LIN20}

The :SBUS<n>:LIN:STANdard command sets the LIN standard in effect for
triggering and decoding to be LIN1.3 or LIN2.0.

<N> An integer, 1-4.

Query :SBUS<N>:LIN:STANdard?

The :SBUS<n>:LIN:STANdard? query returns the current LIN standard setting,
which is always LIN20.

When triggering, the oscilloscope looks for both the LIN 1.3 and 2.0 checksum.

Returned Format <std><NL>

<std> ::= LIN20

See Also • ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

History New in version 5.20.

894 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:LIN:TRIGger

Command :SBUS<N>:LIN:TRIGger <condition>

<condition> ::= {ID | DATA | PARityerror | CSUMerror | ALLerrors}

The :SBUS<n>:LIN:TRIGger command sets the LIN trigger condition to be:

• ID — Frame ID.

Use the :SBUS<n>:LIN:TRIGger:ID command to specify the frame ID.

• DATA — Frame ID and Data.

Use the :SBUS<n>:LIN:TRIGger:ID command to specify the frame ID.

Use the :SBUS<n>:LIN:TRIGger:PATTern:DATA:LENGth and
:SBUS<n>:LIN:TRIGger:PATTern:DATA commands to specify the data string
length and value.

• PARityerror — parity errors.

• CSUMerror — checksum errors.

• ALLerrors — all errors.

<N> An integer, 1-4.

Query :SBUS<N>:LIN:TRIGger?

The :SBUS<n>:LIN:TRIGger? query returns the current LIN trigger value.

Returned Format <condition><NL>

<condition> ::= {ID | DATA | PAR | CSUM | ALL}

See Also • ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

History New in version 5.20.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 895

:SBUS<N>:LIN:TRIGger:ID

Command :SBUS<N>:LIN:TRIGger:ID <string>

<string> ::= "nn...n" where n ::= {0 | 1 | X | $}

<string ::= "0xnn...n" where n ::= {0,..,9 | A,..,F | X | $}

The :SBUS<n>:LIN:TRIGger:ID command defines the LIN identifier searched for in
each CAN message when the LIN trigger mode is set to frame ID.

If the string parameter starts with "0x", it is a hexadecimal string made up of
hexadecimal and X (don't care) characters; otherwise, it is a binary string made up
of 0, 1, and X (don't care) characters.

<N> An integer, 1-4.

Query :SBUS<N>:LIN:TRIGger:ID?

The :SBUS<n>:LIN:TRIGger:ID? query returns the current LIN identifier setting.

Returned Format <string><NL> in 6-bit binary string format

See Also • ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

History New in version 5.20.

896 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:LIN:TRIGger:PATTern:DATA

Command :SBUS<N>:LIN:TRIGger:PATTern:DATA <string>

<string> ::= "nn...n" where n ::= {0 | 1 | X | $}

<string ::= "0xnn...n" where n ::= {0,..,9 | A,..,F | X | $}

The :SBUS<N>:LIN:TRIGger:PATTern:DATA command defines the LIN data pattern
resource according to the string parameter. This pattern, along with the data
length (set by the :SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth command),
control the data pattern searched for in each LIN message.

If the string parameter starts with "0x", it is a hexadecimal string made up of
hexadecimal and X (don't care) characters; otherwise, it is a binary string made up
of 0, 1, and X (don't care) characters.

<N> An integer, 1-4.

Query :SBUS<N>:LIN:TRIGger:PATTern:DATA?

The :SBUS<N>:LIN:TRIGger:PATTern:DATA? query returns the current settings of
the specified LIN data pattern resource in the binary string format.

Returned Format <string><NL> in nondecimal format

See Also • ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth" on page 897

History New in version 5.20.

NOTE If more bits are sent for <string> than specified by the
:SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth command, the most significant bits will be
truncated.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 897

:SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth

Command :SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth <length>

<length> ::= integer from 1 to 8.

The :SBUS<n>:LIN:TRIGger:PATTern:DATA:LENGth command sets the number of
8-bit bytes in the LIN data string. The number of bytes in the string can be
anywhere from 1 bytes to 8 bytes (64 bits). The value for these bytes is set by the
:SBUS<n>:LIN:TRIGger:PATTern:DATA command.

Query :SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth?

The :SBUS<n>:LIN:TRIGger:PATTern:DATA:LENGth? query returns the current LIN
data pattern length setting.

Returned Format <length><NL>

<length> ::= integer from 1 to 8.

See Also • ":SBUS<N>:LIN:SAMPlepoint" on page 890

• ":SBUS<N>:LIN:SIGNal:BAUDrate" on page 891

• ":SBUS<N>:LIN:SOURce" on page 892

• ":SBUS<N>:LIN:STANdard" on page 893

• ":SBUS<N>:LIN:TRIGger" on page 894

• ":SBUS<N>:LIN:TRIGger:ID" on page 895

• ":SBUS<N>:LIN:TRIGger:PATTern:DATA" on page 896

History New in version 5.20.

898 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:SPI Commands

• ":SBUS<N>:SPI:BITorder" on page 899

• ":SBUS<N>:SPI:CLOCk:SLOPe" on page 900

• ":SBUS<N>:SPI:CLOCk:TIMeout" on page 901

• ":SBUS<N>:SPI:FRAMe:STATe" on page 902

• ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:SPI:SOURce:DATA" on page 904

• ":SBUS<N>:SPI:SOURce:FRAMe" on page 905

• ":SBUS<N>:SPI:SOURce:MISO" on page 906

• ":SBUS<N>:SPI:SOURce:MOSI" on page 907

• ":SBUS<N>:SPI:TRIGger:PATTern:DATA" on page 908

• ":SBUS<N>:SPI:TRIGger:PATTern:WIDTh" on page 911

• ":SBUS<N>:SPI:TRIGger:TYPE" on page 913

• ":SBUS<N>:SPI:TYPE" on page 915

• ":SBUS<N>:SPI:WIDTh" on page 916

See Also • ":SBUS<N>:MODE" on page 846

NOTE These commands are only valid when the low-speed IIC and SPI serial decode option has been
licensed.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 899

:SBUS<N>:SPI:BITorder

Command :SBUS<N>:SPI:BITorder <order>

<order> ::= {LSB | MSB}

The :SBUS<N>:SPI:BITorder command selects the bit order, most significant bit
first (MSB) or least significant bit first (LSB), used when displaying data in the
serial decode waveform and in the Lister.

<N> An integer, 1-4.

Query :SBUS<N>:SPI:BITorder?

The :SBUS<N>:SPI:BITorder? query returns the current SPI decode bit order.

Returned Format [:SBUS<N>:SPI:BITorder] <order><NL>

See Also • ":SBUS<N>:MODE" on page 846

History New in version 3.50.

900 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:SPI:CLOCk:SLOPe

Command :SBUS<N>:SPI:CLOCk:SLOPe <slope>

<slope> ::= {POSitive | RISing | NEGative | FALLing}

The :SBUS<N>:SPI:CLOCk:SLOPe command specifies the rising edge (POSitive) or
falling edge (NEGative) of the SPI clock source that will clock in the data.

<N> An integer, 1-4.

Query :SBUS<N>:SPI:CLOCk:SLOPe?

The :SBUS<N>:SPI:CLOCk:SLOPe? query returns the current SPI clock source
slope.

Returned Format [:SBUS<N>:SPI:CLOCk:SLOPe] <slope><NL>

<slope> ::= {RIS | FALL}

See Also • ":SBUS<N>:SPI:CLOCk:TIMeout" on page 901

• ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 901

:SBUS<N>:SPI:CLOCk:TIMeout

Command :SBUS<N>:SPI:CLOCk:TIMeout <time_value>

<time_value> ::= time in seconds in NR3 format

The :SBUS<N>:SPI:CLOCk:TIMeout command sets the SPI signal clock timeout
resource in seconds from 100 ns to 10 s when the :SBUS<N>:SPI:FRAMing
command is set to TIMeout. The timer is used to frame a signal by a clock timeout.

<N> An integer, 1-4.

Query :SBUS<N>:SPI:CLOCk:TIMeout?

The :SBUS<N>:SPI:CLOCk:TIMeout? query returns current SPI clock timeout
setting.

Returned Format [:SBUS<N>:SPI:CLOCk:TIMeout] <time value><NL>

See Also • ":SBUS<N>:SPI:CLOCk:SLOPe" on page 900

• ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:SPI:FRAMe:STATe" on page 902

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

902 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:SPI:FRAMe:STATe

Command :SBUS<N>:SPI:FRAMe:STATe <value>

<value> ::= {LOW | HIGH}

The :SBUS<N>:SPI:FRAMe:STATe command sets the SPI trigger frame state.

<N> An integer, 1-4.

Query :SBUS<N>:SPI:FRAMe:STATe?

The :SBUS<N>:SPI:FRAMe:STATe? query returns the current SPI frame state.

Returned Format [:SBUS<N>:SPI:FRAMe:STATe] <value><NL>

See Also • ":SBUS<N>:SPI:SOURce:FRAMe" on page 905

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 903

:SBUS<N>:SPI:SOURce:CLOCk

Command :SBUS<N>:SPI:SOURce:CLOCk <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:SPI:SOURce:CLOCk command sets the source for the SPI serial
clock.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:SPI:SOURce:CLOCk?

The :SBUS<N>:SPI:SOURce:CLOCk? query returns the current source for the SPI
serial clock.

Returned Format [:SBUS<N>:SPI:SOURce:CLOCk] <source><NL>

See Also • ":SBUS<N>:SPI:CLOCk:SLOPe" on page 900

• ":SBUS<N>:SPI:CLOCk:TIMeout" on page 901

• ":SBUS<N>:SPI:SOURce:FRAMe" on page 905

• ":SBUS<N>:SPI:SOURce:MOSI" on page 907

• ":SBUS<N>:SPI:SOURce:MISO" on page 906

• ":SBUS<N>:SPI:SOURce:DATA" on page 904

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Version 5.20: The NONE parameter was added.

904 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:SPI:SOURce:DATA

Command :SBUS<N>:SPI:SOURce:DATA <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:SPI:SOURce:DATA command sets the source for the SPI serial
MOSI data.

This command is the same as the :SBUS<N>:SPI:SOURce:MOSI command.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:SPI:SOURce:DATA?

The :SBUS<N>:SPI:SOURce:DATA? query returns the current source for the SPI
serial MOSI data.

Returned Format [:SBUS<N>:SPI:SOURce:DATA] <source><NL>

See Also • ":SBUS<N>:SPI:SOURce:MOSI" on page 907

• ":SBUS<N>:SPI:SOURce:MISO" on page 906

• ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:SPI:SOURce:FRAMe" on page 905

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Version 5.20: The NONE parameter was added.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 905

:SBUS<N>:SPI:SOURce:FRAMe

Command :SBUS<N>:SPI:SOURce:FRAMe <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:SPI:SOURce:FRAMe command sets the frame source.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:SPI:SOURce:FRAMe?

The :SBUS<N>:SPI:SOURce:FRAMe? query returns the current frame source for
the SPI serial frame.

Returned Format [:SBUS<N>:SPI:SOURce:FRAMe] <source><NL>

See Also • ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:SPI:SOURce:MOSI" on page 907

• ":SBUS<N>:SPI:SOURce:MISO" on page 906

• ":SBUS<N>:SPI:SOURce:DATA" on page 904

• ":SBUS<N>:SPI:FRAMe:STATe" on page 902

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Version 5.20: The NONE parameter was added.

906 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:SPI:SOURce:MISO

Command :SBUS<N>:SPI:SOURce:MISO <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:SPI:SOURce:MISO command sets the source for the SPI serial
MISO data.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:SPI:SOURce:MISO?

The :SBUS<N>:SPI:SOURce:MISO? query returns the current source for the SPI
serial MISO data.

Returned Format [:SBUS<N>:SPI:SOURce:MISO] <source><NL>

See Also • ":SBUS<N>:SPI:SOURce:MOSI" on page 907

• ":SBUS<N>:SPI:SOURce:DATA" on page 904

• ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:SPI:SOURce:FRAMe" on page 905

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Version 5.20: The NONE parameter was added.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 907

:SBUS<N>:SPI:SOURce:MOSI

Command :SBUS<N>:SPI:SOURce:MOSI <source>

<source> ::= {CHANnel<N> | FUNCtion<F> | WMEMory<N> | DIGital<M>
| NONE}

The :SBUS<N>:SPI:SOURce:MOSI command sets the source for the SPI serial
MOSI data.

You can also use the equivalent :SBUS<N>:SPI:SOURce:DATA command to set the
MOSI data source.

The NONE parameter is the same as selecting "None" for the source in the user
interface. It makes the previously selected channel, waveform memory, or math
function available for other decodes.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :SBUS<N>:SPI:SOURce:MOSI?

The :SBUS<N>:SPI:SOURce:MOSI? query returns the current source for the SPI
serial MOSI data.

Returned Format [:SBUS<N>:SPI:SOURce:MOSI] <source><NL>

See Also • ":SBUS<N>:SPI:SOURce:DATA" on page 904

• ":SBUS<N>:SPI:SOURce:MISO" on page 906

• ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:SPI:SOURce:FRAMe" on page 905

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

Version 5.20: The NONE parameter was added.

908 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:SPI:TRIGger:PATTern:DATA

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 909

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:SPI:TRIGger:PATTern:DATA <quoted_string>

The :SBUS<N>:SPI:TRIGger:PATTern:DATA command defines the SPI data pattern
resource according to the string parameter. This pattern, along with the data
width, control the data pattern searched for in the data stream.

The :SBUS<N>:SPI:TRIGger:PATTern:DATA command must receive the number of
bytes specified by the :SBUS<N>:SPI:TRIGger:PATTern:WIDTh command.

<N> An integer, 1-4.

<quoted_string> If the quoted string parameter starts with "0x", it is a hexadecimal string made up
of hexadecimal and X (don't care) characters (for example, "0x34XF"); otherwise, it
is a binary string made up of 0, 1, and X (don't care) characters (for example,
"00110100XXXX1111").

Example To enable the SBUS1 trigger, set the SPI trigger type to MOSI, set a 32-bit data
pattern width, and specify the 0x0080FFFF data pattern:

myScope.WriteString ":CHANnel1:DISPlay ON"
myScope.WriteString ":CHANnel2:DISPlay ON"
myScope.WriteString ":CHANnel3:DISPlay ON"
myScope.WriteString ":CHANnel4:DISPlay ON"
myScope.WriteString ":SBUS1:MODE SPI"
myScope.WriteString ":SBUS1:SPI:WIDTh 16"
myScope.WriteString ":SBUS1:SPI:TYPE WIRE4"
myScope.WriteString ":SBUS1:SPI:SOURce:MOSI CHANnel1"
myScope.WriteString ":SBUS1:SPI:SOURce:CLOCk CHANnel2"
myScope.WriteString ":SBUS1:SPI:SOURce:FRAMe CHANnel3"
myScope.WriteString ":SBUS1:SPI:SOURce:MISO CHANnel4"
myScope.WriteString ":TRIGger:MODE SBUS1"
myScope.WriteString ":SBUS1:SPI:TRIGger:TYPE MOSI"
myScope.WriteString ":SBUS1:SPI:TRIGger:PATTern:WIDTh 2"
myScope.WriteString ":SBUS1:SPI:TRIGger:PATTern:DATA '0x0080ffff'"

Query :SBUS<N>:SPI:TRIGger:PATTern:DATA?

The :SBUS<N>:SPI:TRIGger:PATTern:DATA? query returns the current settings of
the specified SPI data pattern resource in the binary string format.

Returned Format [:SBUS<N>:SPI:TRIGger:PATTern:DATA] <binary_string><NL>

NOTE You must set :SBUS<N>:MODE to SPI before you can send other :SBUS<N>:SPI:TRIGger
commands.

NOTE The :SBUS<N>:SPI:TRIGger:PATTern:WIDTh should be set before
:SBUS<N>:SPI:TRIGger:PATTern:DATA.

910 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:SPI:TRIGger:PATTern:WIDTh" on page 911

• ":SBUS<N>:SPI:TRIGger:TYPE" on page 913

History New in version 3.50.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 911

:SBUS<N>:SPI:TRIGger:PATTern:WIDTh

912 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:SPI:TRIGger:PATTern:WIDTh {1 - 20}

The :SBUS<N>:SPI:TRIGger:PATTern:WIDTh command sets the width of the SPI
data pattern. You can specify the width in multiples of the SPI word size up to 20.

<N> An integer, 1-4.

Example To enable the SBUS1 trigger, set the SPI trigger type to MOSI, set a 32-bit data
pattern width (two 16-bit words), and specify the 0x0080FFFF data pattern:

myScope.WriteString ":CHANnel1:DISPlay ON"
myScope.WriteString ":CHANnel2:DISPlay ON"
myScope.WriteString ":CHANnel3:DISPlay ON"
myScope.WriteString ":CHANnel4:DISPlay ON"
myScope.WriteString ":SBUS1:MODE SPI"
myScope.WriteString ":SBUS1:SPI:WIDTh 16"
myScope.WriteString ":SBUS1:SPI:TYPE WIRE4"
myScope.WriteString ":SBUS1:SPI:SOURce:MOSI CHANnel1"
myScope.WriteString ":SBUS1:SPI:SOURce:CLOCk CHANnel2"
myScope.WriteString ":SBUS1:SPI:SOURce:FRAMe CHANnel3"
myScope.WriteString ":SBUS1:SPI:SOURce:MISO CHANnel4"
myScope.WriteString ":TRIGger:MODE SBUS1"
myScope.WriteString ":SBUS1:SPI:TRIGger:TYPE MOSI"
myScope.WriteString ":SBUS1:SPI:TRIGger:PATTern:WIDTh 2"
myScope.WriteString ":SBUS1:SPI:TRIGger:PATTern:DATA '0x0080ffff'"

Query :SBUS<N>:SPI:TRIGger:PATTern:WIDTh?

The :SBUS<N>:SPI:TRIGger:PATTern:WIDTh? query returns the current SPI data
pattern width setting.

Returned Format [:SBUS<N>:SPI:TRIGger:PATTern:WIDTh] {1 - 20}<NL>

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:SPI:WIDTh" on page 916

• ":SBUS<N>:SPI:TRIGger:TYPE" on page 913

• ":SBUS<N>:SPI:TRIGger:PATTern:DATA" on page 908

History New in version 3.50.

NOTE You must set :SBUS<N>:MODE to SPI before you can send other :SBUS<N>:SPI:TRIGger
commands.

NOTE The :SBUS<N>:SPI:TRIGger:PATTern:WIDTh should be set before
:SBUS<N>:SPI:TRIGger:PATTern:DATA.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 913

:SBUS<N>:SPI:TRIGger:TYPE

914 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

(9000 Series, 9000H Series, S-Series)

Command :SBUS<N>:SPI:TRIGger:TYPE <value>

<value> ::= {MOSI | MISO}

The :SBUS<N>:SPI:TRIGger:TYPE command specifies whether the SPI trigger will
be on the MOSI data or the MISO data.

The data value is specified by the :SBUS<N>:SPI:TRIGger:PATTern:DATA and
:SBUS<N>:SPI:TRIGger:PATTern:WIDTh commands.

<N> An integer, 1-4.

Example To enable the SBUS1 trigger and set the SPI trigger type to MOSI:

myScope.WriteString ":CHANnel1:DISPlay ON"
myScope.WriteString ":CHANnel2:DISPlay ON"
myScope.WriteString ":CHANnel3:DISPlay ON"
myScope.WriteString ":CHANnel4:DISPlay ON"
myScope.WriteString ":SBUS1:MODE SPI"
myScope.WriteString ":SBUS1:SPI:WIDTh 16"
myScope.WriteString ":SBUS1:SPI:TYPE WIRE4"
myScope.WriteString ":SBUS1:SPI:SOURce:MOSI CHANnel1"
myScope.WriteString ":SBUS1:SPI:SOURce:CLOCk CHANnel2"
myScope.WriteString ":SBUS1:SPI:SOURce:FRAMe CHANnel3"
myScope.WriteString ":SBUS1:SPI:SOURce:MISO CHANnel4"
myScope.WriteString ":TRIGger:MODE SBUS1"
myScope.WriteString ":SBUS1:SPI:TRIGger:TYPE MOSI"
myScope.WriteString ":SBUS1:SPI:TRIGger:PATTern:WIDTh 2"
myScope.WriteString ":SBUS1:SPI:TRIGger:PATTern:DATA '0x0080ffff'"

Query :SBUS<N>:SPI:TRIGger:TYPE?

The :SBUS<N>:SPI:TRIGger:TYPE? query returns the trigger type setting.

Returned Format [:SBUS<N>:SPI:TRIGger:TYPE] <value><NL>

See Also • ":TRIGger:MODE" on page 1007

• ":SBUS<N>:MODE" on page 846

• ":SBUS<N>:SPI:SOURce:DATA" on page 904

• ":SBUS<N>:SPI:SOURce:MOSI" on page 907

• ":SBUS<N>:SPI:SOURce:MISO" on page 906

• ":SBUS<N>:SPI:TRIGger:PATTern:DATA" on page 908

• ":SBUS<N>:SPI:TRIGger:PATTern:WIDTh" on page 911

History New in version 3.50.

NOTE You must set :SBUS<N>:MODE to SPI before you can send other :SBUS<N>:SPI:TRIGger
commands.

Serial Bus Commands 28

Keysight Infiniium Oscilloscopes Programmer's Guide 915

:SBUS<N>:SPI:TYPE

Command :SBUS<N>:SPI:TYPE <value>

<value> ::= {WIRE2 | WIRE3 | WIRE4}

The :SBUS<N>:SPI:TYPE command specifies whether the type of SPI to decode.

<N> An integer, 1-4.

Example To set the 3-wire SPI decode type:

myScope.WriteString ":SBUS1:SPI:TYPE WIRE3"

Query :SBUS<N>:SPI:TYPE?

The :SBUS<N>:SPI:TYPE? query returns the decode type setting.

Returned Format [:SBUS<N>:SPI:TYPE] <value><NL>

See Also • ":SBUS<N>:SPI:BITorder" on page 899

• ":SBUS<N>:SPI:SOURce:CLOCk" on page 903

• ":SBUS<N>:SPI:SOURce:DATA" on page 904

• ":SBUS<N>:SPI:SOURce:FRAMe" on page 905

• ":SBUS<N>:SPI:SOURce:MISO" on page 906

• ":SBUS<N>:SPI:SOURce:MOSI" on page 907

• ":SBUS<N>:MODE" on page 846

History New in version 3.50.

916 Keysight Infiniium Oscilloscopes Programmer's Guide

28 Serial Bus Commands

:SBUS<N>:SPI:WIDTh

Command :SBUS<N>:SPI:WIDTh <word_width>

<word_width> ::= integer 4-16 in NR1 format

The :SBUS<N>:SPI:WIDTh command determines the number of bits in a word of
data for SPI.

<N> An integer, 1-4.

Query :SBUS<N>:SPI:WIDTh?

The :SBUS<N>:SPI:WIDTh? query returns the current SPI decode word width.

Returned Format [:SBUS<N>:SPI:WIDTh] <word_width><NL>

<word_width> ::= integer 4-16 in NR1 format

See Also • ":SBUS<N>:MODE" on page 846

History New in version 3.50.

917

Keysight Infiniium Oscilloscopes
Programmer's Guide

29 Self-Test Commands

:SELFtest:CANCel / 918
:SELFtest:SCOPETEST / 919

The SELFtest subsystem commands set up the self-test dialog and run the
Infiniium-Series Oscilloscopes Self-Tests.

NOTE Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

918 Keysight Infiniium Oscilloscopes Programmer's Guide

29 Self-Test Commands

:SELFtest:CANCel

Command :SELFtest:CANCel

The :SELFtest:CANCel command stops the currently running selftest.

Example This example stops the currently running selftest.

myScope.WriteString ":SELF:CANC"

History Legacy command (existed before version 3.10).

Self-Test Commands 29

Keysight Infiniium Oscilloscopes Programmer's Guide 919

:SELFtest:SCOPETEST

Command :SELFtest:SCOPETEST

The :SELFtest:SCOPETEST command brings up the self-test dialog in customer
self-test mode (Service Extensions Off) and runs the test, "Scope Self Tests." Use
the :SELFtest:SCOPETEST? query to determine the status of the test.

Example This example brings up the self-test dialog and runs the oscilloscope self-tests.

myScope.WriteString ":SELF:SCOPETEST"

Query :SELFtest:SCOPETEST?

Returned Format [:SELFtest:SCOPETEST] <test_name>,<test_status>, <time_stamp><NL>

<test_name> A string as follows: "Scope Self Tests".

<time_stamp> The time stamp follows the test name and test status, and is the part of the
returned string that includes the date and time, in the format: "20 May 2009
10:13:35".

Example This example places the current status of the self-test in the string variable, strTxt,
then prints the contents of the variable to the computer's screen.

Dim strTxt As String
myScope.WriteString ":SELF:SCOPETEST?"
strTxt = myScope.ReadString
Debug.Print strTxt

History Legacy command (existed before version 3.10).

<test_status> Status Description

FAILED Test completed and failed.

PASSED Test completed and passed.

WARNING Test passed but warning message was issued.

CANCELLED Test was cancelled by user.

NODATA Self-tests have not been executed on this instrument.

INPROGRESS Test is in progress.

920 Keysight Infiniium Oscilloscopes Programmer's Guide

29 Self-Test Commands

921

Keysight Infiniium Oscilloscopes
Programmer's Guide

30 Serial Data Equalization
Commands

:SPRocessing:CTLequalizer:DISPlay / 923
:SPRocessing:CTLequalizer:SOURce / 924
:SPRocessing:CTLequalizer:DCGain / 925
:SPRocessing:CTLequalizer:NUMPoles / 926
:SPRocessing:CTLequalizer:P1 / 927
:SPRocessing:CTLequalizer:P2 / 928
:SPRocessing:CTLequalizer:P3 / 929
:SPRocessing:CTLequalizer:RATe / 930
:SPRocessing:CTLequalizer:VERTical / 931
:SPRocessing:CTLequalizer:VERTical:OFFSet / 932
:SPRocessing:CTLequalizer:VERTical:RANGe / 933
:SPRocessing:CTLequalizer:ZERo / 934
:SPRocessing:DFEQualizer:STATe / 935
:SPRocessing:DFEQualizer:SOURce / 936
:SPRocessing:DFEQualizer:NTAPs / 937
:SPRocessing:DFEQualizer:TAP / 938
:SPRocessing:DFEQualizer:TAP:WIDTh / 939
:SPRocessing:DFEQualizer:TAP:DELay / 940
:SPRocessing:DFEQualizer:TAP:MAX / 941
:SPRocessing:DFEQualizer:TAP:MIN / 942
:SPRocessing:DFEQualizer:TAP:GAIN / 943
:SPRocessing:DFEQualizer:TAP:UTARget / 944
:SPRocessing:DFEQualizer:TAP:LTARget / 945
:SPRocessing:DFEQualizer:TAP:AUTomatic / 946
:SPRocessing:FFEQualizer:DISPlay / 947
:SPRocessing:FFEQualizer:SOURce / 948
:SPRocessing:FFEQualizer:NPRecursor / 949
:SPRocessing:FFEQualizer:NTAPs / 950
:SPRocessing:FFEequalizer:RATe / 951
:SPRocessing:FFEQualizer:TAP / 952

922 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:TAP:PLENgth / 953
:SPRocessing:FFEQualizer:TAP:WIDTh / 954
:SPRocessing:FFEQualizer:TAP:DELay / 955
:SPRocessing:FFEQualizer:TAP:AUTomatic / 956
:SPRocessing:FFEQualizer:TAP:BANDwidth / 957
:SPRocessing:FFEQualizer:TAP:BWMode / 958
:SPRocessing:FFEQualizer:TAP:TDELay / 959
:SPRocessing:FFEQualizer:TAP:TDMode / 960
:SPRocessing:FFEQualizer:VERTical / 961
:SPRocessing:FFEQualizer:VERTical:OFFSet / 962
:SPRocessing:FFEQualizer:VERTical:RANGe / 963

The N5461A Serial Data Equalization application is used to re-open partially or
completely closed real-time eye diagrams. For additional information on
equalization, consult the N5461A Infiniium Serial Data Equalization User's Guide.

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 923

:SPRocessing:CTLequalizer:DISPlay

Command :SPRocessing:CTLequalizer:DISPlay {(OFF | 0) | (ON | 1)}

The :CTLequalizer:DISPlay command turns the display of a Continuous Time Linear
Equalizer (CTLE) real-time eye diagram on or off. Turning CTLE on automatically
turns FFE off (and vice versa).

Example This example turns on the display of a CTLE real-time eye diagram.

myScope.WriteString ":SPRocessing:CTLequalizer:DISPlay ON"

Query :SPRocessing:CTLequalizer:DISPlay?

The :SPRocessing:CTLequalizer:DISPlay? query returns whether or not the CTLE
real-time eye is displayed.

History Legacy command (existed before version 3.10).

924 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:CTLequalizer:SOURce

Command :SPRocessing:CTLequalizer:SOURce {CHANnel<N> | FUNCtion<F> | WMEMory<N>}

The :CTLequalizer:SOURce command sets the source for the Continuous Time
Linear Equalization.

<N> CHANnel<N> is an integer, 1- 4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example sets the CTLE source to Channel 1.

myScope.WriteString ":SPRocessing:CTLequalizer:SOURce Channel1"

Query :SPRocessing:CTLequalizer:SOURce?

The :SPRocessing:CTLequalizer:SOURce? query returns the CTLE source.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 925

:SPRocessing:CTLequalizer:DCGain

Command :SPRocessing:CTLequalizer:DCGain <dc_gain>

The :CTLequalizer:DCGain command sets the DC Gain parameter for the
Continuous Time Linear Equalization.

<dc_gain> A real number

Example This example sets the CTLE DC Gain parameter to 1.

myScope.WriteString ":SPRocessing:CTLequalizer:DCGain 1"

Query :SPRocessing:CTLequalizer:DCGain?

The :SPRocessing:CTLequalizer:DCGain? query returns the CTLE's DC Gain p
arameter.

History Legacy command (existed before version 3.10).

926 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:CTLequalizer:NUMPoles

Command :SPRocessing:CTLequalizer:NUMPoles {POLE2 | POLE3}

The :SPRocessing:CTLequalizer:NUMPoles command selects either a 2 Pole or 3
Pole Continuous Time Linear Equalizer (CTLE).

Example This example selects a 2 Pole CTLE.

myScope.WriteString ":SPRocessing:CTLequalizer:NUMPoles POLE2"

Query :SPRocessing:CTLequalizer:NUMPoles?

The :SPRocessing:CTLequalizer:NUMPoles? query returns the current "number of
poles" selection.

History New in version 3.10.

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 927

:SPRocessing:CTLequalizer:P1

Command :SPRocessing:CTLequalizer:P1 <pole1_freq>

The :CTLequalizer:P1 command sets the Pole 1 frequency for the Continuous Time
Linear Equalization.

<pole1_freq> A real number

Example This example sets the CTLE Pole 1 frequency to 1GHz.

myScope.WriteString ":SPRocessing:CTLequalizer:P1 1e9"

Query :SPRocessing:CTLequalizer:P1?

The :SPRocessing:CTLequalizer:P1? query returns the CTLE's Pole 1 freque
ncy.

History Legacy command (existed before version 3.10).

928 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:CTLequalizer:P2

Command :SPRocessing:CTLequalizer:P2 <pole2_freq>

The :CTLequalizer:P1 command sets the Pole 2 frequency for the Continuous Time
Linear Equalization.

<pole2_freq> A real number

Example This example sets the CTLE Pole 2 frequency to 4 GHz.

myScope.WriteString ":SPRocessing:CTLequalizer:P2 4e9"

Query :SPRocessing:CTLequalizer:P2?

The :SPRocessing:CTLequalizer:P2? query returns the CTLE's Pole 2 freque
ncy.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 929

:SPRocessing:CTLequalizer:P3

Command :SPRocessing:CTLequalizer:P3 <pole3_freq>

The :CTLequalizer:P1 command sets the Pole 3 frequency for the Continuous Time
Linear Equalization.

<pole3_freq> A real number

Example This example sets the CTLE Pole 3 frequency to 4 GHz.

myScope.WriteString ":SPRocessing:CTLequalizer:P3 4e9"

Query :SPRocessing:CTLequalizer:P3?

The :SPRocessing:CTLequalizer:P3? query returns the CTLE's Pole 3 freque
ncy.

History New in version 3.10.

930 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:CTLequalizer:RATe

Command :SPRocessing:CTLequalizer:RATe <data_rate>

The :CTLequalizer:RATe command sets the data rate for the CTLE equalizer.

<data_rate> A real number

Example This example sets the CTLE data rate to 3e9.

myScope.WriteString ":SPRocessing:CTLequalizer:RATe 3e9"

Query :SPRocessing:CTLequalizer:RATe?

The :SPRocessing:CTLequalizer:Rate? query returns the CTLE's data rate.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 931

:SPRocessing:CTLequalizer:VERTical

Command :SPRocessing:CTLequalizer:VERTical {AUTO | MANual}

The :SPRocessing:CTLequalizer:VERTical command sets the CTLE signal's vertical
scale mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the vertical scaling and offset. In manual mode, you can set
your own scaling and offset values.

Example This example sets the CTLE signal's vertical scale mode to automatic.

myScope.WriteString ":SPRocessing:CTLequalizer:VERTical AUTO"

Query :SPRocessing:CTLequalizer:VERTical?

The :SPRocessing:CTLequalizer:VERTical? query returns the current CTLE signal's
vertical scale mode setting.

Returned Format [:SPRocessing:CTLequalizer:VERTical] {AUTO | MANual}

Example This example places the current setting of the CTLE signal's vertical scale mode in
the string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":SPRocessing:CTLequalizer:VERTICAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

932 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:CTLequalizer:VERTical:OFFSet

Command :SPRocessing:CTLequalizer:VERTical:OFFSet <offset>

The :SPRocessing:CTLequalizer:VERTical:OFFSet command sets the CTLE signal's
vertical offset.

<offset> A real number for the CTLE signal's vertical offset.

Example This example sets the CTLE signal's vertical offset to 1 volt.

myScope.WriteString ":SPRocessing:CTLequalizer:VERTICAL:OFFSET 1"

Query :SPRocessing:CTLequalizer:VERTical:OFFSet?

The:SPRocessing:CTLequalizer:VERTical:OFFSet? query returns the CTLE signal's
vertical offset setting.

Returned Format [:SPRocessing:CTLequalizer:VERTical:OFFSet] <value><NL>

<value> The CTLE signal's vertical offset setting.

Example This example places the current value of the CTLE signal's vertical offset in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":SPRocessing:CTLequalizer:VERTICAL:OFFSET?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 933

:SPRocessing:CTLequalizer:VERTical:RANGe

Command :SPRocessing:CTLequalizer:VERTical:RANGe <range>

The :SPRocessing:CTLequalizer:VERTical:RANGe command sets the CTLE signal's
vertical range.

<range> A real number for the full-scale CTLE signal's vertical range.

Example This example sets the CTLE signal's vertical range to 16 volts (2 volts times 8
divisions.)

myScope.WriteString ":SPRocessing:CTLequalizer:VERTICAL:RANGE 16"

Query :SPRocessing:CTLequalizer:VERTical:RANGe?

The :SPRocessing:CTLequalizer:VERTical:RANGe? query returns the CTLE signal's
vertical range setting.

Returned Format [:SPRocessing:CTLequalizer:VERTical:RANGe] <value><NL>

<value> The CTLE signal's vertical range setting.

Example This example places the current value of the CTLE signal's vertical range in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":SPRocessing:CTLequalizer:VERTICAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

934 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:CTLequalizer:ZERo

Command :SPRocessing:CTLequalizer:ZERo <zero_freq>

The :CTLequalizer:ZERo command sets the zero frequency for the Continuous
Time Linear Equalization.

<zero_freq> A real number

Example This example sets the CTLE zero frequency to 900 MHz.

myScope.WriteString ":SPRocessing:CTLequalizer:ZERo 9e6"

Query :SPRocessing:CTLequalizer:ZERo?

The :SPRocessing:CTLequalizer:ZERo? query returns the CTLE's zero freque
ncy.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 935

:SPRocessing:DFEQualizer:STATe

Command :SPRocessing:DFEQualizer:STATe {(OFF | 0) | (ON | 1)}

The :DFEQualizer:STATe command turns the Decision Feedback Equalization on or
off.

Example This example turns on DFE.

myScope.WriteString ":SPRocessing:DFEQualizer:STATe ON"

Query :SPRocessing:DFEQualizer:STATe?

The :SPRocessing:DFEQualizer:STATe? query returns whether or not DFE is turned
on.

History Legacy command (existed before version 3.10).

936 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:DFEQualizer:SOURce

Command :SPRocessing:DFEQualizer:SOURce {CHANnel<N> | COMMonmode<P>
| DIFF<P> | FUNCtion<F>
| WMEMory<N> | EQUalized}

The :DFEQualizer:SOURce command sets the source for the Decision Feedback
Equalization.

Setting the source to EQUalized means the Feed-Forward Equalized (FFE)
waveform is used as the DFE source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1- 4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<P> An integer, 1- 2.

Example This example sets the DFE source to Channel 1.

myScope.WriteString ":SPRocessing:DFEQualizer:SOURce Channel1"

Query :SPRocessing:DFEQualizer:SOURce?

The :SPRocessing:DFEQualizer:SOURce? query returns the DFE source.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 937

:SPRocessing:DFEQualizer:NTAPs

Command :SPRocessing:DFEQualizer:NTAPs <number>

The :DFEQualizer:NTAPs command sets the number of taps to be used in the DFE
algorithm.

DFE tap indices always begin with 1 and extend to the number of taps.

<number> An integer between 2 and 40

Example This example sets the number of DFE taps to 3.

myScope.WriteString ":SPRocessing:DFEQualizer:NTAPs 3"

Query :SPRocessing:DFEQualizer:NTAPs?

The :SPRocessing:DFEQualizer:NTAPs? query returns the number of DFE taps.

History Legacy command (existed before version 3.10).

938 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:DFEQualizer:TAP

Command :SPRocessing:DFEQualizer:TAP <tap>, <value>

The :DFEQualizer:TAP command sets the tap value for each DFE tap. For example,
when <tap> is equal to 0 then the 0th tap is set to <value>.

DFE tap indices always start at 1 and extend to the number of taps.

<tap> The tap number; when <tap> == 0, Tap 1 is set

<value> The tap value

Example This example sets the DFE Tap 1 to -1.432.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP 0,-1.432"

Query :SPRocessing:DFEQualizer:TAP? <tap>

The :SPRocessing:DFEQualizer:TAP? query returns the DFE tap values.

See Also • ":SPRocessing:DFEQualizer:NTAPs" on page 937

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 939

:SPRocessing:DFEQualizer:TAP:WIDTh

Command :SPRocessing:DFEQualizer:TAP:WIDTh <width>

The :DFEQualizer:TAP:WIDTh command sets the Eye Width field for the DFE tap
optimization. Setting the width to 0.0 means the optimization is only preformed at
the location of the clock. Setting the width to 1.0 means the entire acquisition is
used in the optimization. The default value for DFE is 0.0. For more information on
this parameter, refer to the N5461A Infiniium Seriald Data Equalization User's
Guide.

<width> A real number between 0.0 and 1.0.

Example This example sets the eye width to 0.0.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP:WIDTh 0.0"

Query :SPRocessing:DFEQualizer:TAP:WIDTh?

The :SPRocessing:DFEQualizer:TAP? query returns the eye width used in the DFE
tap optimization.

History Legacy command (existed before version 3.10).

940 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:DFEQualizer:TAP:DELay

Command :SPRocessing:DFEQualizer:TAP:DELay <delay>

The :DFEQualizer:TAP:DELay command specifies the amount of drift the equalized
eye diagram has relative to the unequalized one. This drift is then accounted for so
the two eyes overlap. For more information on this parameter, refer to the N5461A
Infiniium Seriald Data Equalization User's Guide.

<delay> A real number

Query :SPRocessing:DFEQualizer:TAP:DELay?

The :SPRocessing:DFEQualizer:TAP:DELay? query returns the value for the DFE
Delay field.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 941

:SPRocessing:DFEQualizer:TAP:MAX

Command :SPRocessing:DFEQualizer:TAP:MAX <max_tap_value>

Some standards have upper and lower limits on the tap values. The
:DFEQualizer:TAP:MAX command sets the upper limit on taps determined through
optimization.

<max_tap_value> A real number

Example This example sets the Upper Limit field to 3.23.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP:MAX 3.23"

Query :SPRocessing:DFEQualizer:TAP:MAX?

The :SPRocessing:DFEQualizer:TAP:MAX? query returns the Upper Limit used in
the DFE tap optimization.

History Legacy command (existed before version 3.10).

942 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:DFEQualizer:TAP:MIN

Command :SPRocessing:DFEQualizer:TAP:MIN <min_tap_value>

Some standards have upper and lower limits on the tap values. The
:DFEQualizer:TAP:MIN command sets the lower limit on taps determined through
optimization.

<min_tap_value> A real number

Example This example sets the Lower Limit field to 3.23.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP:MIN 3.23"

Query :SPRocessing:DFEQualizer:TAP:MIN?

The :SPRocessing:DFEQualizer:TAP:MIN? query returns the Lower Limit used in
the DFE tap optimization.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 943

:SPRocessing:DFEQualizer:TAP:GAIN

Command :SPRocessing:DFEQualizer:TAP:GAIN <gain>

The eye diagram drawn after DFE is applied is attenuated. To amplify the eye back
to its original size (so you can directly compare the eye at the receiver to the eye at
the transmitter), a gain factor needs to be applied. The :DFEQualizer:TAP:GAIN
command allows you to set this gain. For more information on this parameter,
refer to the N5461A Infiniium Seriald Data Equalization User's Guide.

<gain> A real number

Example This example sets the gain to 3.23.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP:GAIN 3.23"

Query :SPRocessing:DFEQualizer:TAP:GAIN?

The :SPRocessing:DFEQualizer:TAP:GAIN? query returns the current gain value.

History Legacy command (existed before version 3.10).

944 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:DFEQualizer:TAP:UTARget

Command :SPRocessing:DFEQualizer:TAP:UTARget <upper_target>

The Upper Target field dictates the logical high value used in the DFE algorithm.
For example, in DFE, when a bit is determined to be a logical high, its value will be
equal to Upper Target. The :DFEQualizer:TAP:UTARget command allows you to set
this value.

<upper_target> A real number

Example This example sets the Upper Target to 1.0.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP:UTARget 1.0"

Query :SPRocessing:DFEQualizer:TAP:UTARget?

The :SPRocessing:DFEQualizer:TAP:UTARget? query returns the current value for
the Upper Target field.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 945

:SPRocessing:DFEQualizer:TAP:LTARget

Command :SPRocessing:DFEQualizer:TAP:LTARget <lower_target>

The Lower Target field dictates the logical low value used in the DFE algorithm. For
example, in DFE, when a bit is determined to be a logical low, its value will be
equal to Lower Target. The :DFEQualizer:TAP:LTARget command allows you to set
this value.

<lower_target> A real number

Example This example sets the Lower Target to 1.0.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP:LTARget 1.0"

Query :SPRocessing:DFEQualizer:TAP:LTARget?

The :SPRocessing:DFEQualizer:TAP:LTARget? query returns the current value for
the Lower Target field.

History Legacy command (existed before version 3.10).

946 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:DFEQualizer:TAP:AUTomatic

Command :SPRocessing:DFEQualizer:TAP:AUTomatic

The :DFEQualizer:TAP:AUTomatic command starts the DFE tap optimization. Be
sure to first specify the number of taps and the max/min tap values.

Example This example starts the DFE tap optimization.

myScope.WriteString ":SPRocessing:DFEQualizer:TAP:AUTomatic"

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 947

:SPRocessing:FFEQualizer:DISPlay

Command :SPRocessing:FFEQualizer:DISPlay {(OFF | 0) | (ON | 1)}

The :FFEQualizer:DISPlay command turns the display of a Feed-Forward Equalized
(FFE) real-time eye diagram on or off.

Example This example turns on the display of a FFE real-time eye diagram.

myScope.WriteString ":SPRocessing:FFEQualizer:DISPlay ON"

Query :SPRocessing:FFEQualizer:DISPlay?

The :SPRocessing:FFEQualizer:DISPlay? query returns whether or not the FFE
real-time eye is displayed.

History Legacy command (existed before version 3.10).

948 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:SOURce

Command :SPRocessing:FFEQualizer:SOURce {CHANnel<N> | COMMonmode<P>
| DIFF<P> | FUNCtion<F>
| WMEMory<N>}

The :FFEQualizer:SOURce command sets the source for the Feed-Forward
Equalization.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1- 4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<P> An integer, 1- 2.

Example This example sets the FFE source to Channel 1.

myScope.WriteString ":SPRocessing:FFEQualizer:SOURce Channel1"

Query :SPRocessing:FFEQualizer:SOURce?

The :SPRocessing:FFEQualizer:SOURce? query returns the FFE source.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 949

:SPRocessing:FFEQualizer:NPRecursor

Command :SPRocessing:FFEQualizer:NPRecursor <number>

The :FFEQualizer:NPRecursor command sets the number of precursor taps to be
used in the FFE algorithm.

<number> An integer between 1 and (NTAPs - 1)

Example This example sets the number of FFE precursor taps to 3.

myScope.WriteString ":SPRocessing:FFEQualizer:NPRecursor 3"

Query :SPRocessing:FFEQualizer:NPRecursor?

The :SPRocessing:FFEQualizer:NPRecursor? query returns the number of FFE
precursor taps.

History Legacy command (existed before version 3.10).

950 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:NTAPs

Command :SPRocessing:FFEQualizer:NTAPs <number>

The :FFEQualizer:NTAPs command sets the number of taps to be used in the FFE
algorithm.

The indices of your FFE taps depend on the number of precursor taps being used.
For example, if you are using zero precursor taps then your FFE tap indices would
range from 0 to (NTAPs - 1). If you are using two precursor taps then your FFE tap
indices would range from -2 to (NTAPs - 1 - 2).

<number> an integer between 2 and 40

Example This example sets the number of FFE taps to 3.

myScope.WriteString ":SPRocessing:FFEQualizer:NTAPs 3"

Query :SPRocessing:FFEQualizer:NTAPs?

The :SPRocessing:FFEQualizer:NTAPs? query returns the number of FFE taps.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 951

:SPRocessing:FFEequalizer:RATe

Command :SPRocessing:FFEequalizer:RATe <data_rate>

The :FFEequalizer:RATe command sets the data rate for the FFE equalizer.

<data_rate> A real number

Example This example sets the FFE data rate to 3e9.

myScope.WriteString ":SPRocessing:FFEequalizer:RATe 3e9"

Query :SPRocessing:FFEequalizer:RATe?

The :SPRocessing:FFEequalizer:Rate? query returns the FFE's data rate.

History Legacy command (existed before version 3.10).

952 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:TAP

Command :SPRocessing:FFEQualizer:TAP <tap>, <value>

The :FFEQualizer:TAP command sets the tap value for each FFE tap. For example,
when <tap> is equal to 0 then the 0th tap is set to <value>.

The indices of your FFE taps depend on the number of precursor taps being used.
For example, if you are using zero precursor taps then your FFE tap indices would
range from 0 to (NTAPs - 1). If you are using two precursor taps then your FFE tap
indices would range from -2 to (NTAPs - 1 - 2).

<tap> The tap number; when <tap> == 0, Tap 0 is set

<value> The tap value

Example This example sets the second FFE tap to -1.432.

myScope.WriteString ":SPRocessing:FFEQualizer:TAP 2,-1.432"

Query :SPRocessing:FFEQualizer:TAP? <tap>

The :SPRocessing:FFEQualizer:TAP? query returns the FFE tap values.

See Also • ":SPRocessing:FFEQualizer:NTAPs" on page 950

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 953

:SPRocessing:FFEQualizer:TAP:PLENgth

Command :SPRocessing:FFEQualizer:TAP:PLENgth {CUSTom | PRBS51 | PRBS61 | PRBS71
| PRBS81 | PRBS91 | PRBS101}, <file>

In order for the tap optimization to work, the algorithm must know the input
pattern. You can train the oscilloscope to a known pattern and then use the
optimized taps on your live traffic. The :FFEQualizer:TAP:PLENgth command sets
the pattern for the FFE tap optimization algorithm.

The file parameter is only used in CUSTom mode.

For more information on this parameter, refer to the N5461A Infiniium Seriald Data
Equalization User's Guide.

<CUSTom> Allows you to import a known pattern via a .prtn file (save at location <file>)

<PRBSX1> Pseudo-random Binary Sequence of length 2^X - 1.

Example This example sets the pattern to PRBS 2^8 - 1.

myScope.WriteString ":SPRocessing:FFEQualizer:TAP:PLENgth PRBS81"

Query :SPRocessing:FFEQualizer:TAP:PLENgth?

The :SPRocessing:FFEQualizer:TAP:PLENgth? query returns the pattern used in
optimizing the FFE tap values.

History Legacy command (existed before version 3.10).

954 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:TAP:WIDTh

Command :SPRocessing:FFEQualizer:TAP:WIDTh <width>

The :FFEQualizer:TAP:WIDTh command sets the Eye Width field for the FFE tap
optimization. Setting the width to 0.0 means the optimization is only preformed at
the location of the clock. Setting the width to 1.0 means the entire acquisition is
used in the optimization. The default value for FFE is 0.33. For more information on
this parameter, refer to the N5461A Infiniium Serial Data Equalization User's
Guide.

<width> A real number between 0.0 and 1.0.

Example This example sets the eye width to 0.0.

myScope.WriteString ":SPRocessing:FFEQualizer:TAP:WIDTh 0.0"

Query :SPRocessing:FFEQualizer:TAP:WIDTh?

The :SPRocessing:FFEQualizer:TAP:WIDTh? query returns the eye width used in
the FFE tap optimization.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 955

:SPRocessing:FFEQualizer:TAP:DELay

Command :SPRocessing:FFEQualizer:TAP:DELay <delay>

The :FFEQualizer:TAP:DELay command specifies the amount of drift the equalized
eye diagram has relative to the unequalized one. This drift is then accounted for so
the two eyes overlap. For more information on this parameter, refer to the N5461A
Infiniium Serial Data Equalization User's Guide.

<delay> A real number

Query :SPRocessing:FFEQualizer:TAP:DELay?

The :SPRocessing:FFEQualizer:TAP:DELay? query returns the value for the FFE
Delay field.

History Legacy command (existed before version 3.10).

956 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:TAP:AUTomatic

Command :SPRocessing:FFEQualizer:TAP:AUTomatic

The :FFEQualizer:TAP:AUTomatic command starts the FFE tap optimization. Be
sure to first specify the number of taps and specify the Pattern and Eye Width
parameters.

Example This example starts the FFE tap optimization.

myScope.WriteString ":SPRocessing:FFEQualizer:TAP:AUTomatic"

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 957

:SPRocessing:FFEQualizer:TAP:BANDwidth

Command :SPRocessing:FFEQualizer:TAP:BANDwidth <bandwidth>

The :FFEQualizer:TAP:BANDwidth command is only needed if the
FFEQualizer:TAP:BWMode command is set to CUSTom and in this case it sets the
bandwidth at which the response generated by equalization rolls off. To
understand more about this parameter, consult the N5461A Infiniium Serial Data
Equalization User's Guide.

<bandwidth> The bandwidth at which the response generated by equalization rolls off.

Query :SPRocessing:FFEQualizer:TAP:BANDwidth?

The :SPRocessing:FFEQualizer:TAP:BANDwidth? query returns the current value
for the BANDwidth parameter.

History Legacy command (existed before version 3.10).

958 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:TAP:BWMode

Command :SPRocessing:FFEQualizer:TAP:BWMode {TSBandwidth | TTDelay | CUSTom}

The :FFEQualizer:TAP:BWMode command sets the bandwidth at which the
response generated by equalization is rolled off. To understand more about this
parameter, consult the N5461A Infiniium Serial Data Equalization User's Guide.

Example This example sets the FFE Bandwidth Mode to TTDELay.

myScope.WriteString ":SPRocessing:FFEQualizer:TAP:BWMode TTDelay"

Query :SPRocessing:FFEQualizer:TAP:BWMode?

The :SPRocessing:FFEQualizer:TAP:BWMode? query returns the FFE Bandwidth
Mode.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 959

:SPRocessing:FFEQualizer:TAP:TDELay

Command :SPRocessing:FFEQualizer:TAP:TDELay <delay_value>

The :FFEQualizer:TAP:TDELay command is only needed if the
FFEQualizer:TAP:TDMode is set to CUSTom. To determine what this value should
be, use the equation: tap delay = 1/[(data rate)x(# of taps per bit)]. To understand
more about this parameter, consult the N5461A Infiniium Serial Data Equalization
User's Guide.

<delay_value> A real number

Query :SPRocessing:FFEQualizer:TAP:TDELay?

The :SPRocessing:FFEQualizer:TAP:TDELay? query returns the current value for
the tap delay.

History Legacy command (existed before version 3.10).

960 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:TAP:TDMode

Command :SPRocessing:FFEQualizer:TAP:TDMode {TBITrate | CUSTom}

The :FFEQualizer:TAP:TDMode command sets Tap Delay field to either Track Data
Rate or Custom. If you are using one tap per bit, use the TBITrate selection. If you
are using multiple taps per bit, use CUSTom and then use the
FFEQualizer:TAP:TDELay command to set the value. To understand more about
this parameter, consult the N5461A Infiniium Serial Data Equalization User's
Guide.

Example This example sets the FFE Tap Delay mode to TBITrate.

myScope.WriteString ":SPRocessing:FFEQualizer:TAP:TDMode TBITrate"

Query :SPRocessing:FFEQualizer:TAP:TDMode?

The :SPRocessing:FFEQualizer:TAP:TDMode? query returns the current Tap Delay
mode.

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 961

:SPRocessing:FFEQualizer:VERTical

Command :SPRocessing:FFEQualizer:VERTical {AUTO | MANual}

The :SPRocessing:FFEQualizer:VERTical command sets the FFE signal's vertical
scale mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the vertical scaling and offset. In manual mode, you can set
your own scaling and offset values.

Example This example sets the FFEE signal's vertical scale mode to automatic.

myScope.WriteString ":SPRocessing:FFEQualizer:VERTical AUTO"

Query :SPRocessing:FFEQualizer:VERTical?

The :SPRocessing:FFEQualizer:VERTical? query returns the current FFE signal's
vertical scale mode setting.

Returned Format [:SPRocessing:FFEQualizer:VERTical] {AUTO | MANual}

Example This example places the current setting of the FFE signal's vertical scale mode in
the string variable strSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":SPRocessing:FFEQualizer:VERTICAL?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

962 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

:SPRocessing:FFEQualizer:VERTical:OFFSet

Command :SPRocessing:FFEQualizer:VERTical:OFFSet <offset>

The :SPRocessing:FFEQualizer:VERTical:OFFSet command sets the FFE signal's
vertical offset.

<offset> A real number for the FFE signal's vertical offset.

Example This example sets the FFE signal's vertical offset to 1 volt.

myScope.WriteString ":SPRocessing:FFEQualizer:VERTICAL:OFFSET 1"

Query :SPRocessing:FFEQualizer:VERTical:OFFSet?

The:SPRocessing:FFEQualizer:VERTical:OFFSet? query returns the FFE signal's
vertical offset setting.

Returned Format [:SPRocessing:FFEQualizer:VERTical:OFFSet] <value><NL>

<value> The FFE signal's vertical offset setting.

Example This example places the current value of the FFE signal's vertical offset in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":SPRocessing:FFEQualizer:VERTICAL:OFFSET?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Serial Data Equalization Commands 30

Keysight Infiniium Oscilloscopes Programmer's Guide 963

:SPRocessing:FFEQualizer:VERTical:RANGe

Command :SPRocessing:FFEQualizer:VERTical:RANGe <range>

The :SPRocessing:FFEQualizer:VERTical:RANGe command sets the FFE signal's
vertical range.

<range> A real number for the full-scale FFE signal's vertical range.

Example This example sets the FFE signal's vertical range to 16 volts (2 volts times 8
divisions.)

myScope.WriteString ":SPRocessing:FFEQualizer:VERTICAL:RANGE 16"

Query :SPRocessing:FFEQualizer:VERTical:RANGe?

The :SPRocessing:FFEQualizer:VERTical:RANGe? query returns the FFE signal's
vertical range setting.

Returned Format [:SPRocessing:FFEQualizer:VERTical:RANGe] <value><NL>

<value> The FFE signal's vertical range setting.

Example This example places the current value of the FFE signal's vertical range in the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":SPRocessing:FFEQualizer:VERTICAL:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

964 Keysight Infiniium Oscilloscopes Programmer's Guide

30 Serial Data Equalization Commands

965

Keysight Infiniium Oscilloscopes
Programmer's Guide

31 System Commands

:SYSTem:DATE / 966
:SYSTem:DEBug / 967
:SYSTem:DSP / 969
:SYSTem:ERRor? / 970
:SYSTem:HEADer / 971
:SYSTem:LOCK / 972
:SYSTem:LONGform / 973
:SYSTem:PERSona / 974
:SYSTem:PRESet / 975
:SYSTem:SETup / 976
:SYSTem:TIME / 978

SYSTem subsystem commands control the way query responses are formatted,
send and receive setup strings, and enable reading and writing to the advisory line
of the oscilloscope. You can also set and read the date and time in the oscilloscope
using the SYSTem subsystem commands.

966 Keysight Infiniium Oscilloscopes Programmer's Guide

31 System Commands

:SYSTem:DATE

Command :SYSTem:DATE <day>,<month>,<year>

The :SYSTem:DATE command sets the date in the oscilloscope, and is not affected
by the *RST common command.

<year> Specifies the year in the format <yyyy> | <yy>. The values range from 1992 to 2035.

<month> Specifies the month in the format <1, 2, . . . 12> | <JAN, FEB, MAR . . .>.

<day> Specifies the day in the format <1 . . . 31>.

Example This example sets the date to December 1, 2002.

myScope.WriteString ":SYSTEM:DATE 1,12,02"

Query :SYSTem:DATE?

The :SYSTem:DATE? query returns the current date in the oscilloscope.

Returned Format [:SYSTem:DATE] <day> <month> <year><NL>

Example This example queries the date.

Dim strDate As String
myScope.WriteString ":SYSTEM:DATE?"
strDate = myScope.ReadString
Debug.Print strDate

History Legacy command (existed before version 3.10).

System Commands 31

Keysight Infiniium Oscilloscopes Programmer's Guide 967

:SYSTem:DEBug

Command :SYSTem:DEBug {{ON|1}[,<output_mode>[,"<file_name>" [,<create_mode>]]] |
{OFF|0}}

The :SYSTem:DEBug command turns the debug mode on and off. This mode
enables the tracing of incoming remote commands. If you select CREate mode, a
new file is created, and/or an existing file is overwritten. If you select APPend
mode, the information is appended to an existing file. The :SYSTem:DEBug
command shows any header and/or parameter errors.

The default create mode is CREate, the default output mode is FileSCReen, and
the default file name is "c:\Document and Settings\All Users\Shared Documents\
Infiniium\Data\debug.txt". In debug mode, the File View button lets you view the
current debug file, or any other debug file. This is a read-only mode.

<output_mode> {FILE | SCReen | FileSCReen}

<file_name> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The file name assumes the present working
directory if a path does not precede the file name.

<create_mode> {CREate | APPend}

Examples This example turns on the debug/trace mode and creates a debug file.

myScope.WriteString ":SYSTEM:DEBUG ON,FILE,
""C:\Document and Settings\All Users\Shared Documents\Infiniium\Data\
pacq8xx.txt"",CREATE"

The created file resembles:

Debug information file C:\Document and Settings\All Users\
Shared Documents\Infiniium\Data\pacq8xx.txt
Date: 1 DEC 2002
Time: 09:59:35
Model: DSO90804A
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>

? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$

This example appends information to the debug file.

myScope.WriteString ":SYSTEM:DEBUG ON,FILE,
""C:\Document and Settings\All Users\Shared Documents\Infiniium\Data\
pacq8xx.txt"",APPEND"

968 Keysight Infiniium Oscilloscopes Programmer's Guide

31 System Commands

After appending information, the file resembles:

Debug information file C:\Document and Settings\All Users\
Shared Documents\Infiniium\Data\pacq8xx.txt
Date: 1 DEC 2002
Time: 09:59:35
Model: DSO90804A
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>

? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$

Debug information file C:\Document and Settings\All Users\
Shared Documents\Infiniium\Data\pacq8xx.txt appended
Date: 1 DEC 2002
Time: 10:10:35
Model: DSO90804A
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>

? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$

Query :SYSTem:DEBug?

The :SYSTem:DEBug? query returns the current debug mode settings.

Returned Format [:SYSTem:DEBug] {{1,<output_mode>,"<file_name>", <create_mode>} | 0} <N
L>

History Legacy command (existed before version 3.10).

System Commands 31

Keysight Infiniium Oscilloscopes Programmer's Guide 969

:SYSTem:DSP

Command :SYSTem:DSP "<string>"

The :SYSTem:DSP command writes a quoted string, excluding quotation marks, to
the advisory line of the instrument display. If you want to clear a message on the
advisory line, send a null (empty) string.

<string> An alphanumeric character array up to 86 bytes long.

Example This example writes the message, "Test 1" to the advisory line of the oscilloscope.

myScope.WriteString ":SYSTEM:DSP ""Test 1"""

Query :SYSTem:DSP?

The :SYSTem:DSP? query returns the last string written to the advisory line. This
may be a string written with a :SYSTem:DSP command, or an internally generated
advisory.

The string is actually read from the message queue. The message queue is cleared
when it is read. Therefore, the displayed message can only be read once over the
bus.

Returned Format [:SYSTem:DSP] <string><NL>

Example This example places the last string written to the advisory line of the oscilloscope
in the string variable, strAdvisory. Then, it prints the contents of the variable to the
computer's screen.

Dim strAdvisory As String ' Dimension variable.
myScope.WriteString ":SYSTEM:DSP?"
strAdvisory = myScope.ReadString
Debug.Print strAdvisory

History Legacy command (existed before version 3.10).

970 Keysight Infiniium Oscilloscopes Programmer's Guide

31 System Commands

:SYSTem:ERRor?

Query :SYSTem:ERRor? [{NUMBer | STRing}]

The :SYSTem:ERRor? query outputs the next error number in the error queue over
the remote interface. When either NUMBer or no parameter is specified in the
query, only the numeric error code is output. When STRing is specified, the error
number is output followed by a comma and a quoted string describing the error.
Table 21 lists the error numbers and their corresponding error messages.

Returned Format [:SYSTem:ERRor] <error_number>[,<quoted_string>]<NL>

<error_number> A numeric error code.

<quoted_string> A quoted string describing the error.

Example This example reads the oldest error number and message in the error queue into
the string variable, strCondition, then prints the contents of the variable to the
computer's screen.

Dim strCondition As String ' Dimension variable.
myScope.WriteString ":SYSTEM:ERROR? STRING"
strCondition = myScope.ReadString
Debug.Print strCondition

Infiniium Oscilloscopes have an error queue that is 30 errors deep and operates on
a first-in, first-out (FIFO) basis. Successively sending the :SYSTem:ERRor? query
returns the error numbers in the order that they occurred until the queue is empty.
When the queue is empty, this query returns headers of 0, "No error." Any further
queries return zeros until another error occurs. Note that front-panel generated
errors are also inserted in the error queue and the Event Status Register.

See Also The "Error Messages" chapter for more information on error messages and their
possible causes.

History Legacy command (existed before version 3.10).

NOTE Send *CLS Before Other Commands or Queries

Send the *CLS common command to clear the error queue and Event Status Register before
you send any other commands or queries.

System Commands 31

Keysight Infiniium Oscilloscopes Programmer's Guide 971

:SYSTem:HEADer

Command :SYSTem:HEADer {{ON|1} | {OFF|0}}

The :SYSTem:HEADer command specifies whether the instrument will output a
header for query responses. When :SYSTem:HEADer is set to ON, the query
responses include the command header.

Example This example sets up the oscilloscope to output command headers with query
responses.

myScope.WriteString ":SYSTEM:HEADER ON"

Query :SYSTem:HEADer?

The :SYSTem:HEADer? query returns the state of the :SYSTem:HEADer command.

Returned Format [:SYSTem:HEADer] {1|0}<NL>

Example This example prints the system header setting.

Dim strSetting As String
myScope.WriteString ":syst:head?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE Turn Headers Off when Returning Values to Numeric Variables

Turn headers off when returning values to numeric variables. Headers are always off for all
common command queries because headers are not defined in the IEEE 488.2 standard.

972 Keysight Infiniium Oscilloscopes Programmer's Guide

31 System Commands

:SYSTem:LOCK

Command :SYSTem:LOCK {{ON | 1} | {OFF | 0}}

The :SYSTem:LOCK ON command disables the front panel. The front panel can be
re-enabled by sending the :SYSTem:LOCK OFF command or by using the mouse
to click on the Minimize button in the upper right-hand corner of the oscilloscope
screen.

Example This example disables the oscilloscope's front panel.

myScope.WriteString ":SYSTEM:LOCK ON"

Query :SYSTem:LOCK?

The :SYSTem:LOCK? query returns the state of the :SYSTem:LOCK command.

Returned Format [:SYSTem:LOCK] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

System Commands 31

Keysight Infiniium Oscilloscopes Programmer's Guide 973

:SYSTem:LONGform

Command :SYSTem:LONGform {{ON | 1} | {OFF | 0}}

The :SYSTem:LONGform command specifies the format for query responses. If the
LONGform is set to OFF, command headers and alpha arguments are sent from
the oscilloscope in the short form (abbreviated spelling). If LONGform is set to ON,
the whole word is output.

Example This example sets the format for query responses from the oscilloscope to the
short form (abbreviated spelling).

myScope.WriteString ":SYSTEM:LONGFORM OFF"

Query :SYSTem:LONGform?

The :SYSTem:LONGform? query returns the current state of the
:SYSTem:LONGform command.

Returned Format [:SYSTem:LONGform] {1 | 0}<NL>

Example This example checks the current format for query responses from the oscilloscope,
and places the result in the string variable, strResult. Then, it prints the contents
of the variable to the computer's screen.

Dim strResult As String ' Dimension variable.
myScope.WriteString ":SYSTEM:LONGFORM?"
strResult = myScope.ReadString
Debug.Print strResult

History Legacy command (existed before version 3.10).

NOTE LONGform Does Not Affect Input Headers and Arguments

LONGform has no effect on input headers and arguments sent to the instrument. You may
send headers and arguments to the oscilloscope in either the long form or short form,
regardless of the current state of the :SYSTem:LONGform command.

974 Keysight Infiniium Oscilloscopes Programmer's Guide

31 System Commands

:SYSTem:PERSona

Command :SYSTem:PERSona {<manufacturer_string>, <model_string> | <manufacturer_s
tring> | DEFault}

<manufacturer_string> ::= quoted string, 1-31 characters

<model_string> ::= quoted string, 1-10 characters

The :SYSTem:PERSona command sets the manufacturer string and the model
number string returned by the *IDN? query.

Query :SYSTem:PERSona?

The :SYSTem:PERSona? query returns the manufacturer string and the model
number string.

Returned Format [:SYSTem:PERSona] <manufacturer_string>, <model_string><NL>

<manufacturer_string> ::= quoted string, 1-31 characters

<model_string> ::= quoted string, 1-10 characters

See Also • "*IDN?" on page 275

History New in version 5.20.

System Commands 31

Keysight Infiniium Oscilloscopes Programmer's Guide 975

:SYSTem:PRESet

Command :SYSTem:PRESet [{DEFault | FACtory}]

The :SYSTem:PRESet command performs a Default Setup just like the
oscilloscope's Default Setup key. Using this command does not change any of the
control settings found in the User Preferences dialog box, display color settings,
screen options, probe skew, probe external adapter settings for differential probes,
or probe internal attenuation and gain settings for differential probes. The
parameters are optional. A default reset will occur if no parameters are used or the
DEFault parameter is used. A factory default occurs with the FACtory parameter.

Example This example performs an oscilloscope default setup.

myScope.WriteString ":SYSTEM:PRESet"

History Legacy command (existed before version 3.10).

976 Keysight Infiniium Oscilloscopes Programmer's Guide

31 System Commands

:SYSTem:SETup

Command :SYSTem:SETup <binary_block_data>

The :SYSTem:SETup command sets up the oscilloscope as defined by the data in
the binary block of data from the computer.

<binary
_block_data>

A binary block of data, consisting of bytes of setup information. The number of
bytes is a dynamic number that is read and allocated by oscilloscope's software.

Example This example reads setup information from a file and restores it to the oscilloscope.

' Read setup from a file:
Dim strPath As String
strPath = "c:\scope\config\setup.dat"
Dim hFile As Long
hFile = FreeFile
Dim varSetup As Variant
Open strPath For Binary Access Read As hFile ' Open file for input.
Get hFile, , varSetup ' Read data.
Close hFile ' Close file.

' Write setup to oscilloscope.
myScope.WriteIEEEBlock ":SYSTem:SETup", varSetup
Debug.Print "Setup bytes restored: " + CStr(LenB(varSetup))

Query :SYSTem:SETup?

The :SYSTem:SETup? query outputs the oscilloscope's current setup to the
computer in binary block data format as defined in the IEEE 488.2 standard.

Returned Format [:SYSTem:SETup] #NX...X<setup_data_string><NL>

The first character in the setup data block is a number added for disk operations.

Example This example stores the current oscilloscope setup to the variable, varSetup, and
then saves it to a file.

' Get setup from the oscilloscope.
Dim varSeup As Variant
myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":SYSTem:SETup?"
varSetup = myScope.ReadIEEEBlock(BinaryType_UI1)

CAUTION Setups saved from Infiniium software versions prior to 2.00 may not load correctly in
software versions 4.30 and greater.

You can remedy this by re-saving any pre-2.00 setups using any version of software
from version 2.00 to version 4.20.

Setups saved from software versions between 2.00 and 4.20 should load correctly into
version 4.30 and greater.

System Commands 31

Keysight Infiniium Oscilloscopes Programmer's Guide 977

' Output setup string to a file:
Dim strPath As String
strPath = "c:\scope\config\setup.dat"
Dim hFile As Long
hFile = FreeFile
Open strPath For Binary Access Write Lock Write As hFile
Put hFile, , varSetup ' Write data.
Close hFile ' Close file.
Debug.Print "Setup bytes saved: " + CStr(LenB(varSetup))

History Legacy command (existed before version 3.10).

NOTE :SYSTem:SETup Can Operate Just Like *LRN?

When headers and LONGform are on, the :SYSTem:SETup? query operates the same as the
*LRN? query in the common commands. Otherwise, *LRN? and :SYSTem:SETup are not
interchangeable.

978 Keysight Infiniium Oscilloscopes Programmer's Guide

31 System Commands

:SYSTem:TIME

Command :SYSTem:TIME <hour>,<minute>,<second>

The :SYSTem:TIME command sets the time in the oscilloscope and is not affected
by the *RST common command.

<hour> 0...23

<minute> 0...59

<second> 0...59

Example This example sets the oscilloscope time to 10:30:45 a.m.

myScope.WriteString ":SYSTEM:TIME 10,30,45"

Query :SYSTem:TIME?

The :SYSTem:TIME? query returns the current time in the oscilloscope.

Returned Format [:SYSTem:TIME] <hour>,<minute>,<second>

History Legacy command (existed before version 3.10).

979

Keysight Infiniium Oscilloscopes
Programmer's Guide

32 Time Base Commands

:TIMebase:POSition / 980
:TIMebase:RANGe / 981
:TIMebase:REFClock / 982
:TIMebase:REFerence / 983
:TIMebase:REFerence:PERCent / 984
:TIMebase:ROLL:ENABLE / 985
:TIMebase:SCALe / 986
:TIMebase:VIEW / 987
:TIMebase:WINDow:DELay / 988
:TIMebase:WINDow:POSition / 989
:TIMebase:WINDow:RANGe / 990
:TIMebase:WINDow:SCALe / 991

The TIMebase subsystem commands control the horizontal (X axis) oscilloscope
functions.

980 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

:TIMebase:POSition

Command :TIMebase:POSition <position_value>

The :TIMebase:POSition command sets the time interval between the trigger event
and the delay reference point. The delay reference point is set with the
:TIMebase:REFerence command.

<position _value> A real number for the time in seconds from trigger to the delay reference point.

Example This example sets the delay position to 2 ms.

myScope.WriteString ":TIMEBASE:POSITION 2E-3"

Query :TIMebase:POSition?

The :TIMebase:POSition? query returns the current delay value in seconds.

Returned Format [:TIMebase:POSition] <position_value><NL>

Example This example places the current delay value in the numeric variable, varValue, then
prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":TIMEBASE:POSITION?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Time Base Commands 32

Keysight Infiniium Oscilloscopes Programmer's Guide 981

:TIMebase:RANGe

Command :TIMebase:RANGe <full_scale_range>

The :TIMebase:RANGe command sets the full-scale horizontal time in seconds.
The range value is ten times the time-per-division value.

<full_scale
_range>

A real number for the horizontal time, in seconds. The timebase range is 50 ps
(5 ps/div) to 200 s (20 s/div).

Example This example sets the full-scale horizontal range to 10 ms.

myScope.WriteString ":TIMEBASE:RANGE 10E-3"

Query :TIMebase:RANGe?

The :TIMebase:RANGe? query returns the current full-scale horizontal time.

Returned Format [:TIMebase:RANGe] <full_scale_range><NL>

Example This example places the current full-scale horizontal range value in the numeric
variable, varSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":TIMEBASE:RANGE?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

982 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

:TIMebase:REFClock

Command :TIMebase:REFClock {{ON | 1} | {OFF | 0} | HFRequency}

The :TIMebase:REFClock command enables or disables the 10 MHz REF IN BNC
input (ON or OFF) or the 100 MHz REF IN SMA input (HFRequency or OFF) located
on the rear panel of the oscilloscope. The 100 MHz REF IN SMA input is only
available on 90000 Q-Series and Z-Series oscilloscopes.

When this feature is enabled, the external reference input is used as a reference
clock for the oscilloscope's horizontal scale section instead of the internal
reference clock.

Example This example turns on the 10 MHz reference clock mode.

myScope.WriteString ":TIMebase:REFClock ON"

Query :TIMebase:REFClock?

The :TIMebase:REFClock? query returns the current state of the reference clock
mode control.

Returned Format [TIMebase:REFClock] {1 | 0 | HFR}<NL>

Example This example places the current value of the reference clock mode control in the
variable, varSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":TIMebase:REFClock?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

Time Base Commands 32

Keysight Infiniium Oscilloscopes Programmer's Guide 983

:TIMebase:REFerence

Command :TIMebase:REFerence {LEFT | CENTer | RIGHt}

The :TIMebase:REFerence command sets the .horizontal reference position to the
left, center, or right side of the screen.

Example This example sets the horizontal reference position to the center of the display.

myScope.WriteString ":TIMebase:REFerence CENTer"

Query :TIMebase:REFerence?

The :TIMebase:REFerence? query returns the current horizontal reference position.

Returned Format [:TIMebase:REFerence] {LEFT | CENTer | RIGHt | PERCent}<NL>

PERC is returned when the horizontal reference position is set to a
percent-of-screen location (either in the user interface or with the
:TIMebase:REFerence:PERCent command).

Example This example places the current holrizontal reference position in the string
variable, strSetting, then prints the contents of the variable to the computer's
screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":TIMebase:REFerence?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":TIMebase:REFerence:PERCent" on page 984

History Legacy command (existed before version 3.10).

Version 5.00: Query can now return PERC when a reference position percent value
is being used.

984 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

:TIMebase:REFerence:PERCent

Command :TIMebase:REFerence:PERCent <percent>

The :TIMebase:REFerence:PERCent command sets the horizontal reference
position to a percent-of-screen location, from left to right.

<percent> Integer from 0-100.

Example This example sets the horizontal reference position to a 25% of screen location.

myScope.WriteString ":TIMebase:REFerence:PERCent 25"

Query :TIMebase:REFerence:PERCent?

The :TIMebase:REFerence:PERCent? query returns the current horizontal reference
position as a percent-of-screen value.

Returned Format [:TIMebase:REFerence:PERCent] <percent><NL>

Example This example places the current horizontal reference position in the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":TIMebace:REFerence:PERCent?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also • ":TIMebase:REFerence" on page 983

History New in version 5.00.

Time Base Commands 32

Keysight Infiniium Oscilloscopes Programmer's Guide 985

:TIMebase:ROLL:ENABLE

Command :TIMebase:ROLL:ENABLE {{ON | 1} | {OFF | 0}}

The :TIMebase:ROLL:ENABLE command enables or disables the roll mode feature.

Example This example tuns on the roll mode.

myScope.WriteString ":TIMEBASE:ROLL:ENABLE ON"

Query :TIMebase:ROLL:ENABLE?

The :TIMebase:ROLL:ENABLE? query returns the current state of the roll mode
enable control.

Returned Format [:TIMebase:ROLL:ENABLE] {1 | 0}<NL>

Example This example places the current value of the roll mode enable control in the
variable, varSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":TIMEBASE:ROLL:ENABLE?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

NOTE Roll mode is not available when RealEdge channels are enabled in the 90000 Q-Series and
Z-Series oscilloscopes.

986 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

:TIMebase:SCALe

Command :TIMebase:SCALe <time>

The :TIMebase:SCALe command sets the time base scale. This corresponds to the
horizontal scale value displayed as time/div on the oscilloscope screen.

<time> A real number for the time value, in seconds per division. The timebase scale is
5 ps/div to 20 s/div.

Example This example sets the scale to 10 ms/div.

myScope.WriteString ":TIMEBASE:SCALE 10E-3"

Query :TIMebase:SCALe?

The :TIMebase:SCALe? query returns the current scale time setting.

Returned Format [:TIMebase:SCALe] <time><NL>

Example This example places the current scale value in the numeric variable, varSetting,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":TIMEBASE:SCALE?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

Time Base Commands 32

Keysight Infiniium Oscilloscopes Programmer's Guide 987

:TIMebase:VIEW

Command :TIMebase:VIEW {MAIN | WINDow}

The :TIMebase:VIEW command turns the horizontal zoom mode on and off. This is
the same as using the front panel [Zoom] key.

Example This example turns the horizontal zoom mode on.

myScope.WriteString ":TIMebase:VIEW WINDow"

Query :TIMebase:VIEW?

The :TIMebase:VIEW? query returns the horizontal zoom mode setting.

Returned Format [:TIMebase:VIEW] {MAIN | WINDow}<NL>

Example This example places the current view in the string variable, strState, then prints
the contents of the variable to the computer's screen.

Dim strState As String ' Dimension variable.
myScope.WriteString ":TIMebase:VIEW?"
strState = myScope.ReadString
Debug.Print strState

History Legacy command (existed before version 3.10).

988 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

:TIMebase:WINDow:DELay

Command :TIMebase:WINDow:DELay <delay_value>

The :TIMebase:WINDow:DELay sets the horizontal position in the delayed view of
the main sweep. The range for this command is determined by the main sweep
range and the main sweep horizontal position. The value for this command must
keep the time base window within the main sweep range.

<delay_value> A real number for the time in seconds from the trigger event to the delay reference
point. The maximum position depends on the main sweep range and the main
sweep horizontal position.

Example This example sets the time base window delay position to 20 ns.

myScope.WriteString ":TIMEBASE:WINDOW:DELAY 20E-9"

Query :TIMebase:WINDow:DELay?

The :TIMebase:WINDow:DELay? query returns the current horizontal position in
the delayed view.

Returned Format [:TIMebase:WINDow:DELay] <delay_position><NL>

Example This example places the current horizontal position in the delayed view in the
numeric variable, varSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":TIMEBASE:WINDOW:DELAY?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

See Also The :TIMebase:WINDow:POSition command performs the same function as this
command and should be used in new programs.

History Legacy command (existed before version 3.10).

NOTE This Command is Provided for Compatibil ity

This command is the same as the :TIMebase:WINDow:POSition command, and is provided for
compatibility with programs written for previous oscilloscopes. The preferred command for
compatibility with Infiniium Oscilloscopes is :TIMebase:WINDow:POSition.

Time Base Commands 32

Keysight Infiniium Oscilloscopes Programmer's Guide 989

:TIMebase:WINDow:POSition

Command :TIMebase:WINDow:POSition <position_value>

The :TIMebase:WINDow:POSition sets the horizontal position in the delayed view
of the main sweep. The range for this command is determined by the main sweep
range and the main sweep horizontal position. The value for this command must
keep the time base window within the main sweep range.

<position _value> A real number for the time in seconds from the trigger event to the delay reference
point. The maximum position depends on the main sweep range and the main
sweep horizontal position.

Example This example sets the time base window delay position to 20 ns.

myScope.WriteString ":TIMEBASE:WINDOW:POSITION 20E-9"

Query :TIMebase:WINDow:POSition?

The :TIMebase:WINDow:POSition? query returns the current horizontal position in
the delayed view.

Returned Format [:TIMebase:WINDow:POSition] <position_value><NL>

Example This example places the current horizontal position in the delayed view in the
numeric variable, varSetting, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":TIMEBASE:WINDOW:POSITION?"
varSetting = myScope.ReadNumber
Debug.Print FormatNumber(varSetting, 0)

History Legacy command (existed before version 3.10).

990 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

:TIMebase:WINDow:RANGe

Command :TIMebase:WINDow:RANGe <full_scale_range>

The :TIMebase:WINDow:RANGe command sets the full-scale range of the delayed
view. The range value is ten times the time per division of the delayed view. The
maximum range of the delayed view is the current main range. The minimum
delayed view range is 10 ps (1 ps/div).

<full_scale
_range>

A real number for the full-scale range of the time base window, in seconds.

Example This example sets the full-scale range of the delayed view to 100 ns.

myScope.WriteString ":TIMEBASE:WINDOW:RANGE 100E-9"

Query :TIMebase:WINDow:RANGe?

The :TIMebase:WINDow:RANGe? query returns the current full-scale range of the
delayed view.

Returned Format [:TIMebase:WINDow:RANGe] <full_scale_range><NL>

Example This example reads the current full-scale range of the delayed view into the
numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":TIMEBASE:WINDOW:RANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

Time Base Commands 32

Keysight Infiniium Oscilloscopes Programmer's Guide 991

:TIMebase:WINDow:SCALe

Command :TIMebase:WINDow:SCALe <time>

The :TIMebase:WINDow:SCALe command sets the time/div in the delayed view.
This command rescales the horizontal components of displayed waveforms.

<time> A real number for the delayed windows scale.

Example This example sets the scale of the time base window to 2 milliseconds/div.

myScope.WriteString ":TIMEBASE:WINDOW:SCALE 2E-3"

Query :TIMebase:WINDow:SCALe?

The :TIMebase:WINDow:SCALe? query returns the scaled window time, in
seconds/div.

Returned Format [:TIMebase:WINDow:SCALe] <time><NL>

History Legacy command (existed before version 3.10).

992 Keysight Infiniium Oscilloscopes Programmer's Guide

32 Time Base Commands

993

Keysight Infiniium Oscilloscopes
Programmer's Guide

33 Trigger Commands

General Trigger Commands / 995
Comm Trigger Commands / 1010
Delay Trigger Commands / 1016
Edge Trigger Commands / 1026
Glitch Trigger Commands / 1031
Pattern Trigger Commands / 1035
Pulse Width Trigger Commands / 1038
Runt Trigger Commands / 1044
Sequence Trigger Commands / 1049
Setup and Hold Trigger Commands / 1066
State Trigger Commands / 1073
Timeout Trigger Commands / 1078
Transition Trigger Commands / 1082
TV Trigger Commands / 1087
Window Trigger Commands / 1098
Advanced Comm Trigger Commands / 1103
Advanced Pattern Trigger Commands / 1110
Advanced State Trigger Commands / 1116
Advanced Delay By Event Trigger Commands / 1122
Advanced Delay By Time Trigger Commands / 1131
Advanced Standard TV Trigger Commands / 1138
Advanced User Defined TV Mode and Commands / 1144
Advanced Violation Trigger Modes / 1150
Advanced Pulse Width Violation Trigger Commands / 1152
Advanced Setup Violation Trigger Commands / 1158
Advanced Transition Violation Trigger Commands / 1184

994 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

The oscilloscope trigger circuitry helps you locate the waveform you want to view.
There are several different types of triggering, but the one that is used most often
is edge triggering. Edge triggering identifies a trigger condition by looking for the
slope (rising or falling) and voltage level (trigger level) on the source you select.
Any input channel, auxiliary input trigger, or line can be used as the trigger source.

The commands in the TRIGger subsystem define the conditions for triggering.
Many of the commands in the TRIGger subsystem are used in more than one of the
trigger modes. The command set has been defined to closely represent the
front-panel trigger menus. As a trade-off, there may be less compatibility between
Infiniium Oscilloscopes and command sets for previous oscilloscopes. Infiniium
Oscilloscopes still accept some commands for compatibility with previous
instruments. An alternative command that is accepted by the oscilloscope is noted
for a particular command.

Summary of
Trigger Modes and

Commands

Make sure the oscilloscope is in the proper trigger mode for the command you
want to send. One method of ensuring that the oscilloscope is in the proper trigger
mode is to send the :TRIGger:MODE command in the same program message as
the parameter to be set.

For example, to place the instrument in the proper triggering mode you select:

:TRIGger:MODE <Trigger_mode>

<Trigger_mode> The trigger modes include COMM, DELay, EDGE, GLITch, PATTern, PWIDth, RUNT,
SEQuence, SHOLd, STATe, TIMeout, TRANsition, TV, WINDow, SBUS<N>, and
ADVanced. Each mode is described with its command set in this chapter.

To place the instrument in the advanced triggering mode you select:

:TRIGger:MODE ADVanced
:TRIGger:ADVanced:MODE <Advanced_trigger_mode>

<Advanced
_trigger_mode>

Advanced trigger modes include COMM, DELay, PATTern, STATe, TV, and
VIOLation. Each mode is described with its command set in this chapter.

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 995

General Trigger Commands

• ":TRIGger:AND:ENABle" on page 996

• ":TRIGger:AND:SOURce" on page 997

• ":TRIGger:HOLDoff" on page 998

• ":TRIGger:HOLDoff:MAX" on page 999

• ":TRIGger:HOLDoff:MIN" on page 1000

• ":TRIGger:HOLDoff:MODE" on page 1001

• ":TRIGger:HTHReshold" on page 1002

• ":TRIGger:HYSTeresis" on page 1003

• ":TRIGger:LEVel" on page 1004

• ":TRIGger:LEVel:FIFTy" on page 1005

• ":TRIGger:LTHReshold" on page 1006

• ":TRIGger:MODE" on page 1007

• ":TRIGger:SWEep" on page 1009

996 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:AND:ENABle

Command :TRIGger:AND[{1 | 2}]:ENABle {{ON | 1} | {OFF | 0}}

The :TRIGger:AND:ENABle command enables the ability to further qualify the
trigger using other channels.

The optional [{1 | 2}] parameter sets whether the AND qualifier goes with the
TERM1 or TERM2 state if sequential triggering is being used.

Query :TRIGger:AND:ENABle?

The query returns the current state of the AND qualifier.

Returned Format [:TRIGger:AND:ENABle] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 997

:TRIGger:AND:SOURce

Command :TRIGger:AND[{1 | 2}]:SOURce CHANnel<N>,{HIGH | LOW | DONTcare}

The :TRIGger:AND:SOURce command sets the logic value used to qualify the
trigger for the specified channel. The TRIGger:LEVel command determines what
voltage level is considered a HIGH or a LOW logic value. If you set more than one
channel to a HIGH or a LOW, then the multiple channels are used to qualify the
trigger.

The optional [{1 | 2}] parameter sets whether the AND qualifier goes with the
TERM1 or TERM2 state if sequential triggering is being used.

<N> An integer, 1-4.

Query :TRIGger:AND:SOURce? CHANnel<N>

The query returns the logic value for the designated channel.

Returned Format [:TRIGger:AND:SOURce CHANnel<N>] {HIGH | LOW | DONTcare}<NL>

History Legacy command (existed before version 3.10).

998 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:HOLDoff

Command :TRIGger:HOLDoff <holdoff_time>

The :TRIGger:HOLDoff command specifies the amount of time the oscilloscope
should wait after receiving a trigger before enabling the trigger again.

<holdoff_time> A real number for the holdoff time, ranging from 100 ns to 10 s.

Query :TRIGger:HOLDoff?

The query returns the current holdoff value for the current mode.

Returned Format [:TRIGger:HOLDoff] <holdoff><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 999

:TRIGger:HOLDoff:MAX

Command :TRIGger:HOLDoff:MAX <holdoff_time>

This command is only used when you set the :TRIGger:HOLDoff:MODe command
to RANDom. The RANDom mode varies the trigger holdoff from one acquisition to
another by randomizing the time values between triggers. The randomized values
can be between the values specified by the :TRIGger:HOLDoff:MAX and
:TRIGger:HOLDoff:MIN commands.

The Random holdoff mode ensures that the oscilloscope re-arms after each
acquisition in a manner that minimizes or eliminates the likelihood of triggering at
the beginning of a DDR burst. Randomizing the holdoff increases the likelihood
that the oscilloscope will trigger on different data phases of a multiphase (8 data
transfer) burst. This mode mixes up the traffic pattern the oscilloscope triggers on
and is very effective when used on repeating patterns.

<holdoff_time> A real number for the maximum random holdoff time.

Query :TRIGger:HOLDoff:MAX?

The query returns the current maximum holdoff value for the random holdoff
mode.

Returned Format [:TRIGger:HOLDoff:MAX] <holdoff><NL>

History Legacy command (existed before version 3.10).

1000 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:HOLDoff:MIN

Command :TRIGger:HOLDoff:MIN <holdoff_time>

This command is only used when you set the :TRIGger:HOLDoff:MODe command
to RANDom. The RANDom mode varies the trigger holdoff from one acquisition to
another by randomizing the time values between triggers. The randomized values
can be between the values specified by the :TRIGger:HOLDoff:MAX and
:TRIGger:HOLDoff:MIN commands.

The Random holdoff mode ensures that the oscilloscope re-arms after each
acquisition in a manner that minimizes or eliminates the likelihood of triggering at
the beginning of a DDR burst. Randomizing the holdoff increases the likelihood
that the oscilloscope will trigger on different data phases of a multiphase (8 data
transfer) burst. This mode mixes up the traffic pattern the oscilloscope triggers on
and is very effective when used on repeating patterns.

<holdoff_time> A real number for the minimum random holdoff time.

Query :TRIGger:HOLDoff:MIN?

The query returns the current minimum holdoff value for the random holdoff mode.

Returned Format [:TRIGger:HOLDoff:MIN] <holdoff><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1001

:TRIGger:HOLDoff:MODE

Command :TRIGger:HOLDoff:MAX {FIXed | RANDom}

The Fixed mode sets the amount of time that the oscilloscope waits before
re-arming the trigger circuitry. It can be used to stabilize the display of complex
waveforms.

The RANDom mode varies the trigger holdoff from one acquisition to another by
randomizing the time values between triggers. The randomized values can be
between the values specified by the :TRIGger:HOLDoff:MAX and
:TRIGger:HOLDoff:MIN commands.

The Random holdoff mode ensures that the oscilloscope re-arms after each
acquisition in a manner that minimizes or eliminates the likelihood of triggering at
the beginning of a DDR burst. Randomizing the holdoff increases the likelihood
that the oscilloscope will trigger on different data phases of a multiphase (8 data
transfer) burst. This mode mixes up the traffic pattern the oscilloscope triggers on
and is very effective when used on repeating patterns.

Query :TRIGger:HOLDoff:MODE?

The query returns the current holdoff mode.

Returned Format [:TRIGger:HOLDoff:MODE] {FIXed | RANDom}<NL>

History Legacy command (existed before version 3.10).

1002 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:HTHReshold

Command :TRIGger:HTHReshold{{CHANnel<N> | AUXiliary},<level>}

This command specifies the high threshold voltage level for the selected trigger
source. Set the high threshold level to a value considered to be a high level for
your logic family; your data book gives two values, VIH and VOH.

<N> An integer, 1-4.

<level> A real number for the voltage level for the trigger source.

Query :TRIGger:HTHReshold? {CHANnel<N> | AUXiliary}

The query returns the currently defined high threshold voltage level for the trigger
source.

Returned Format [:TRIGger:HTHReshold {CHANnel<N> | AUXiliary},] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1003

:TRIGger:HYSTeresis

Command :TRIGger:HYSTeresis {NORMal | NREJect | HSENsitivity}

The :TRIGger:HYSTeresis command specifies the trigger hysteresis (noise reject)
as:

• NORMal — the typical hysteresis selection.

• NREJect (noise reject) — (available on 9000 Series, 9000H Series, and S-Series
oscilloscopes) gives maximum hysteresis but the lowest trigger bandwidth.

• HSENsitivity — (available on 90000A Series, 90000 X-Series, 90000 Q-Series,
and Z-Series oscilloscopes) lowers the hysteresis of the trigger circuitry and
should be used for waveforms of 4 GHz and above.

Query :TRIGger:HYSTeresis?

The query returns the current hysteresis setting.

Returned Format [:TRIGger:HYSTeresis] {NORMal | NREJect | HSENsitivity}<NL>

History Legacy command (existed before version 3.10).

1004 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:LEVel

Command :TRIGger:LEVel {{CHANnel<N> | AUX},<level>}

The :TRIGger:LEVel command specifies the trigger level on the specified channel
for the trigger source. Only one trigger level is stored in the oscilloscope for each
channel. This level applies to the channel throughout the trigger dialog boxes
(Edge, Glitch, and Advanced). This level also applies to all the High Threshold
(HTHReshold) values in the Advanced Violation menus.

<N> An integer, 1-4.

<level> A real number for the trigger level on the specified channel or Auxiliary Trigger
Input.

Query :TRIGger:LEVel? {CHANnel<N> | AUX}

The query returns the specified channel's trigger level.

Returned Format [:TRIGger:LEVel {CHANnel<N> | AUX},] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1005

:TRIGger:LEVel:FIFTy

Command :TRIGger:LEVel:FIFTy

The :TRIGger:LEVel:FIFTy command sets the trigger level to 50%.

This performs the same action as the "push for 50%" front panel trigger level knob.

See Also • ":TRIGger:LEVel" on page 1004

History New in version 4.30.

1006 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:LTHReshold

Command :TRIGger:LTHReshold CHANnel<N>,<level>

This command specifies the low threshold voltage level for the selected trigger
source. This command specifies the low threshold voltage level for the selected
trigger source. Set the low threshold level to a value considered to be a low level
for your logic family; your data book gives two values, VIL and VOL.

<N> An integer, 1-4.

<level> A real number for the voltage level for the trigger source.

Query :TRIGger:LTHReshold? CHANnel<N>

The query returns the currently defined low threshold for the trigger source.

Returned Format [:TRIGger:LTHReshold CHANnel<N>,] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1007

:TRIGger:MODE

Command :TRIGger:MODE {EDGE | GLITch | PATTern | STATe | DELay | TIMeout | TV
| COMM | RUNT | SEQuence | SHOLd | TRANsition | WINDow
| PWIDth | ADVanced | SBUS<N>}

The :TRIGger:MODE command selects the trigger mode.

Table 16 :TRIGger:MODE Settings

Mode Definition

COMM COMM mode lets you trigger on a serial pattern of bits in a waveform.

DELay Delay by Events mode lets you view pulses in your waveform that occur a
number of events after a specified waveform edge. Delay by Time mode
lets you view pulses in your waveform that occur a long time after a
specified waveform edge.

EDGE Edge trigger mode.

GLITch Trigger on a pulse that has a width less than a specified amount of time.

PATTern Pattern triggering lets you trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to
trigger on a pulse of a given width.

PWIDth Pulse width triggering lets you trigger on a pulse that is greater than or
less than a specified width and of a certain polarity.

RUNT Runt triggering lets you trigger on positive or negative pulses that are
smaller in amplitude than other pulses in your waveform.

SBUS<N> Serial triggering on SBUS1, SBUS2, SBUS3, or SBUS4.

SEQuence (Available on 90000A Series, 90000 X-Series, 90000 Q-Series, and
Z-Series oscilloscopes.) Sequential triggering lets you use multiple events
or time/pattern qualifications to define your trigger.

SHOLd Setup and Hold triggering let you trigger on Setup or Hold violations in
your circuit.

STATe State triggering lets you set the oscilloscope to use several channels as
the trigger source, with one of the channels being used as a clock
waveform.

TIMeout Timeout triggering lets you trigger when the waveform remains high too
long, low to long, or unchanged too long.

TRANsition Edge Transition triggering lets you trigger on an edge that violates a rise
time or fall time specification.

TV TV trigger mode lets you trigger the oscilloscope on one of the standard
television waveforms. You can also use this mode to trigger on a custom
television waveform that you define.

1008 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Query :TRIGger:MODE?

The query returns the currently selected trigger mode.

Returned Format [:TRIGger:MODE] {EDGE | GLITch | PATTern | STATe | DELay | TIMeout | TV
| COMM | RUNT | SEQuence | SHOLd | TRANsition | WINDow
| PWIDth | ADVanced | SBUS<N>}<NL>

History Legacy command (existed before version 3.10).

Version 3.50: Added the SBUS1, SBUS2, SBUS3, and SBUS4 selections for
triggering on serial buses.

WINDow Window triggering lets you define a window on screen and then trigger
when the waveform exits the window, enters it, or stays inside/outside the
window for too long/short.

ADVanced Allows backward compatibility access to the DELay, PATTern, STATe, TV,
and VIOLation modes. When this mode is selected, use the
:TRIGger:ADVanced:MODE command to select the advanced trigger mode.

Table 17 :TRIGger:ADVanced:MODE Settings

Mode Definition

COMM COMM mode lets you trigger on a serial pattern of bits in a waveform.

DELay Delay by Events mode lets you view pulses in your waveform that occur a
number of events after a specified waveform edge. Delay by Time mode
lets you view pulses in your waveform that occur a long time after a
specified waveform edge.

PATTern Pattern triggering lets you trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to
trigger on a pulse of a given width.

STATe State triggering lets you set the oscilloscope to use several channels as
the trigger source, with one of the channels being used as a clock
waveform.

TV TV trigger mode lets you trigger the oscilloscope on one of the standard
television waveforms. You can also use this mode to trigger on a custom
television waveform that you define.

VIOLation Trigger violation modes: Pulse WIDth, SETup, TRANsition. When this mode
is selected, use the :TRIGger:ADVanced:VIOLation:MODE command to
select the advanced trigger violation mode.

Table 16 :TRIGger:MODE Settings (continued)

Mode Definition

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1009

:TRIGger:SWEep

Command :TRIGger:SWEep {AUTO | TRIGgered | SINGle}

The :TRIGger:SWEep command selects the oscilloscope sweep mode. New
programs should use :RUN and :SINGle for run control and this command for
AUTO and TRIGgered for sweep control. The SINGle sweep control should not be
used.

AUTO When you select AUTO, if a trigger event does not occur within a time determined
by the oscilloscope settings, the oscilloscope automatically forces a trigger which
causes the oscilloscope to sweep. If the frequency of your waveform is 50 Hz or
less, you should not use the AUTO sweep mode because it is possible that the
oscilloscope will automatically trigger before your waveform trigger occurs.

TRIGgered When you select TRIGgered, if no trigger occurs, the oscilloscope will not sweep,
and the previously acquired data will remain on the screen.

SINGle When you select SINGle, if no trigger occurs, the oscilloscope will not sweep, and
the previously acquired data will remain on the screen. Do not use in new
programs.

Query :TRIGger:SWEep?

The query returns the specified channel's trigger level.

Returned Format [:TRIGger:SWEep] {AUTO | TRIGgered}<NL>

History Legacy command (existed before version 3.10).

1010 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Comm Trigger Commands

• ":TRIGger:COMM:BWIDth" on page 1011

• ":TRIGger:COMM:ENCode" on page 1012

• ":TRIGger:COMM:PATTern" on page 1013

• ":TRIGger:COMM:POLarity" on page 1014

• ":TRIGger:COMM:SOURce" on page 1015

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1011

:TRIGger:COMM:BWIDth

Command :TRIGger:COMM:BWIDth <bwidth_value>

The :TRIGger:COMM:BWIDth command is used to set the width of a bit for your
waveform. The bit width is usually defined in the mask standard for your waveform.

<bwidth_value> A real number that represents the width of a bit.

Query :TRIGger:COMM:BWIDth?

The query returns the current bit width.

Returned Format [:TRIGger:COMM:BWIDth] <bwidth_value><NL>

History Legacy command (existed before version 3.10).

1012 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:COMM:ENCode

Command :TRIGger:COMM:ENCode {RZ | NRZ}

This :TRIGger:COMM:ENCode command sets the type of waveform encoding for
your waveform. You should use NRZ for CMI type waveforms and RZ for all other
type of waveforms.

Query :TRIGger:COMM:ENCode?

The :TRIGger:COMM:ENCode? query returns the current value of encoding

Returned Format [:TRIGger:COMM:ENCode] {RZ | NRZ}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1013

:TRIGger:COMM:PATTern

Command :TRIGger:COMM:PATTern <bit>[,<bit[,<bit[,<bit[,<bit[,<bit]]]]]

The :TRIGger:COMM:PATTern command sets the pattern used for triggering the
oscilloscope when in communication trigger mode. The pattern can be up to 6 bits
long. For NRZ type waveforms with positive polarity, there must be at least one
logic 0 to logic 1 transition in the pattern. For NRZ waveforms with negative
polarity there must be at least one logic 1 to logic 0 transition in the pattern. For
RZ type waveforms the pattern must have at least one logic 1 bit for positive
polarity. For RZ type waveforms the pattern must have at least one logic -1 bit for
negative polarity.

<bit> A 1, -1, or 0.

Query :TRIGger:COMM:PATTern?

The :TRIGger:COMM:PATTern? query returns the current communication trigger
pattern.

Returned Format [:TRIGger:COMM:PATTern] <pattern><NL>

<pattern> A string of up to 6 characters.

History Legacy command (existed before version 3.10).

1014 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:COMM:POLarity

Command :TRIGger:COMM:POLarity {POSitive | NEGative}

The :TRIGger:COMM:POLarity command directly controls the trigger slope used
for communication trigger. When set to a positive value, the rising edge of a pulse
or waveform is used to trigger the oscilloscope. When set to a negative value, the
falling edge of a pulse or waveform is used.

The polarity setting is also used to check for valid patterns. If you are trying to
trigger on an isolated 1 pattern, you should set the polarity to positive. If you are
trying to trigger on an isolated -1 pattern, you should set the polarity to negative.

Query :TRIGger:COMM:POLarity?

The :TRIGger:COMM:POLarity? query returns the current setting for polarity.

Returned Format [:TRIGger:COMM:POLarity} {POSitive | NEGative}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1015

:TRIGger:COMM:SOURce

Command :TRIGger:COMM:SOURce CHANnel<N>

The :TRIGger:COMM:SOURce command selects the channel used for the
communication trigger.

<N> An integer, 1-4.

Query :TRIGger:COMM:SOURce?

The :TRIGger:COMM:SOURce? query returns the currently selected
communication trigger source.

Returned Format [:TRIGger:COMM:SOURce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

1016 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Delay Trigger Commands

• ":TRIGger:DELay:ARM:SOURce" on page 1017

• ":TRIGger:DELay:ARM:SLOPe" on page 1018

• ":TRIGger:DELay:EDELay:COUNt" on page 1019

• ":TRIGger:DELay:EDELay:SOURce" on page 1020

• ":TRIGger:DELay:EDELay:SLOPe" on page 1021

• ":TRIGger:DELay:MODE" on page 1022

• ":TRIGger:DELay:TDELay:TIME" on page 1023

• ":TRIGger:DELay:TRIGger:SOURce" on page 1024

• ":TRIGger:DELay:TRIGger:SLOPe" on page 1025

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1017

:TRIGger:DELay:ARM:SOURce

Command :TRIGger:DELay:ARM:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Arm On source for arming the trigger circuitry when the
oscilloscope is in the Delay trigger mode.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:DELay:ARM:SOURce?

The query returns the currently defined Arm On source for the Delay trigger mode.

Returned Format [:TRIGger:DELay:EDELay:ARM:SOURce] {CHANnel<N> | DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

1018 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:DELay:ARM:SLOPe

Command :TRIGger:DELay:ARM:SLOPe {NEGative | POSitive}

This command sets a positive or negative slope for arming the trigger circuitry
when the oscilloscope is in the Delay trigger mode.

Query :TRIGger:DELay:ARM:SLOPe?

The query returns the currently defined slope for the Delay trigger mode.

Returned Format [:TRIGger:DELay:ARM:SLOPe] {NEGative | POSitive}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1019

:TRIGger:DELay:EDELay:COUNt

Command :TRIGger:DELay:EDELay:COUNt <edge_number>

This command sets the event count for a Delay By Event trigger event.

<edge_num> An integer from 0 to 16,000,000 specifying the number of edges to delay.

Query :TRIGger:DELay:EDELay:COUNt?

The query returns the currently defined number of events to delay before
triggering on the next Trigger On condition in the Delay By Event trigger mode.

Returned Format [:TRIGger:DELay:EDELay:COUNt] <edge_number><NL>

History Legacy command (existed before version 3.10).

1020 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:DELay:EDELay:SOURce

Command :TRIGger:DELay:EDELay:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Event source for a Delay By Event trigger event.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:DELay:EDELay:SOURce?

The query returns the currently defined Event source in the Delay By Event trigger
mode.

Returned Format [:TRIGger:DELay:EDELay:SOURce] {CHANnel<N> | DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1021

:TRIGger:DELay:EDELay:SLOPe

Command :TRIGger:DELay:EDELay:SLOPe {NEGative | POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:DELay:EDELay:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:DELay:EDELay:SLOPe] {NEGative | POSitive}<NL>

History Legacy command (existed before version 3.10).

1022 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:DELay:MODE

Command :TRIGger:DELay:MODE {EDELay | TDELay}

The :TRIGger:DELay:MODE command selects the type of delay trigger mode to
either events or to time.

Query :TRIGger:DELay:MODE?

The query returns the currently selected delay trigger mode.

Returned Format [:TRIGger:DELay:MODE] {EDELay | TDELay}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1023

:TRIGger:DELay:TDELay:TIME

Command :TRIGger:DELay:TDELay:TIME <delay>

This command sets the delay for a Delay By Time trigger event.

<delay> Time, in seconds, set for the delay trigger, from 10 ns to 10 s.

Query :TRIGger:DELay:TDELay:TIME?

The query returns the currently defined time delay before triggering on the next
Trigger On condition in the Delay By Time trigger mode.

Returned Format [:TRIGger:DELay:TDELay:TIME] <delay><NL>

History Legacy command (existed before version 3.10).

1024 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:DELay:TRIGger:SOURce

Command :TRIGger:DELay:TRIGger:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Trigger On source for a Delay trigger event.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:DELay:TRIGger:SOURce?

The query returns the currently defined Trigger On source in the Delay trigger
mode.

Returned Format [:TRIGger:DELay:TRIGger:SOURce] {CHANnel<N> | DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1025

:TRIGger:DELay:TRIGger:SLOPe

Command :TRIGger:DELay:TRIGger:SLOPe {NEGative | POSitive}

This command sets the trigger slope for the Delay trigger event.

Query :TRIGger:DELay:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay trigger
mode.

Returned Format [:TRIGger:DELay:TRIGger:SLOPe] {NEGative | POSitive}<NL>

History Legacy command (existed before version 3.10).

1026 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Edge Trigger Commands

• ":TRIGger:EDGE:COUPling" on page 1027

• ":TRIGger:EDGE:SLOPe" on page 1029

• ":TRIGger:EDGE:SOURce" on page 1030

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1027

:TRIGger:EDGE:COUPling

1028 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

(9000 Series, 9000H Series, S-Series)

Command :TRIGger:EDGE:COUPling {AC | DC | LFReject | HFReject}

The :TRIGger:EDGE:COUPling command sets the trigger coupling when
:TRIG:EDGE:SOURce is set to one of the channels.

Query :TRIGger:EDGE:COUPling?

The query returns the currently selected coupling for the specified edge trigger
source.

Returned Format [:TRIGger:EDGE:COUPling] {AC | DC | LFReject | HFReject}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1029

:TRIGger:EDGE:SLOPe

Command :TRIGger:EDGE[{1 | 2}]:SLOPe {POSitive | NEGative | EITHer}

The :TRIGger:EDGE:SLOPe command sets the slope of the trigger source
previously selected by the :TRIGger:EDGE:SOURce command. The LINE source
has no slope.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:EDGE:SLOPe?

The query returns the currently selected slope for the specified edge trigger
source.

Returned Format [:TRIGger:EDGE:SLOPe] {POSitive | NEGative | EITHer}<NL>

History Legacy command (existed before version 3.10).

1030 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:EDGE:SOURce

Command :TRIGger:EDGE[{1 | 2}]:SOURce {CHANnel<N> | DIGital<M> | AUX | LINE}

The :TRIGger:EDGE:SOURce command selects the source for edge mode
triggering. This is the source that will be used for subsequent
:TRIGger:EDGE:SLOPe commands or queries.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:EDGE:SOURce?

The query returns the currently selected edge mode trigger source.

Returned Format [:TRIGger:EDGE:SOURce] {CHANnel<N> | DIGital<M> | AUX | LINE}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1031

Glitch Trigger Commands

• ":TRIGger:GLITch:POLarity" on page 1032

• ":TRIGger:GLITch:SOURce" on page 1033

• ":TRIGger:GLITch:WIDTh" on page 1034

1032 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:GLITch:POLarity

Command :TRIGger:GLITch[{1 | 2}]:POLarity {POSitive | NEGative}

This command defines the polarity of the glitch as positive or negative. The trigger
source must be set using the :TRIGger:GLITch:SOURce command.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:GLITch:POLarity?

The query returns the currently selected glitch polarity.

Returned Format [:TRIGger:GLITch:POLarity] {POS | NEG}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1033

:TRIGger:GLITch:SOURce

Command :TRIGger:GLITch[{1 | 2}]:SOURce {CHANnel<N> | DIGital<M>}

This command sets the source for the glitch trigger mode.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:GLITch:SOURce?

The query returns the currently selected source for the glitch trigger mode.

Returned Format [:TRIGger:GLITch:SOURce] {CHANnel<N> | DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

1034 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:GLITch:WIDTh

Command :TRIGger:GLITch[{1 | 2}]:WIDTh <width>

This command sets the glitch width. The oscilloscope will trigger on a pulse that
has a width less than the specified width.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<width> A real number for the glitch width, ranging from the minimum detectable pulse
width to 10 s.

Query :TRIGger:GLITch:WIDTh?

The query returns the currently specified glitch width.

Returned Format [:TRIGger:GLITch:WIDTh] <width><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1035

Pattern Trigger Commands

• ":TRIGger:PATTern:CONDition" on page 1036

• ":TRIGger:PATTern:LOGic" on page 1037

1036 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:PATTern:CONDition

Command :TRIGger:PATTern[{1 | 2}]:CONDition {ENTered | EXITed
| {GT,<time>[,PEXits|TIMeout]}
| {LT,<time>}
| {RANGe,<gt_time>,<lt_time>}}

This command describes the condition applied to the trigger pattern to actually
generate a trigger.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<gt_time> The minimum time (greater than time) for the trigger pattern, from 10 ns to
9.999 s.

<lt_time> The maximum time (less than time) for the trigger pattern, from 10.5 ps to 10 s.

<time> The time condition, in seconds, for the pattern trigger, from 100 ps to 10 s.

When using the GT (Present >) parameter, the PEXits (Pattern Exits) or the
TIMeout parameter controls when the trigger is generated.

Query :TRIGger:PATTern:CONDition?

The query returns the currently defined trigger condition.

Returned Format [:TRIGger:PATTern:CONDition] {ENTered|EXITed
| {GT,<time>[,PEXits|TIMeout]}
| {LT,<time>}
| {RANGe,<gt_time>,<lt_time>}}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1037

:TRIGger:PATTern:LOGic

Command :TRIGger:PATTern[{1 | 2}]:LOGic {CHANnel<N> | DIGital<M>},
{HIGH | LOW | DONTcare | RISing | FALLing}

This command defines the logic criteria for a selected channel.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:PATTern:LOGic? {CHANnel<N> | DIGital<M>}

The query returns the current logic criteria for a selected channel.

Returned Format [:TRIGger:PATTern:LOGic {CHANnel<N> | DIGital<M>},]
{HIGH | LOW | DONTcare | RISing | FALLing}<NL>

History Legacy command (existed before version 3.10).

1038 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Pulse Width Trigger Commands

• ":TRIGger:PWIDth:DIRection" on page 1039

• ":TRIGger:PWIDth:POLarity" on page 1040

• ":TRIGger:PWIDth:SOURce" on page 1041

• ":TRIGger:PWIDth:TPOint" on page 1042

• ":TRIGger:PWIDth:WIDTh" on page 1043

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1039

:TRIGger:PWIDth:DIRection

Command :TRIGger:PWIDth[{1 | 2}]:DIRection {GTHan | LTHan}

This command specifies whether a pulse must be wider or narrower than the width
value to trigger the oscilloscope.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:PWIDth:DIRection?

The query returns the currently defined direction for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:DIRection] {GTHan | LTHan}<NL>

History Legacy command (existed before version 3.10).

1040 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:PWIDth:POLarity

Command :TRIGger:PWIDth[{1 | 2}]:POLarity {NEGative | POSitive}

This command specifies the pulse polarity that the oscilloscope uses to determine
a pulse width violation. For a negative polarity pulse, the oscilloscope triggers
when the rising edge of a pulse crosses the trigger level. For a positive polarity
pulse, the oscilloscope triggers when the falling edge of a pulse crosses the
trigger level.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:PWIDth:POLarity?

The query returns the currently defined polarity for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:POLarity] {NEGative | POSitive}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1041

:TRIGger:PWIDth:SOURce

Command :TRIGger:PWIDth[{1 | 2}]:SOURce {CHANnel<N> | DIGital<M>}

This command specifies the channel source used to trigger the oscilloscope with
the pulse width trigger.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:PWIDth:SOURce?

The query returns the currently defined channel source for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:SOURce] {CHANnel<N> | DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

1042 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:PWIDth:TPOint

Command :TRIGger:PWIDth[{1 | 2}]:TPOint {EPULse | TIMeout}

This command specifies whether the pulse width trigger should occur at the end
of the pulse or at a specified timeout period. This command is only available if the
pulse direction is set to GTHan.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:PWIDth:TPOint?

The query returns the currently defined trigger on point for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:TPOint] {EPULse | TIMeout}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1043

:TRIGger:PWIDth:WIDTh

Command :TRIGger:PWIDth[{1 | 2}]:WIDTh <width>

This command specifies how wide a pulse must be to trigger the oscilloscope.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<width> Pulse width, which can range from 250 ps to 10 s.

Query :TRIGger:PWIDth:WIDTh?

The query returns the currently defined width for the pulse.

Returned Format [:TRIGger:PWIDth:WIDTh] <width><NL>

History Legacy command (existed before version 3.10).

1044 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Runt Trigger Commands

• ":TRIGger:RUNT:POLarity" on page 1045

• ":TRIGger:RUNT:QUALified" on page 1046

• ":TRIGger:RUNT:SOURce" on page 1047

• ":TRIGger:RUNT:TIME" on page 1048

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1045

:TRIGger:RUNT:POLarity

Command :TRIGger:RUNT[{1 | 2}]:POLarity {POSitive | NEGative}

This command defines the polarity of the runt pulse as positive or negative. The
trigger source must be set using the :TRIGger:RUNT:SOURce command.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:RUNT:POLarity?

The query returns the currently selected runt pulse polarity.

Returned Format [:TRIGger:RUNT:POLarity] {POSitive | NEGative}<NL>

History Legacy command (existed before version 3.10).

1046 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:RUNT:QUALified

Command :TRIGger:RUNT[{1 | 2}]:QUALified {{ON | 1} | {OFF | 0}}

This command enables the time qualified runt pulse feature the polarity of the runt
pulse as positive or negative. The trigger source must be set using the
:TRIGger:RUNT:SOURce command.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:RUNT:QUALified?

The query returns the current state of the time qualified runt pulse feature.

Returned Format [:TRIGger:RUNT:QUALified] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1047

:TRIGger:RUNT:SOURce

Command :TRIGger:RUNT[{1 | 2}]:SOURce CHANnel<N>

This command sets the source for the runt trigger mode.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

Query :TRIGger:RUNT:SOURce?

The query returns the currently selected source for the runt trigger mode.

Returned Format [:TRIGger:RUNT:SOURce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

1048 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:RUNT:TIME

Command :TRIGger:RUNT[{1 | 2}]:TIME <time>

This command sets the time qualifier. The oscilloscope will trigger on a runt pulse
that has a width greater than the specified time.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<time> A real number for the time greater than qualifier, ranging from 250 ps to 30 ns.

Query :TRIGger:RUNT:TIME?

The query returns the currently specified glitch width.

Returned Format [:TRIGger:RUNT:TIME] <time><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1049

Sequence Trigger Commands

The sequence trigger commands are available on 90000A Series, 90000 X-Series,
90000 Q-Series, and Z-Series oscilloscopes.

• ":TRIGger:SEQuence:TERM1" on page 1050

• ":TRIGger:SEQuence:TERM2" on page 1052

• ":TRIGger:SEQuence:RESet:ENABle" on page 1054

• ":TRIGger:SEQuence:RESet:TYPE" on page 1056

• ":TRIGger:SEQuence:RESet:EVENt" on page 1058

• ":TRIGger:SEQuence:RESet:TIME" on page 1060

• ":TRIGger:SEQuence:WAIT:ENABle" on page 1062

• ":TRIGger:SEQuence:WAIT:TIME" on page 1064

1050 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:TERM1

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1051

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:TERM1 { EDGE1 | GLITch1 | PWIDth1 | RUNT1 | SHOLd1
| STATe1 | TIMeout1 | TRANsition1 | WINDow1 }

This command specifies the trigger mode for the TERM1 state in the sequential
trigger (the Find (A) state in the Trigger Setup dialog box on the oscilloscope).

There are five limitations associated with sequential triggering:

1 The Edge followed by Edge and Video trigger modes cannot be used in
sequential triggering.

2 The AND qualifier cannot be used when the Reset condition is based upon a
logical pattern.

3 The Pattern/State trigger mode that uses range as the When Pattern selection
can only be used for either the Term1 state or the Term2 state, but not both.

4 You can only use one long timer (>30 ns). Therefore, trigger modes that use
timers greater than 30 ns can only be used for either the Term1 state or the
Term2 state, but not both. Some examples of trigger modes where you might
use a long timer include Pulse Width, Glitch, Window, Edge Transition, and
Timeout.

5 The alternating edge trigger mode cannot be used in sequential triggering.

Limitations (3) and (4) deal with extended resources. Extended resources refer to
trigger modes or conditions that are only available to either the Term1 state or the
Term2 state, but not both at the same time. The oscilloscope will figure out which
state has access to these extended resources based upon the conditions you setup
in each of these states. If you want Term2 to have a timer longer than 30 ns, you
must first change the timer associated with Term1 to be less than 30 ns.

Query :TRIGger:SEQuence:TERM1?

The query returns the currently defined trigger mode for the TERM1 state.

History Legacy command (existed before version 3.10).

1052 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:TERM2

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1053

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:TERM2 { EDGE2 | GLITch2 | PWIDth2 | RUNT2 | SHOLd2
| STATe2 | TIMeout2 | TRANsition2 | WINDow2 }

This command specifies the trigger mode for the TERM2 state in the sequential
trigger (the Trigger (B) state in the Trigger Setup dialog box on the oscilloscope).

There are five limitations associated with sequential triggering:

1 The Edge followed by Edge and Video trigger modes cannot be used in
sequential triggering.

2 The AND qualifier cannot be used when the Reset condition is based upon a
logical pattern.

3 The Pattern/State trigger mode that uses range as the When Pattern selection
can only be used for either the Term1 state or the Term2 state, but not both.

4 You can only use one long timer (>30 ns). Therefore, trigger modes that use
timers greater than 30 ns can only be used for either the Term1 state or the
Term2 state, but not both. Some examples of trigger modes where you might
use a long timer include Pulse Width, Glitch, Window, Edge Transition, and
Timeout.

5 The alternating edge trigger mode cannot be used in sequential triggering.

Limitations (3) and (4) deal with extended resources. Extended resources refer to
trigger modes or conditions that are only available to either the Term1 state or the
Term2 state, but not both at the same time. The oscilloscope will figure out which
state has access to these extended resources based upon the conditions you setup
in each of these states. If you want Term2 to have a timer longer than 30 ns, you
must first change the timer associated with Term1 to be less than 30 ns.

Query :TRIGger:SEQuence:TERM2?

The query returns the currently defined trigger mode for the TERM2 state.

History Legacy command (existed before version 3.10).

1054 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:RESet:ENABle

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1055

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:RESet:ENABle {{ON | 1} | {OFF | 0}}

This command turns the Reset feature on or off for the sequential trigger.

The Reset feature allows you to specify a length of time such that if this time is
exceeded between when the TERM1 event occurs and when the TERM2 event
occurs, the sequential trigger is reset and the oscilloscope returns to looking for
the TERM1 event without triggering. If the Delay feature (remote command :WAIT)
is used as well then the Reset timer does not start counting down until after the
delay period is complete.

You can also base the Reset condition on a logical pattern. If the specified pattern
is found between when the TERM1 occurs and the TERM2 event occurs, the
sequential trigger resets and goes back to looking for the TERM1 event without
triggering. The delay feature does not impact a logical pattern Reset as the pattern
is searched for immediately after the TERM1 event occurs regardless of whether of
not the Delay period is complete.

If the Reset feature is enabled, the AND qualifier cannot be used for the TERM1
state.

Query :TRIGger:SEQuence:RESet:ENABle?

The query returns whether or not the Reset feature is enabled.

History Legacy command (existed before version 3.10).

1056 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:RESet:TYPE

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1057

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:RESet:TYPE { TIME | EVENt }

This command specifies whether the Reset condition is based upon a length of
time or a logical pattern.

The Reset feature allows you to specify a length of time such that if this time is
exceeded between when the TERM1 event occurs and when the TERM2 event
occurs, the sequential trigger is reset and the oscilloscope returns to looking for
the TERM1 event without triggering. If the Delay feature (remote command :WAIT)
is used as well then the Reset timer does not start counting down until after the
delay period is complete.

You can also base the Reset condition on a logical pattern. If the specified pattern
is found between when the TERM1 occurs and the TERM2 event occurs, the
sequential trigger resets and goes back to looking for the TERM1 event without
triggering. The delay feature does not impact a logical pattern Reset as the pattern
is searched for immediately after the TERM1 event occurs regardless of whether of
not the Delay period is complete.

Query :TRIGger:SEQuence:RESet:TYPE?

The query returns whether the Reset condition is based upon a length of time or
an event.

History Legacy command (existed before version 3.10).

1058 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:RESet:EVENt

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1059

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:RESet:EVENt {CHANnel<N>}, { HIGH | LOW | DONTcare }

This command defines the logical pattern used for an event Reset condition.

You can specify for each channel (1-4) whether you want the value to be high (1),
low (0), or you don't care (X).

<N> An integer, 1-4.

History Legacy command (existed before version 3.10).

1060 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:RESet:TIME

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1061

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:RESet:TIME <time>

This command defines the length of time to use for the time-based Reset
condition.

<time> A length of time in seconds.

Query :TRIGger:SEQuence:RESet:TIME?

The query returns the length of time used for the Reset condition.

History Legacy command (existed before version 3.10).

1062 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:WAIT:ENABle

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1063

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:WAIT:ENABle { {ON|1} | {OFF|0}}

This command turns the Delay feature on or off for the sequential trigger.

The Delay feature allows you to define a length of time for the sequential trigger
system to wait after the TERM1 event occurs before it starts searching for the
TERM2 event.

Query :TRIGger:SEQuence:RESet:ENABle?

The query returns whether or not the Delay feature is turned on.

History Legacy command (existed before version 3.10).

1064 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SEQuence:WAIT:TIME

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1065

(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

Command :TRIGger:SEQuence:WAIT:TIME <time>

This command defines the length of time to use for the Delay condition.

<time> A length of time in seconds.

Query :TRIGger:SEQuence:WAIT:TIME?

The query returns the length of time used for the Delay condition.

History Legacy command (existed before version 3.10).

1066 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Setup and Hold Trigger Commands

• ":TRIGger:SHOLd:CSOurce" on page 1067

• ":TRIGger:SHOLd:CSOurce:EDGE" on page 1068

• ":TRIGger:SHOLd:DSOurce" on page 1069

• ":TRIGger:SHOLd:HoldTIMe (HTIMe)" on page 1070

• ":TRIGger:SHOLd:MODE" on page 1071

• ":TRIGger:SHOLd:SetupTIMe" on page 1072

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1067

:TRIGger:SHOLd:CSOurce

Command :TRIGger:SHOLd[{1 | 2}]:CSOurce CHANnel<N>

This command specifies the clock source for the clock used for the trigger setup
and hold violation. The clock must pass through the voltage level you have set
before the trigger circuitry looks for a setup and hold time violation.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

Query :TRIGger:SHOLd:CSOurce?

The query returns the currently defined clock source for the trigger setup and hold
violation.

Returned Format [:TRIGger:SHOLd:CSOurce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

1068 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SHOLd:CSOurce:EDGE

Command :TRIGger:SHOLd[{1 | 2}]:CSOurce:EDGE {RISing | FALLing}

This command specifies the clock source trigger edge for the clock used for the
trigger setup and hold violation. The clock must pass through the voltage level you
have set before the trigger circuitry looks for a setup and hold time violation.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:SHOLd:CSOurce:EDGE?

The query returns the currently defined clock source edge for the trigger setup and
hold violation level for the clock source.

Returned Format [:TRIGger:SHOLd:CSOurce:EDGE] {RISing | FALLing}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1069

:TRIGger:SHOLd:DSOurce

Command :TRIGger:SHOLd[{1 | 2}]:DSOurce CHANnel<N>

The data source commands specify the data source for the trigger setup and hold
violation.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

Query :TRIGger:SHOLd:DSOurce?

The query returns the currently defined data source for the trigger setup and hold
violation.

Returned Format [:TRIGger:SHOLd:DSOurce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

1070 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SHOLd:HoldTIMe (HTIMe)

Command :TRIGger:SHOLd[{1 | 2}]:HoldTIMe <time>

This command specifies the amount of hold time used to test for both a setup and
hold trigger violation. The hold time is the amount of time that the data must be
stable and valid after a clock edge.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<time> Hold time, in seconds.

Query :TRIGger:SHOLD:HoldTIMe?

The query returns the currently defined hold time for the setup and hold trigger
violation.

Returned Format [:TRIGger:SHOLD:HoldTIMe] <time><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1071

:TRIGger:SHOLd:MODE

Command :TRIGger:SHOLd[{1 | 2}]:MODE {SETup | HOLD | SHOLd}

SETup When using the setup time mode, a time window is defined where the right edge is
the clock edge and the left edge is the selected time before the clock edge. The
waveform must stay outside of the trigger level thresholds during this time
window. If the waveform crosses a threshold during this time window, a violation
event occurs and the oscilloscope triggers.

HOLD When using the hold time mode, the waveform must not cross the threshold
voltages after the specified clock edge for at least the hold time you have selected.
Otherwise, a violation event occurs and the oscilloscope triggers.

SHOLd When using the setup and hold time mode, if the waveform violates either a setup
time or hold time, the oscilloscope triggers. The total time allowed for the sum of
setup time plus hold time is 24 ns maximum.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:SHOLd:MODE?

The query returns the currently selected trigger setup violation mode.

Returned Format [:TRIGger:SHOLd:MODE] {SETup | HOLD | SHOLd}<NL>

History Legacy command (existed before version 3.10).

1072 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:SHOLd:SetupTIMe

Command :TRIGger:SHOLd[{1 | 2}]:SetupTIMe <time>

This command specifies the amount of setup time used to test for both a setup
and hold trigger violation. The setup time is the amount of time that the data must
be stable and valid before a clock edge.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<time> Setup time, in seconds.

Query :TRIGger:SHOLd:SetupTIMe?

The query returns the currently defined setup time for the setup and hold trigger
violation.

Returned Format [:TRIGger:SHOLd:SetupTIMe] <time><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1073

State Trigger Commands

• ":TRIGger:STATe:CLOCk" on page 1074

• ":TRIGger:STATe:LOGic" on page 1075

• ":TRIGger:STATe:LTYPe" on page 1076

• ":TRIGger:STATe:SLOPe" on page 1077

1074 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:STATe:CLOCk

Command :TRIGger:STATe[{1 | 2}]:CLOCk {CHANnel<N> | DIGital<M>}

This command selects the source for the clock waveform in the State Trigger
Mode.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:STATe:CLOCk?

The query returns the currently selected clock source.

Returned Format [:TRIGger:STATe:CLOCk] {CHANnel<N> | DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1075

:TRIGger:STATe:LOGic

Command :TRIGger:STATe[{1 | 2}]:LOGic {CHANnel<N> | DIGital<M>},
{LOW | HIGH | DONTcare | RISing | FALLing}

This command defines the logic state of the specified source for the state pattern.
The command produces a settings conflict on a channel that has been defined as
the clock.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

<M> An integer, 0-15. Digital channels are available on mixed-signal oscilloscopes.

Query :TRIGger:STATe:LOGic? {CHANnel<N> | DIGital<M>}

The query returns the logic state definition for the specified source.

Returned Format [:TRIGger:STATe:LOGic {CHANnel<N> | DIGital<M>},]
{LOW | HIGH | DONTcare | RISing | FALLing}<NL>

History Legacy command (existed before version 3.10).

1076 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:STATe:LTYPe

Command :TRIGger:STATe[{1 | 2}]:LTYPe {AND | NAND}

This command defines the state trigger logic type. If the logic type is set to AND,
then a trigger is generated on the edge of the clock when the input waveforms
match the pattern specified by the :TRIGger:STATe:LOGic command. If the logic
type is set to NAND, then a trigger is generated on the edge of the clock when the
input waveforms do not match the specified pattern.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:STATe:LTYPe?

The query returns the currently specified state trigger logic type.

Returned Format [:TRIGger:STATe:LTYPe] {AND | NAND}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1077

:TRIGger:STATe:SLOPe

Command :TRIGger:STATe[{1 | 2}]:SLOPe {RISing | FALLing | EITHer}

This command specifies the edge of the clock that is used to generate a trigger.
The waveform source used for the clock is selected by using the
:TRIGger:STATe:CLOCk command.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:STATe:SLOPe?

The query returns the currently defined slope for the clock in State Trigger Mode.

Returned Format [:TRIGger:STATe:SLOPe] {RISing | FALLing | EITHer}<NL>

History Legacy command (existed before version 3.10).

1078 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Timeout Trigger Commands

• ":TRIGger:TIMeout:CONDition" on page 1079

• ":TRIGger:TIMeout:SOURce" on page 1080

• ":TRIGger:TIMeout:TIME" on page 1081

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1079

:TRIGger:TIMeout:CONDition

Command :TRIGger:TIMeout[{1 | 2}]:CONDition {HIGH | LOW | UNCHanged}

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

This command sets the condition used for the timeout trigger.

HIGH Trigger when the waveform has been high for a period time longer than the time
value which is set by the TRIGger:TIMeout:TIME command.

LOW Trigger when the waveform has been low for a period time longer than the time
value which is set by the TRIGger:TIMeout:TIME command.

UNCHanged Trigger when the waveform has not changed state for a period time longer than
the time value which is set by the TRIGger:TIMeout:TIME command.

Query :TRIGger:TIMeout:CONDition?

The query returns the currently defined trigger condition for the timeout trigger.

Returned Format [:TRIGger:TIMeout:CONDition] {HIGH | LOW | UNCHanged}<NL>

History Legacy command (existed before version 3.10).

1080 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TIMeout:SOURce

Command :TRIGger:TIMeout[{1 | 2}]:SOURce CHANnel<N>

This command specifies the channel source used to trigger the oscilloscope with
the timeout trigger.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

Query :TRIGger:TIMeout:SOURce?

The query returns the currently defined channel source for the timeout trigger.

Returned Format [:TRIGger:TIMeout:SOURce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1081

:TRIGger:TIMeout:TIME

Command :TRIGger:TIMeout[{1 | 2}]:TIME <time>

This command lets you look for transition violations that are greater than or less
than the time specified.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<time> The time for the timeout trigger, in seconds.

Query :TRIGger:TIMeout:TIME?

The query returns the currently defined time for the trigger trigger.

Returned Format [:TRIGger:TIMeout:TIME] <time><NL>

History Legacy command (existed before version 3.10).

1082 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Transition Trigger Commands

• ":TRIGger:TRANsition:DIRection" on page 1083

• ":TRIGger:TRANsition:SOURce" on page 1084

• ":TRIGger:TRANsition:TIME" on page 1085

• ":TRIGger:TRANsition:TYPE" on page 1086

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1083

:TRIGger:TRANsition:DIRection

Command :TRIGger:TRANsition[{1 | 2}]:DIRection {GTHan | LTHan}

This command lets you look for transition violations that are greater than or less
than the time specified by the :TRIGger:TRANsition:TIME command.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:TRANsition:DIRection?

The query returns the currently defined direction for the trigger transition violation.

Returned Format [:TRIGger:TRANsition:DIRection] {GTHan | LTHan}]<NL>

History Legacy command (existed before version 3.10).

1084 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TRANsition:SOURce

Command :TRIGger:TRANsition[{1 | 2}]:SOURce CHANnel<N>

The transition source command lets you find any edge in your waveform that
violates a rise time or fall time specification. The oscilloscope finds a transition
violation trigger by looking for any pulses in your waveform with rising or falling
edges that do not cross two voltage levels in the amount of time you have
specified.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

Query :TRIGger:TRANsition:SOURce?

The query returns the currently defined transition source for the trigger transition
violation.

Returned Format [:TRIGger:TRANsition:SOURce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1085

:TRIGger:TRANsition:TIME

Command :TRIGger:TRANsition[{1 | 2}]:TIME <time>

This command lets you look for transition violations that are greater than or less
than the time specified.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:TRANsition:TIME?

The query returns the currently defined time for the trigger transition violation.

Returned Format [:TRIGger:TRANsition:TIME] <time><NL>

History Legacy command (existed before version 3.10).

1086 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TRANsition:TYPE

Command :TRIGger:TRANsition[{1 | 2}]:TYPE {RISetime | FALLtime}

This command lets you select either a rise time or fall time transition violation
trigger event.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:TRANsition:TYPE?

The query returns the currently defined transition type for the trigger transition
violation.

Returned Format [:TRIGger:TRANsition:TYPE] {RISetime | FALLtime}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1087

TV Trigger Commands

• ":TRIGger:TV:LINE" on page 1088

• ":TRIGger:TV:MODE" on page 1089

• ":TRIGger:TV:POLarity" on page 1090

• ":TRIGger:TV:SOURce" on page 1091

• ":TRIGger:TV:STANdard" on page 1092

• ":TRIGger:TV:UDTV:ENUMber" on page 1093

• ":TRIGger:TV:UDTV:HSYNc" on page 1094

• ":TRIGger:TV:UDTV:HTIMe" on page 1095

• ":TRIGger:TV:UDTV:PGTHan" on page 1096

• ":TRIGger:TV:UDTV:POLarity" on page 1097

1088 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TV:LINE

Command :TRIGger:TV:LINE <line_number>

The :TRIGger:TV:LINE command selects the horizontal line that you want to
examine. The allowable line number entry depends on the :TRIGger:TV:MODE
selected. Once the vertical sync pulse of the selected field is received, the trigger
is delayed by the number of lines specified.

<line_number> Horizontal line number as shown below.

Query :TRIGger:TV:LINE?

The query returns the current line number.

Returned Format [:TRIGger:TV:LINE] <line_number><NL>

History Legacy command (existed before version 3.10).

Video Standard Field 1 Field 2 Al ternate Field

NTSC/PAL-M 1 to 263 1 to 262 1 to 262

PAL/SECAM 1 to 313 314 to 625 1 to 312

EDTV/HDTV Line numbers

EDTV 480p/60 1 to 525

EDTV 576p/50 1 to 625

HDTV 720p/60 1 to 750

HDTV 720p/50 1 to 750

HDTV 1080i/60 1 to 1125

HDTV 1080i/50 1 to 1125

HDTV1080p/60 1 to 1125

HDTV 1080p/50 1 to 1125

HDTV 1080p/30 1 to 1125

HDTV 1080p/25 1 to 1125

HDTV 1080p/24 1 to 1125

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1089

:TRIGger:TV:MODE

Command :TRIGger:TV:MODE {AFIelds | ALINes | ALTernate | FIElds1 | FIElds2 | LIN
E}

The :TRIGger:TV:MODE command determines which portion of the video waveform
is used to trigger.

Query :TRIGger:TV:MODE?

The query returns the current TV trigger mode.

Returned Format [:TRIGger:TV:MODE] {AFIelds | ALINes | ALTernate | FIElds1 | FIElds2 | L
INE}<NL>

History Legacy command (existed before version 3.10).

1090 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TV:POLarity

Command :TRIGger:TV:POLarity {NEGative | POSitive}

The :TRIGger:TV:POLarity command specifies the vertical sync pulse polarity for
the selected field used during TV mode triggering.

Query :TRIGger:TV:POLarity?

The query returns the currently selected sync pulse polarity.

Returned Format [:TRIGger:TV:POLarity] {NEGative | POSitive}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1091

:TRIGger:TV:SOURce

Command :TRIGger:TV:SOURce CHANnel<N>

The :TRIGger:TV:SOURce command selects the source for the TV mode triggering.
This is the source that will be used for subsequent :TRIGger:TV commands and
queries.

<N> An integer, 1-4.

Query :TRIGger:TV:SOURce?

The query returns the currently selected standard TV trigger mode source.

Returned Format [:TRIGger:TV:SOURce] CHANnel<N>NL>

History Legacy command (existed before version 3.10).

1092 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TV:STANdard

Command :TRIGger:TV:STANdard {I1080L60HZ | I1080L50HZ | L525 | L625 | P480L60HZ
| P576L50HZ | P720L60HZ | P720L50HZ | P1080L60HZ | P1080L50HZ
| P1080L30HZ | P1080L25HZ | P1080L24HZ | UDTV}

The TRIGger:TV:STANdard command sets triggering to one of the standard video
types. There is also a user defined TV type that can be used to set the triggering to
one of the non-standard types of video.

Query :TRIGger:TV:STANdard?

The query returns the currently selected video standard.

Returned Format [:TRIGger:TV:STANdard] {I1080L60HZ | I1080L50HZ | L525 | L625
| P480L60HZ | P576L50HZ | P720L60HZ | P720L50HZ | P1080L60HZ
| P1080L50HZ | P1080L40HZ | P1080L30HZ | P1080L25HZ | P1080L24HZ
| UDTV}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1093

:TRIGger:TV:UDTV:ENUMber

Command :TRIGger:TV:UDTV:ENUMber <count>

The :TRIGger:TV:UDTV:ENUMber command specifies the number of events
(horizontal sync pulses) to delay after arming the trigger before looking for the
trigger event. Specify conditions for arming the trigger using:

TRIGger:TV:UDTV:PGTHan, and

TRIGger:TV:UDTV:POLarity.

<count> An integer for the number of events to delay. Allowable values range from 1 to
16,000,000.

Query :TRIGger:TV:UDTV:ENUMber?

The query returns the currently programmed count value.

Returned Format [:TRIGger:TV:UDTV:ENUMber] <count><NL>

History Legacy command (existed before version 3.10).

1094 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TV:UDTV:HSYNc

Command :TRIGger:TV:UDTV:HSYNc {ON | 1} | {OFF | 0}}

This command enables the horizontal sync mode of triggering.

Query :TRIGger:TV:UDTV:HSYNc?

The query returns the current state of the horizontal sync mode of triggering.

Returned Format [:TRIGger:TV:UDTV:HSYNc] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1095

:TRIGger:TV:UDTV:HTIMe

Command :TRIGger:TV:UDTV:HTIMe <time>

The :TRIGger:TV:UDTV:HTIMe command sets the time that a sync pulse must be
present to be considered a valid sync pulse.

<time> A real number that is the time width for the sync pulse.

Query :TRIGger:TV:UDTV:HTIMe?

The query returns the currently defined time for the sync pulse width.

Returned Format [:TRIGger:TV:UDTV:HTIMe] <time><NL>

History Legacy command (existed before version 3.10).

1096 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:TV:UDTV:PGTHan

Command :TRIGger:TV:UDTV:PGTHan <lower_limit>

The :TRIGger:TV:UDTV:PGTHan (Present Greater THan) command specifies the
minimum pulse width of the waveform used to arm the trigger used during
user-defined trigger mode.

<lower_limit> Minimum pulse width (time >), from 5 ns to 9.9999999 s.

Query :TRIGger:TV:UDTV:PGTHan?

The query returns the currently selected minimum pulse width.

Returned Format [:TRIGger:TV:UDTV:PGTHan] <lower_limit><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1097

:TRIGger:TV:UDTV:POLarity

Command :TRIGger:TV:UDTV:POLarity {NEGative | POSitive}

The :TRIGger:TV:UDTV:POLarity command specifies the polarity for the sync pulse
used to arm the trigger in the user-defined trigger mode.

Query :TRIGger:TV:UDTV:POLarity?

The query returns the currently selected UDTV sync pulse polarity.

Returned Format [:TRIGger:TV:UDTV:POLarity] {NEGative | POSitive}<NL>

History Legacy command (existed before version 3.10).

1098 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Window Trigger Commands

• ":TRIGger:WINDow:CONDition" on page 1099

• ":TRIGger:WINDow:SOURce" on page 1100

• ":TRIGger:WINDow:TIME" on page 1101

• ":TRIGger:WINDow:TPOint" on page 1102

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1099

:TRIGger:WINDow:CONDition

Command :TRIGger:WINDow[{1 | 2}]:CONDition {ENTer | EXIT
| INSide [,{GTHan | LTHan}]
| OUTSide [,{GTHan | LTHan}]}

This command describes the condition applied to the trigger window to actually
generate a trigger.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:WINDow:CONDition?

The query returns the currently defined trigger condition.

Returned Format [:TRIGger:WINDow:CONDition] {ENTer | EXIT
| INSide,{GTHan | LTHan}
| OUTSide,{GTHan | LTHan}}<NL>

History Legacy command (existed before version 3.10).

1100 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:WINDow:SOURce

Command :TRIGger:WINDow[{1 | 2}]:SOURce CHANnel<N>

This command specifies the channel source used to trigger the oscilloscope with
the window trigger.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<N> An integer, 1-4.

Query :TRIGger:WINDow:SOURce?

The query returns the currently defined channel source for the window trigger.

Returned Format [:TRIGger:WINDow:SOURce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1101

:TRIGger:WINDow:TIME

Command :TRIGger:WINDow[{1 | 2}]:TIME <time>

This command lets you look for transition violations that are greater than or less
than the time specified.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:WINDow:TIME?

The query returns the currently defined time for the trigger window timeout.

Returned Format [:TRIGger:WINDow:TIME] <time><NL>

History Legacy command (existed before version 3.10).

1102 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:WINDow:TPOint

Command :TRIGger:WINDow[{1 | 2}]:TPOint {BOUNdary | TIMeout}

This command specifies whether the window trigger should occur at the boundary
of the window or at a specified timeout period.

The optional [{1 | 2}] parameter sets whether the trigger mode goes with the
TERM1 or TERM2 state if sequential triggering is being used. Sequential triggering
is available on 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series
oscilloscopes.

Query :TRIGger:WINDow:TPOint?

The query returns the currently defined trigger on point for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:TPOint] {BOUNdary | TIMeout}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1103

Advanced Comm Trigger Commands

Use the COMM Trigger Mode to find a serial pattern of bits in a waveform. The
COMM Trigger Mode is primarily used to find an isolated logically one bit in a
waveform for mask testing applications. The pattern is defined by the standards
used by the telecommunication and data communication industries. Mask testing
is used to verify a waveform meets industrial standards which guarantees that
equipment made by different manufacturers will work together.

Set the Mode
Before Executing

Commands

Before you can execute the :TRIGger:ADVanced:COMMunications commands,
mask testing must be enabled at least one time. The :MTESt:ENABle command
enables or disables mask testing. Then you can set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE COMM

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:COMM commands define the Communications Trigger
Mode. As described in the following commands, you set up the
:TRIGger:ADVanced:COMM commands with the following commands and queries.

• ":TRIGger:ADVanced:COMM:BWIDth" on page 1104

• ":TRIGger:ADVanced:COMM:ENCode" on page 1105

• ":TRIGger:ADVanced:COMM:LEVel" on page 1106

• ":TRIGger:ADVanced:COMM:PATTern" on page 1107

• ":TRIGger:ADVanced:COMM:POLarity" on page 1108

• ":TRIGger:ADVanced:COMM:SOURce" on page 1109

1104 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:COMM:BWIDth

Command :TRIGger:ADVanced:COMM:BWIDth <bwidth_value>

The :TRIGger:ADVanced:COMM:BWIDth command is used to set the width of a bit
for your waveform. The bit width is usually defined in the mask standard for your
waveform.

<bwidth_value> A real number that represents the width of a bit.

Query :TRIGger:ADVanced:COMM:BWIDth?

The query returns the current bit width.

Returned Format [:TRIGger:ADVanced:COMM:BWIDth] <bwidth_value><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1105

:TRIGger:ADVanced:COMM:ENCode

Command :TRIGger:ADVanced:COMM:ENCode {RZ | NRZ}

This :TRIGger:ADVanced:COMM:ENCode command sets the type of waveform
encoding for your waveform. You should use NRZ for CMI type waveforms and RZ
for all other type of waveforms.

Query :TRIGger:ADVanced:COMM:ENCode?

The :TRIGger:ADVanced:COMM:ENCode? query returns the current value of
encoding

Returned Format [:TRIGger:ADVanced:COMM:ENCode] {RZ | NRZ}<NL>

History Legacy command (existed before version 3.10).

1106 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:COMM:LEVel

Command :TRIGger:ADVanced:COMM:LEVel CHANnel<N>,<level>

The :TRIGger:ADVanced:COMM:LEVel command sets the voltage level used to
determine a logic 1 from a logic 0 for the communication pattern.

<N> An integer, 1-4.

<level> A real number which is the logic level voltage.

Query :TRIGger:ADVanced:COMM:LEVel? CHANnel<N>

The :TRIGger:ADVanced:COMM:LEVel? query returns the current level for the
communication pattern.

Returned Format [:TRIGger:ADVanced:COMM:LEVel CHANnel<N>,]<level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1107

:TRIGger:ADVanced:COMM:PATTern

Command :TRIGger:ADVanced:COMM:PATTern <bit>[,<bit[,<bit[,<bit[,<bit[,<bit]]]]]

The :TRIGger:ADVanced:COMM:PATTern command sets the pattern used for
triggering the oscilloscope when in communication trigger mode. The pattern can
be up to 6 bits long. For NRZ type waveforms with positive polarity, there must be
at least one logic 0 to logic 1 transition in the pattern. For NRZ waveforms with
negative polarity there must be at least one logic 1 to logic 0 transition in the
pattern. For RZ type waveforms the pattern must have at least one logic 1 bit for
positive polarity. For RZ type waveforms the pattern must have at least one logic
-1 bit for negative polarity.

<bit> A 1, -1, or 0.

Query :TRIGger:ADVanced:COMM:PATTern?

The :TRIGger:ADVanced:COMM:PATTern? query returns the current
communication trigger pattern.

Returned Format [:TRIGger:ADVanced:COMM:PATTern] <pattern><NL>

<pattern> A string of up to 6 characters.

History Legacy command (existed before version 3.10).

1108 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:COMM:POLarity

Command :TRIGger:ADVanced:COMM:POLarity {POSitive | NEGative}

The :TRIGger:ADVanced:COMM:POLarity command directly controls the trigger
slope used for communication trigger. When set to a positive value, the rising
edge of a pulse or waveform is used to trigger the oscilloscope. When set to a
negative value, the falling edge of a pulse or waveform is used.

The polarity setting is also used to check for valid patterns. If you are trying to
trigger on an isolated 1 pattern, you should set the polarity to positive. If you are
trying to trigger on an isolated -1 pattern, you should set the polarity to negative.

Query :TRIGger:ADVanced:COMM:POLarity?

The :TRIGger:ADVanced:COMM:POLarity? query returns the current setting for
polarity.

Returned Format [:TRIGger:ADVanced:COMM:POLarity} {1|0}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1109

:TRIGger:ADVanced:COMM:SOURce

Command :TRIGger:ADVanced:COMM:SOURce CHANnel<N>

The :TRIGger:ADVanced:COMM:SOURce command selects the channel used for
the communication trigger.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:COMM:SOURce?

The :TRIGger:ADVanced:COMM:SOURce? query returns the currently selected
communication trigger source.

Returned Format [:TRIGger:ADVanced:COMM:SOURce] CHANnel<N><NL>

History Legacy command (existed before version 3.10).

1110 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced Pattern Trigger Commands

Logic triggering is similar to the way that a logic analyzer captures data. This mode
is useful when you are looking for a particular set of ones and zeros on a computer
bus or control lines. You determine which channels the oscilloscope uses to form
the trigger pattern. Because you can set the voltage level that determines a logic 1
or a logic 0, any logic family that you are probing can be captured.

There are two types of logic triggering: Pattern and State. The difference between
pattern and state triggering modes is that state triggering uses one of the
oscilloscope channels as a clock.

Use pattern triggering to trigger the oscilloscope using more than one channel as
the trigger source. You can also use pattern triggering to trigger on a pulse of a
given width.

The Pattern Trigger Mode identifies a trigger condition by looking for a specified
pattern. A pattern is a logical combination of the channels. Each channel can have
a value of High (H), Low (L) or Don't Care (X). A value is considered a High when
your waveform's voltage level is greater than its trigger level, and a Low when the
voltage level is less than its trigger level. If a channel is set to Don't Care, it is not
used as part of the pattern criteria.

One additional qualifying condition determines when the oscilloscope triggers
once the pattern is found. The :PATTern:CONDition command has five possible
ways to qualify the trigger:

Entered The oscilloscope will trigger on the edge of the source that makes the pattern true.

Exited The oscilloscope will trigger on the edge of the source that makes the pattern
false.

Present > The oscilloscope will trigger when the pattern is present for greater than the time
that you specify. An additional parameter allows the oscilloscope to trigger when
the pattern goes away or when the time expires.

Present < The oscilloscope will trigger when the pattern is present for less than the time that
you specify.

Range The oscilloscope will trigger on the edge of the waveform that makes the pattern
invalid as long as the pattern is present within the range of times that you specify.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

Set the Mode
Before Executing

Commands

Before you can execute the :TRIGger:ADVanced:PATTern commands, set the mode
by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE PATTern

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1111

The :TRIGger:ADVanced:PATTern commands define the conditions for the Pattern
Trigger Mode. As described in the following commands, you set up the
:TRIGger:ADVanced:PATTern commands with the following commands and
queries:

• ":TRIGger:ADVanced:PATTern:CONDition" on page 1112

• ":TRIGger:ADVanced:PATTern:LOGic" on page 1113

• ":TRIGger:ADVanced:PATTern:THReshold:LEVel" on page 1114

• ":TRIGger:ADVanced:PATTern:THReshold:POD<N>" on page 1115

1112 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:PATTern:CONDition

Command :TRIGger:ADVanced:PATTern:CONDition {ENTered | EXITed |
{GT,<time>[,PEXits|TIMeout]} |
{LT,<time>} |
{RANGe,<gt_time>,<lt_time>}}

This command describes the condition applied to the trigger pattern to actually
generate a trigger.

<gt_time> The minimum time (greater than time) for the trigger pattern, from 10 ns to
9.9999999 s.

<lt_time> The maximum time (less than time) for the trigger pattern, from 15 ns to 10 s.

<time> The time condition, in seconds, for the pattern trigger, from 1.5 ns to 10 s.

When using the GT (Present >) parameter, the PEXits (Pattern Exits) or the
TIMeout parameter controls when the trigger is generated.

Query :TRIGger:ADVanced:PATTern:CONDition?

The query returns the currently defined trigger condition.

Returned Format [:TRIGger:ADVanced:PATTern:CONDition] {ENTered|EXITed |
{GT,<time>[,PEXits|TIMeout]} | {LT,<time>} | {RANGe,<gt_time>, <lt_time>
}}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1113

:TRIGger:ADVanced:PATTern:LOGic

Command :TRIGger:ADVanced:PATTern:LOGic {{CHANnel<N> | <channel_list> | DIGital<
M>},{HIGH|LOW|DONTcare|RISing|FALLing}}

This command defines the logic criteria for a selected channel.

<N> An integer, 1-4.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

<channel_list> The channel range is from 0 to 15 in the following format.

Query :TRIGger:ADVanced:PATTern:LOGic? {CHANnel<N> | <channel_list> | DIGital<
M>}

The query returns the current logic criteria for a selected channel.

Returned Format [:TRIGger:ADVanced:PATTern:LOGic {CHANnel<N>|<channel_list> | DIGital<M>
},] {HIGH|LOW|DONTcare|RISing|FALLing}<NL>

History Legacy command (existed before version 3.10).

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14
are turned on.

1114 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:PATTern:THReshold:LEVel

Command :TRIGger:ADVanced:PATTern:THReshold:LEVel {CHANnel<N>},<level>

The :TRIGger:ADVanced:PATTern:THReshold:LEVel command specifies the trigger
level on the specified channel for the trigger source. Only one trigger level is
stored in the oscilloscope for each channel. This level applies to the channel
throughout the trigger dialogs (Edge, Glitch, and Advanced). This level also
applies to all the High Threshold (HTHReshold) values in the Advanced Violation
menus.

<N> An integer, 1-4.

<level> A real number for the trigger level on the specified channel, External Trigger, or
Auxilliary Trigger Input.

Query :TRIGger:ADVanced:PATTern:THReshold:LEVel? {CHANnel<N>}

The query returns the specified channel's trigger level.

Returned Format [:TRIGger:ADVanced:PATTern:THReshold:LEVel {CHANnel<N>},] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1115

:TRIGger:ADVanced:PATTern:THReshold:POD<N>

Command :TRIGger:ADVanced:PATTern:THReshold:POD<N> {CMOS50 | CMOS30 | CMOS25
| ECL | PECL | TTL | <value>}

The TRIGger:ADVanced:PATTern:THReshold:POD<N> command sets the logic
threshold value for the selected pod. POD1 is digital channels D0 through D7 and
POD2 is digital channels D8 through D15. The threshold is used for triggering
purposes and for displaying the digital data as high (above the threshold) or low
(below the threshold). The voltage values for the predefined thresholds are:

• CMOS50=2.5 V

• CMOS30=1.65 V

• CMOS25=1.25 V

• ECL=-1.3 V

• PECL=3.7 V

• TTL=1.4 V

<N> An integer, 1-2.

<value> A real number representing the voltage value which distinguishes a 1 logic level
from a 0 logic level. Waveform voltages greater than the threshold are 1 logic
levels while waveform voltages less than the threshold are 0 logic levels.

Query :TRIGger:ADVanced:PATTern:THREShold:POD<N>?

The :TRIGger:ADVanced:PATTern:THReshold:POD<N>? query returns the
threshold value for the specified pod.

Returned Format [:TRIGger:ADVanced:PATTern:THReshold:POD<N>] {CMOS50 | CMOS30 | CMOS25
| ECL | PECL | TTL | <value>}<NL>

History Legacy command (existed before version 3.10).

NOTE This command is only valid for the MSO oscilloscopes.

1116 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced State Trigger Commands

Logic triggering is similar to the way that a logic analyzer captures data. This mode
is useful when you are looking for a particular set of ones and zeros on a computer
bus or control lines. You determine which channels the oscilloscope uses to form
the trigger pattern. Because you can set the voltage level that determines a logic 1
or a logic 0, any logic family that you are probing can be captured.

There are two types of logic triggering: Pattern and State. The difference between
pattern and state triggering modes is that state triggering uses one of the
oscilloscope channels as a clock.

Use state triggering when you want the oscilloscope to use several channels as
the trigger source, with one of the channels being used as a clock waveform.

The State trigger identifies a trigger condition by looking for a clock edge on one
channel and a pattern on the remaining channels. A pattern is a logical
combination of the remaining channels. Each channel can have a value of High
(H), Low (L) or Don't Care (X). A value is considered a High when your waveform's
voltage level is greater than the trigger level and a Low when the voltage level is
less than the trigger level. If a channel is set to Don't Care, it is not used as part of
the pattern criteria. You can select the clock edge as either rising or falling.

The logic type control determines whether or not the oscilloscope will trigger
when the specified pattern is found on a clock edge. When AND is selected, the
oscilloscope will trigger on a clock edge when input waveforms match the
specified pattern. When NAND is selected, the oscilloscope will trigger when the
input waveforms are different from the specified pattern and a clock edge occurs.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

Set the Mode
Before Executing

Commands

Before you can execute the :TRIGger:ADVanced:STATe commands, set the mode
by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE STATe

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:STATe commands define the conditions for the State
Trigger Mode. As described in the following commands, you set up the
:TRIGger:ADVanced:STATe commands with the following commands and queries:

• ":TRIGger:ADVanced:STATe:CLOCk" on page 1117

• ":TRIGger:ADVanced:STATe:LOGic" on page 1118

• ":TRIGger:ADVanced:STATe:LTYPe" on page 1119

• ":TRIGger:ADVanced:STATe:SLOPe" on page 1120

• ":TRIGger:ADVanced:STATe:THReshold:LEVel" on page 1121

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1117

:TRIGger:ADVanced:STATe:CLOCk

Command :TRIGger:ADVanced:STATe:CLOCk {CHANnel<N> | DIGital<M> | DONTcare
| <digital_channel>}

This command selects the source for the clock waveform in the State Trigger
Mode.

<N> An integer, 1-2, for two channel Infiniium Oscilloscope. An integer, 1-4, for all
other Infiniium Oscilloscope models.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:STATe:CLOCk?

The query returns the currently selected clock source.

Returned Format [:TRIGger:ADVanced:STATe:CLOCk] {CHANnel<N>|DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

1118 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:STATe:LOGic

Command :TRIGger:ADVanced:STATe:LOGic {{CHANnel<N> | <channel_list>
| DIGital<M>},{LOW|HIGH|DONTcare|RISing| FALLing}}

This command defines the logic state of the specified source for the state pattern.
The command produces a settings conflict on a channel that has been defined as
the clock.

<N> An integer, 1-2, for two channel Infiniium Oscilloscope. An integer, 1-4, for all
other Infiniium Oscilloscope models.

<channel_list> The channel range is from 0 to 15 in the following format.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:STATe:LOGic? {CHANnel<N> | <channel_list> | DIGital<M
>}

The query returns the logic state definition for the specified source.

<N> N is the channel number, an integer in the range of 1 - 4.

Returned Format [:TRIGger:ADVanced:STATe:LOGic {CHANnel<N>|<channel_list>|DIGital<M>},]
{LOW|HIGH|DONTcare|RISing|FALLing}<NL>

History Legacy command (existed before version 3.10).

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1119

:TRIGger:ADVanced:STATe:LTYPe

Command :TRIGger:ADVanced:STATe:LTYPe {AND|NAND}

This command defines the state trigger logic type. If the logic type is set to AND,
then a trigger is generated on the edge of the clock when the input waveforms
match the pattern specified by the :TRIGger:ADVanced:STATe:LOGic command. If
the logic type is set to NAND, then a trigger is generated on the edge of the clock
when the input waveforms do not match the specified pattern.

Query :TRIGger:ADVanced:STATe:LTYPe?

The query returns the currently specified state trigger logic type.

Returned Format [:TRIGger:ADVanced:STATe:LTYPe] {AND|NAND}<NL>

History Legacy command (existed before version 3.10).

1120 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:STATe:SLOPe

Command :TRIGger:ADVanced:STATe:SLOPe {POSitive|NEGative}

This command specifies the edge of the clock that is used to generate a trigger.
The waveform source used for the clock is selected by using the
:TRIGger:ADVanced:STATe:CLOCk command.

Query :TRIGger:ADVanced:STATe:SLOPe?

The query returns the currently defined slope for the clock in State Trigger Mode.

Returned Format [:TRIGger:ADVanced:STATe:SLOPe] {POSitive|NEGative}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1121

:TRIGger:ADVanced:STATe:THReshold:LEVel

Command :TRIGger:ADVanced:STATe:THReshold:LEVel {CHANnel<N> | DIGital<M>},<leve
l>

The :TRIGger:ADVanced:STATe:THReshold:LEVel command specifies the trigger
level on the specified channel for the trigger source. Only one trigger level is
stored in the oscilloscope for each channel. This level applies to the channel
throughout the trigger dialogs (Edge, Glitch, and Advanced). This level also
applies to all the High Threshold (HTHReshold) values in the Advanced Violation
menus.

<N> An integer, 1-4.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

<level> A real number for the trigger level on the specified channel, External Trigger, or
Auxilliary Trigger Input.

Query :TRIGger:ADVanced:STATe:THReshold:LEVel? {CHANnel<N> | DIGital<M>}

The query returns the specified channel's trigger level.

Returned Format [:TRIGger:ADVanced:STATe:THReshold:LEVel {CHANnel<N> | DIGital<M>},] <le
vel><NL>

History Legacy command (existed before version 3.10).

1122 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced Delay By Event Trigger Commands

You can set the delay mode to delay by events or time. Use Delay By Event mode
to view pulses in your waveform that occur a number of events after a specified
waveform edge. Infiniium Oscilloscopes identify a trigger by arming on the edge
you specify, counting a number of events, then triggering on the specified edge.

• ":TRIGger:ADVanced:DELay:EDLY:ARM:SOURce" on page 1124

• ":TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe" on page 1125

• ":TRIGger:ADVanced:DELay:EDLY:EVENt:DELay" on page 1126

• ":TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce" on page 1127

• ":TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe" on page 1128

• ":TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce" on page 1129

• ":TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe" on page 1130

Arm On Use Arm On to set the source, level, and slope for arming the trigger circuitry.
When setting the arm level for your waveform, it is usually best to choose a
voltage value that is equal to the voltage value at the mid point of your waveform.
For example, if you have a waveform with a minimum value of 0 (zero) volts and a
maximum value of 5 volts, then 2.5 volts is the best place to set your arm level.
The reason this is the best choice is that there may be some ringing or noise at
both the 0volt and 5volt levels that can cause false triggers.

When you adjust the arm level control, a horizontal dashed line with a T on the
right-hand side appears showing you where the arm level is with respect to your
waveform. After a period of time the dashed line will disappear. To redisplay the
line, adjust the arm level control again, or activate the Trigger dialog.

Delay By Event Use Delay By Event to set the source, level, and edge to define an event. When
setting the event level for your waveform, it is usually best to choose a voltage
value that is equal to the voltage value at the mid point of your waveform. For
example, if you have a waveform with a minimum value of 0 (zero) volts and a
maximum value of 5 volts, then 2.5 volts is the best place to set your event level.
The reason this is the best choice is that there may be some ringing or noise at
both the 0volt and 5volt levels that can cause false triggers.

Event Use Event to set the number of events (edges) that must occur after the
oscilloscope is armed until it starts to look for the trigger edge.

Trigger On Use Trigger On to set the trigger source and trigger slope required to trigger the
oscilloscope. Each source can have only one level, so if you are arming and
triggering on the same source, only one level is used.

Set the Mode
Before Executing

Commands

Before you can execute the :TRIGger:ADVanced:DELay commands, set the mode
by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE DELay

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1123

The ADVanced DELay commands define the conditions for the Delay Trigger
Mode. The Delay By Events Mode lets you view pulses in your waveform that occur
a number of events after a specified waveform edge. After entering the commands
above, to select Delay By Events Mode, enter:

:TRIGger:ADVanced:DELay:MODE EDLY

Then you can use the Event Delay (EDLY) commands and queries for ARM, EVENt,
and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced trigger
delay mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:DELay:MODE?

1124 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:DELay:EDLY:ARM:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:ARM:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Arm On source for arming the trigger circuitry when the
oscilloscope is in the Delay By Event trigger mode.

<N> An integer, 1-4.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:EDLY:ARM:SOURce?

The query returns the currently defined Arm On source for the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:ARM:SOURce] {CHANnel<N>| DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1125

:TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe {NEGative|POSitive}

This command sets a positive or negative slope for arming the trigger circuitry
when the oscilloscope is in the Delay By Event trigger mode.

Query :TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe?

The query returns the currently defined slope for the Delay By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

1126 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:DELay:EDLY:EVENt:DELay

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:DELay <edge_number>

This command sets the event count for a Delay By Event trigger event.

<edge_num> An integer from 0 to 16,000,000 specifying the number of edges to delay.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:DELay?

The query returns the currently defined number of events to delay before
triggering on the next Trigger On condition in the Delay By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:EVENt:DELay] <edge_number><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1127

:TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Event source for a Delay By Event trigger event.

<N> An integer, 1-2, for two channel Infiniium Oscilloscope. An integer, 1-4, for all
other Infiniium Oscilloscope models.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce?

The query returns the currently defined Event source in the Delay By Event trigger
mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce] {CHANnel<N> | DIGital<M>}<NL
>

History Legacy command (existed before version 3.10).

1128 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:EDLY:EVENt:SLOPe] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1129

:TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Trigger On source for a Delay By Event trigger event.

<N> An integer, 1-4.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce?

The query returns the currently defined Trigger On source for the event in the
Delay By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce] {CHANnel<N> | DIGital<M>}<
NL>

History Legacy command (existed before version 3.10).

1130 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1131

Advanced Delay By Time Trigger Commands

You can set the delay mode to delay by events or time. Use Delay By Time mode to
view pulses in your waveform that occur a long time after a specified waveform
edge. The Delay by Time identifies a trigger condition by arming on the edge you
specify, waiting a specified amount of time, then triggering on a specified edge.
This can be thought of as two-edge triggering, where the two edges are separated
by a selectable amount of time.

It is also possible to use the Horizontal Position control to view a pulse some
period of time after the trigger has occurred. The problem with this method is that
the further the pulse is from the trigger, the greater the possibility that jitter will
make it difficult to view. Delay by Time eliminates this problem by triggering on the
edge of interest.

• ":TRIGger:ADVanced:DELay:TDLY:ARM:SOURce" on page 1133

• ":TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe" on page 1134

• ":TRIGger:ADVanced:DELay:TDLY:DELay" on page 1135

• ":TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce" on page 1136

• ":TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe" on page 1137

Arm On Use Arm On to set the source, level, and slope for the arming condition. When
setting the arm level for your waveform, it is usually best to choose a voltage value
that is equal to the voltage value at the mid point of your waveform. For example,
if you have a waveform with a minimum value of 0 (zero) volts and a maximum
value of 5 volts, then 2.5 volts is the best place to set your arm level. The reason
this is the best choice is that there may be some ringing or noise at both the 0-volt
and 5-volt levels that can cause false triggers.

When you adjust the arm level control, a horizontal dashed line with a T on the
right-hand side appears showing you where the arm level is with respect to your
waveform. After a period of time the dashed line will disappear. To redisplay the
line, adjust the arm level control again, or activate the Trigger dialog.

Delay By Time Use Delay By Time to set the amount of delay time from when the oscilloscope is
armed until it starts to look for the trigger edge. The range is from 30 ns to 160 ms.

Trigger On Use Trigger On to set the source and slope required to trigger the oscilloscope.
Trigger On Level is slaved to Arm On Level.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

Set the Mode
Before Executing

Commands

Before you can execute the :TRIGger:ADVanced:DELay commands, set the mode
by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE DELay

1132 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

The ADVanced DELay commands define the conditions for the Delay Trigger
Mode. The Delay By Time Mode lets you view pulses in your waveform that occur a
specified time after a specified waveform edge. After entering the commands
above, to select Delay By Time Mode, enter:

:TRIGger:ADVanced:DELay:MODE TDLY

Then you can use the Time Delay (TDLY) commands and queries for ARM, DELay,
and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced trigger
delay mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:DELay:MODE?

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1133

:TRIGger:ADVanced:DELay:TDLY:ARM:SOURce

Command :TRIGger:ADVanced:DELay:TDLY:ARM:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Arm On source for arming the trigger circuitry when the
oscilloscope is in the Delay By Time trigger mode.

<N> An integer, 1-4.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:TDLY:ARM:SOURce?

The query returns the currently defined channel source for the Delay By Time
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:ARM:SOURce] {CHANnel<N> | DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

1134 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe

Command :TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe {NEGative|POSitive}

This command sets a positive or negative slope for arming the trigger circuitry
when the oscilloscope is in the Delay By Time trigger mode.

Query :TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe?

The query returns the currently defined slope for the Delay By Time trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1135

:TRIGger:ADVanced:DELay:TDLY:DELay

Command :TRIGger:ADVanced:DELay:TDLY:DELay <delay>

This command sets the delay for a Delay By Time trigger event.

<delay> Time, in seconds, set for the delay trigger, from 5 ns to 10 s.

Query :TRIGger:ADVanced:DELay:TDLY:DELay?

The query returns the currently defined time delay before triggering on the next
Trigger On condition in the Delay By Time trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:DELay] <delay><NL>

History Legacy command (existed before version 3.10).

1136 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce

Command :TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Trigger On source for a Delay By Time trigger event.

<N> An integer, 1-4.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce?

The query returns the currently defined Trigger On source in the Delay By Time
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce] {CHANnel<N> | DIGital<M>}<
NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1137

:TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe

Command :TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Time trigger event.

Query :TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay By Time
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

1138 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced Standard TV Trigger Commands

Use TV trigger mode to trigger on one of the standard television waveforms. Also,
use this mode to trigger on a custom television waveform that you define, as
described in the next section.

There are four types of television (TV) trigger modes: 525 (NTSC or PAL-M), 625
(PAL), and User Defined. The 525 and 625 are predefined video standards used
throughout the world. The User Defined TV trigger, described in the next section,
lets you trigger on nonstandard TV waveforms.

525 and 625 TV
Trigger Modes

Source Use the Source control to select one of the oscilloscope channels as the trigger
source.

Level Use to set the trigger voltage level. When setting the trigger level for your
waveform, it is usually best to choose a voltage value that is just below the bottom
of burst.

When you adjust the trigger level control, a horizontal dashed line with a T on the
right-hand side appears showing you where the trigger level is with respect to your
waveform. After a period of time the dashed line will disappear. To redisplay the
line, adjust the trigger level control again, or activate the Trigger dialog.

Positive or
Negative Sync

Use the Positive and Negative Sync controls to select either a positive sync pulse
or a negative sync pulse as the trigger.

Field Use the Field control to select video field 1 or video field 2 as the trigger.

Line Use the Line control to select the horizontal line you want to view within the
chosen video field.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

STV Commands These commands set the conditions for the TV trigger mode using standard,
predefined parameters (in STV mode), or user-defined parameters (in UDTV
mode). The STV commands are used for triggering on television waveforms, and
let you select one of the TV waveform frames and one of the lines within that
frame.

Set the Mode
Before Executing

Commands

Before executing the :TRIGger:ADVanced:STV commands, set the mode by
entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE TV and

:TRIGger:ADVanced:TV:MODE L525 or
:TRIGger:ADVanced:TV:MODE L625

To query the oscilloscope for the advanced trigger mode or the advanced trigger
TV mode, enter:

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1139

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:TV:MODE?

You set up the :TRIGger:ADVanced:TV:STV commands with the following
commands and queries:

• ":TRIGger:ADVanced:TV:STV:FIELd" on page 1140

• ":TRIGger:ADVanced:TV:STV:LINE" on page 1141

• ":TRIGger:ADVanced:TV:STV:SOURce" on page 1142

• ":TRIGger:ADVanced:TV:STV:SPOLarity" on page 1143

1140 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:TV:STV:FIELd

Command :TRIGger:ADVanced:TV:STV:FIELd {1|2}

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:FIELd command selects which TV waveform field
is used during standard TV trigger mode. The line within the selected field is
specified using the :TRIGger:ADVanced:TV:STV:LINE <line_number> command.

Query :TRIGger:ADVanced:TV:STV:FIELd?

The query returns the current television waveform field.

Returned Format [:TRIGger:ADVanced:TV:STV:FIELd] {1|2}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1141

:TRIGger:ADVanced:TV:STV:LINE

Command :TRIGger:ADVanced:TV:STV:LINE <line_number>

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:LINE command selects the horizontal line that the
instrument will trigger on. Allowable line_number entry depends on the
:TRIGger:ADVanced:TV:STV:FIELd selected. Once the vertical sync pulse of the
selected field is received, the trigger is delayed by the number of lines specified.

<line_number> Horizontal line number. Allowable values range from 1 to 625, depending on
:TRIGger:ADVanced:TV:STV:FIELd settings as shown below.

Query :TRIGger:ADVanced:TV:STV:LINE?

The query returns the current line number.

Returned Format [:TRIGger:ADVanced:TV:STV:LINE] <line_number><NL>

History Legacy command (existed before version 3.10).

STV Modes

525 625

Field 1 1 to 263 1 to 313

Field 2 1 to 262 314 to 625

1142 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:TV:STV:SOURce

Command :TRIGger:ADVanced:TV:STV:SOURce {CHANnel<N>}

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:SOURce command selects the source for
standard TV mode triggering. This is the source that will be used for subsequent
:TRIGger:ADVanced:TV:STV commands and queries.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:TV:STV:SOURce?

The query returns the currently selected standard TV trigger mode source.

Returned Format [:TRIGger:ADVanced:TV:STV:SOURce] {CHANnel<N>|EXTernal}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1143

:TRIGger:ADVanced:TV:STV:SPOLarity

Command :TRIGger:ADVanced:TV:STV:SPOLarity {NEGative|POSitive}

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:SPOLarity (Sync POLarity) command specifies the
vertical sync pulse polarity for the selected field used during standard TV mode
triggering.

Query :TRIGger:ADVanced:TV:STV:SPOLarity?

The query returns the currently selected sync pulse polarity.

Returned Format [:TRIGger:ADVanced:TV:STV:SPOLarity] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

1144 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced User Defined TV Mode and Commands

Use TV trigger mode to trigger on one of the standard television waveforms, as
described in the previous section, and to trigger on a custom television waveform
that you define. The User Defined TV trigger lets you trigger on nonstandard TV
waveforms.

User Defined TV
Trigger

Source Use the Source control to select one of the oscilloscope channels as the trigger
source.

Level Use the Level control to set the trigger voltage level.

When setting the trigger level for your waveform, it is usually best to choose a
voltage value that is just below the bottom of burst.

When you adjust the trigger level control, a horizontal dashed line with a T on the
right-hand side appears showing you where the trigger level is with respect to your
waveform. After a period of time the dashed line will disappear. To redisplay the
line, adjust the trigger level control again, or activate the Trigger dialog. A
permanent icon with arrow (either T, TL, or TH) is also displayed on the right side of
the waveform area, showing the trigger level.

Pos or Neg Use the Pos and Neg controls to select either a positive pulse or a negative pulse
to arm the trigger circuitry.

Time > Use the Time > control to set the minimum time that the pulse must be present to
be considered a valid sync pulse.

Edge Number Use the Edge Number control to select the number of edges you want the
oscilloscope to count before triggering.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

UDTV Commands These commands set the conditions for the TV trigger mode using user-defined
parameters. They are used for triggering on non-standard television waveforms,
and let you define the conditions that must be met before a trigger occurs.

Set the Mode
Before Executing

Commands

Before executing the :TRIGger:ADVanced:TV:UDTV commands, set the mode by
entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE TV and
:TRIGger:ADVanced:TV:MODE UDTV

To query the oscilloscope for the advanced trigger mode or the advanced trigger
TV mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:TV:MODE?

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1145

You set up the :TRIGger:ADVanced:TV:UDTV commands with the following
commands and queries:

• ":TRIGger:ADVanced:TV:UDTV:ENUMber" on page 1146

• ":TRIGger:ADVanced:TV:UDTV:PGTHan" on page 1147

• ":TRIGger:ADVanced:TV:UDTV:POLarity" on page 1148

• ":TRIGger:ADVanced:TV:UDTV:SOURce" on page 1149

When triggering for User Defined TV mode:

• Set the channel or trigger source for the trigger using:

:TRIGger:ADVanced:TV:UDTV:SOURce

• Set the conditions for arming the trigger using:

:TRIGger:ADVanced:TV:UDTV:PGTHan, and
:TRIGger:ADVanced:TV:UDTV:POLarity.

• Set the number of events to delay after the trigger is armed using:

:TRIGger:ADVanced:TV:UDTV:ENUMber

• Set the waveform edge that causes the trigger to occur after arming and delay
using:

:TRIGger:ADVanced:TV:UDTV:EDGE

1146 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:TV:UDTV:ENUMber

Command :TRIGger:ADVanced:TV:UDTV:ENUMber <count>

The :TRIGger:ADVanced:TV:UDTV:ENUMber command specifies the number of
events (horizontal sync pulses) to delay after arming the trigger before looking for
the trigger event. Specify conditions for arming the trigger using:

TRIGger:ADVanced:TV:UDTV:PGTHan, and

TRIGger:ADVanced:TV:UDTV:POLarity.

<count> An integer for the number of events to delay. Allowable values range from 1 to
16,000,000.

Query :TRIGger:ADVanced:TV:UDTV:ENUMber?

The query returns the currently programmed count value.

Returned Format [:TRIGger:ADVanced:TV:UDTV:ENUMber] <count><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1147

:TRIGger:ADVanced:TV:UDTV:PGTHan

Command :TRIGger:ADVanced:TV:UDTV:PGTHan <lower_limit>

The :TRIGger:ADVanced:TV:UDTV:PGTHan (Present Greater THan) command
specifies the minimum pulse width of the waveform used to arm the trigger used
during user-defined trigger mode.

<lower_limit> Minimum pulse width (time >), from 5 ns to 9.9999999 s.

Query :TRIGger:ADVanced:TV:UDTV:PGTHan?

The query returns the currently selected minimum pulse width.

Returned Format [:TRIGger:ADVanced:TV:UDTV:PGTHan] <lower_limit><NL>

History Legacy command (existed before version 3.10).

1148 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:TV:UDTV:POLarity

Command :TRIGger:ADVanced:TV:UDTV:POLarity {NEGative|POSitive}

The :TRIGger:ADVanced:TV:UDTV:POLarity command specifies the polarity for the
sync pulse used to arm the trigger in the user-defined trigger mode.

Query :TRIGger:ADVanced:TV:UDTV:POLarity?

The query returns the currently selected UDTV sync pulse polarity.

Returned Format [:TRIGger:ADVanced:TV:UDTV:POLarity] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1149

:TRIGger:ADVanced:TV:UDTV:SOURce

Command :TRIGger:ADVanced:TV:UDTV:SOURce {CHANnel<N>}

The :TRIGger:ADVanced:TV:UDTV:SOURce command selects the source for
user-defined TV mode triggering. This is the source that will be used for
subsequent :TRIGger:ADVanced:TV:UDTV commands and queries.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:TV:UDTV:SOURce?

The query returns the currently selected user-defined TV trigger mode source.

Returned Format [:TRIGger:ADVanced:TV:UDTV:SOURce] {CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

1150 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced Violation Trigger Modes

Violation triggering helps you find conditions within your circuit that violate the
design rules. There are four types of violation triggering: Pulse Width, Setup and
Hold Time, and Transition.

• ":TRIGger:ADVanced:VIOLation:MODE" on page 1151

PWIDth This mode lets you find pulses that are wider than the rest of the pulses in your
waveform. It also lets you find pulses that are narrower than the rest of the pulses
in the waveform.

SETup This mode lets you find violations of setup and hold times in your circuit. Use this
mode to select setup time triggering, hold time triggering, or both setup and hold
time triggering.

TRANsition This mode lets you find any edge in your waveform that violates a rise time or fall
time specification. The Infiniium oscilloscope can be set to trigger on rise times or
fall times that are too slow or too fast.

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1151

:TRIGger:ADVanced:VIOLation:MODE

Command :TRIGger:ADVanced:VIOLation:MODE {PWIDth | SETup | TRANsition}

After you have selected the advanced trigger mode with the commands
:TRIGger:MODE ADVanced and :TRIGger:ADVanced:MODE VIOLation, the
:TRIGger:ADVanced:VIOLation:MODE <violation_mode> command specifies the
mode for trigger violations. The <violation_mode> is either PWIDth, SETup, or
TRANsition.

Query :TRIGger:ADVanced:VIOLation:MODE?

The query returns the currently defined mode for trigger violations.

Returned Format [:TRIGger:ADVanced:VIOLation:MODE] {PWIDth | SETup | TRANsition}<NL>

History Legacy command (existed before version 3.10).

1152 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced Pulse Width Violation Trigger Commands

Use Pulse Width Violation Mode to find pulses that are wider than the rest of the
pulses in your waveform. You can also use this mode to find pulses that are
narrower than the rest of the pulses in the waveform.

The oscilloscope identifies a pulse width trigger by looking for a pulse that is either
wider than or narrower than other pulses in your waveform. You specify the pulse
width and pulse polarity (positive or negative) that the oscilloscope uses to
determine a pulse width violation. For a positive polarity pulse, the oscilloscope
triggers when the falling edge of a pulse crosses the trigger level. For a negative
polarity pulse, the oscilloscope triggers when the rising edge of a pulse crosses
the trigger level.

When looking for narrower pulses, pulse width less than (Width <) trigger is the
same as glitch trigger.

• ":TRIGger:ADVanced:VIOLation:PWIDth:DIRection" on page 1154

• ":TRIGger:ADVanced:VIOLation:PWIDth:POLarity" on page 1155

• ":TRIGger:ADVanced:VIOLation:PWIDth:SOURce" on page 1156

• ":TRIGger:ADVanced:VIOLation:PWIDth:WIDTh" on page 1157

Source Use Source to select the oscilloscope channel used to trigger the oscilloscope.

Level Use the Level control to set the voltage level through which the pulse must pass
before the oscilloscope will trigger.

When setting the trigger level for your waveform, it is usually best to choose a
voltage value that is equal to the voltage value at the mid point of your waveform.
For example, if you have a waveform with a minimum value of 0 (zero) volts and a
maximum value of 5 volts, then 2.5 volts is the best place to set your trigger level.
The reason this is the best choice is that there may be some ringing or noise at
both the 0-volt and 5-volt levels that can cause false triggers.

When you adjust the trigger level control, a horizontal dashed line with a T on the
right-hand side appears showing you where the trigger level is with respect to your
waveform. After a period of time the dashed line will disappear. To redisplay the
line, adjust the trigger level control again, or activate the Trigger dialog. A
permanent icon with arrow (either T, TL, or TH) is also displayed on the right side of
the waveform area, showing the trigger level.

Polarity Use the Polarity control to specify positive or negative pulses.

Direction Use Direction to set whether a pulse must be wider (Width >) or narrower
(Width <) than the width value to trigger the oscilloscope.

Width Use the Width control to define how wide of a pulse will trigger the oscilloscope.
The glitch width range is from 1.5 ns to 10 s.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1153

Set the Mode
Before Executing

Commands

Before executing the :TRIGger:ADVanced:VIOLation:PWIDth commands, set the
mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE PWIDth

To query the oscilloscope for the advanced trigger violation mode, enter:

:TRIGger:ADVanced:VIOLation:MODE?

1154 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:PWIDth:DIRection

Command :TRIGger:ADVanced:VIOLation:PWIDth:DIRection {GTHan|LTHan}

This command specifies whether a pulse must be wider or narrower than the width
value to trigger the oscilloscope.

Query :TRIGger:ADVanced:VIOLation:PWIDth:DIRection?

The query returns the currently defined direction for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:DIRection] {GTHan|LTHan}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1155

:TRIGger:ADVanced:VIOLation:PWIDth:POLarity

Command :TRIGger:ADVanced:VIOLation:PWIDth:POLarity {NEGative|POSitive}

This command specifies the pulse polarity that the oscilloscope uses to determine
a pulse width violation. For a negative polarity pulse, the oscilloscope triggers
when the rising edge of a pulse crosses the trigger level. For a positive polarity
pulse, the oscilloscope triggers when the falling edge of a pulse crosses the
trigger level.

Query :TRIGger:ADVanced:VIOLation:PWIDth:POLarity?

The query returns the currently defined polarity for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:POLarity] {NEGative|POSitive}<NL>

History Legacy command (existed before version 3.10).

1156 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:PWIDth:SOURce

Command :TRIGger:ADVanced:VIOLation:PWIDth:SOURce {CHANnel<N> | Digital<M>}

This command specifies the channel source used to trigger the oscilloscope with
the pulse width trigger.

<N> An integer, 1-2, for two channel Infiniium Oscilloscope. An integer, 1-4, for all
other Infiniium Oscilloscope models.

<level> A real number for the voltage through which the pulse must pass before the
oscilloscope will trigger.

<M> An integer, 0-15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:VIOLation:PWIDth:SOURce?

The query returns the currently defined channel source for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:SOURce] {CHANnel<N>|DIGital<M>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1157

:TRIGger:ADVanced:VIOLation:PWIDth:WIDTh

Command :TRIGger:ADVanced:VIOLation:PWIDth:WIDTh <width>

This command specifies how wide a pulse must be to trigger the oscilloscope.

<width> Pulse width, which can range from 1.5 ns to 10 s.

Query :TRIGger:ADVanced:VIOLation:PWIDth:WIDTh?

The query returns the currently defined width for the pulse.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:WIDTh] <width><NL>

History Legacy command (existed before version 3.10).

1158 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced Setup Violation Trigger Commands

Use Setup Violation Mode to find violations of setup and hold times in your circuit.

• ":TRIGger:ADVanced:VIOLation:SETup:MODE" on page 1161

• ":TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce" on page 1162

• ":TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:LEVel" on page 1163

• ":TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:EDGE" on page 1164

• ":TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce" on page 1165

• ":TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold" on
page 1166

• ":TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold" on
page 1167

• ":TRIGger:ADVanced:VIOLation:SETup:SETup:TIME" on page 1168

• ":TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce" on page 1169

• ":TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel" on page 1170

• ":TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:EDGE" on page 1171

• ":TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce" on page 1172

• ":TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:HTHReshold" on
page 1173

• ":TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:LTHReshold" on
page 1174

• ":TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME" on page 1175

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce" on page 1176

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel" on page 1177

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE" on page 1178

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce" on page 1179

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:HTHReshold" on
page 1180

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:LTHReshold" on
page 1181

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe (STIMe)" on
page 1182

• ":TRIGger:ADVanced:VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)" on
page 1183

Mode Use MODE to select Setup, Hold, or both Setup and Hold time triggering.

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1159

You can have the oscilloscope trigger on violations of setup time, hold time, or
both setup and hold time. To use Setup Violation Type, the oscilloscope needs a
clock waveform, used as the reference, and a data waveform for the trigger source.

Setup Time Mode When using the Setup Time Mode, a time window is defined where the right edge
is the clock edge and the left edge is the selected time before the clock edge. The
waveform must stay outside of the thresholds during this time window. If the
waveform crosses a threshold within the time window, a violation event occurs and
the oscilloscope triggers.

Hold Time Mode When using Hold Time Mode, the waveform must not cross the threshold voltages
after the specified clock edge for at least the hold time you have selected.
Otherwise, a violation event occurs and the oscilloscope triggers.

Setup and Hold
Time Mode

When using the Setup and Hold Time Mode, if the waveform violates either a
setup time or hold time, the oscilloscope triggers.

Data Source Use the data source (DSOurce) command to select the channel used as the data,
the low-level data threshold, and the high-level data threshold. For data to be
considered valid, it must be below the lower threshold or above the upper
threshold during the time of interest.

DSOurce Use DSOurce to select the channel you want to use for the data source.

Low Threshold Use the low threshold (LTHReshold) to set the minimum threshold for your data.
Data is valid below this threshold.

High Threshold Use the high threshold (HTHReshold) to set the maximum threshold for your data.
Data is valid above this threshold.

Clock Source Use the clock source (CSOurce) command to select the clock source, trigger level,
and edge polarity for your clock. Before the trigger circuitry looks for a setup or
hold time violation, the clock must pass through the voltage level you have set.

CSOurce Use CSOurce to select the channel you want to use for the clock source.

LEVel Use LEVel to set voltage level on the clock waveform as given in the data book for
your logic family.

RISing or FALLing Use RISing or FALLing to select the edge of the clock the oscilloscope uses as a
reference for the setup or hold time violation trigger.

Time

Setup Time Use SETup to set the amount of setup time used to test for a violation. The setup
time is the amount of time that the data has to be stable and valid prior to a clock
edge. The minimum is 1.5 ns; the maximum is 20 ns.

Hold Time Use HOLD to set the amount of hold time used to test for a violation. The hold time
is the amount of time that the data has to be stable and valid after a clock edge.
The minimum is 1.5 ns; the maximum is 20 ns.

Setup and Hold Use SHOLd (Setup and Hold) to set the amount of setup and hold time used to
test for a violation.

1160 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

The setup time is the amount of time that the data has to be stable and valid prior
to a clock edge. The hold time is the amount of time that the data waveform has to
be stable and valid after a clock edge.

The setup time plus hold time equals 20 ns maximum. So, if the setup time is
1.5 ns, the maximum hold time is 18.5 ns.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

Set the Mode
Before Executing

Commands

Before executing the :TRIGger:ADVanced:VIOLation:SETup commands, set the
mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE SETup and
:TRIGger:ADVanced:VIOLation:SETup:MODE <setup_mode>

Where <setup_mode> includes SETup, HOLD, and SHOLd.

To query the oscilloscope for the advanced trigger violation setup mode, enter:

:TRIGger:ADVanced:VIOLation:SETup:MODE?

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1161

:TRIGger:ADVanced:VIOLation:SETup:MODE

Command :TRIGger:ADVanced:VIOLation:SETup:MODE {SETup|HOLD|SHOLd}

SETup When using the setup time mode, a time window is defined where the right edge is
the clock edge and the left edge is the selected time before the clock edge. The
waveform must stay outside of the trigger level thresholds during this time
window. If the waveform crosses a threshold during this time window, a violation
event occurs and the oscilloscope triggers.

HOLD When using the hold time mode, the waveform must not cross the threshold
voltages after the specified clock edge for at least the hold time you have selected.
Otherwise, a violation event occurs and the oscilloscope triggers.

SHOLd When using the setup and hold time mode, if the waveform violates either a setup
time or hold time, the oscilloscope triggers. The total time allowed for the sum of
setup time plus hold time is 20 ns maximum.

Query :TRIGger:ADVanced:VIOLation:SETup:MODE?

The query returns the currently selected trigger setup violation mode.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:MODE] {SETup|HOLD|SHOLd}<NL>

History Legacy command (existed before version 3.10).

1162 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce {CHANnel<N>}

This command specifies the clock source for the clock used for the trigger setup
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce?

The query returns the currently defined clock source for the trigger setup violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce]
{CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1163

:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel {{CHANnel<N>},<level>}

This command specifies the level for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1-4.

<level> A real number for the voltage level for the trigger setup violation clock waveform,
and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel? {CHANnel<N>}

The query returns the specified clock source level for the trigger setup violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:LEVel
{CHANnel<N>},] <level><NL>

History Legacy command (existed before version 3.10).

1164 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger setup
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:EDGE]
{RISing|FALLing}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1165

:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce {CHANnel<N>}

The data source commands specify the data source for the trigger setup violation.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce?

The query returns the currently defined data source for the trigger setup violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce]
{CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

1166 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold {{CHANnel<N>}
,<level>}

This command specifies the data source for the trigger setup violation, and the
high-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1-4.

<level> A real number for the data threshold level for the trigger setup violation, and is
used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce: HTHReshold? {CHANnel<N>
}

The query returns the specified data source for the trigger setup violation, and the
high data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold {CHANnel<N>}
,] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1167

:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold {{CHANnel<N>}
,<level>}

This command specifies the data source for the trigger setup violation, and the
low-level data threshold for the selected data source. Data is valid when it is above
the high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1-4.

<level> A real number for the data threshold level for the trigger setup violation, and is
used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce: LTHReshold? {CHANnel<N>
}

The query returns the specified data source for the trigger setup violation, and the
low data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold
{CHANnel<N>},] <level><NL>

History Legacy command (existed before version 3.10).

1168 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SETup:TIME

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:TIME <time>

This command specifies the amount of setup time used to test for a trigger
violation. The setup time is the amount of time that the data must be stable and
valid prior to a clock edge.

<time> Setup time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:TIME?

The query returns the currently defined setup time for the trigger violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:TIME] <time><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1169

:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce {CHANnel<N>}

This command specifies the clock source for the clock used for the trigger hold
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce?

The query returns the currently defined clock source for the trigger hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce]
{CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

1170 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
LEVel {{CHANnel<N>},<level>}

This command specifies the level for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1-4.

<level> A real number for the voltage level for the trigger hold violation clock waveform,
and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel? {CHANnel<N>}

The query returns the specified clock source level for the trigger hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel
{CHANnel<N>},] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1171

:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:EDGE]
{RISing|FALLing}<NL>

History Legacy command (existed before version 3.10).

1172 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce {CHANnel<N>}

The data source commands specify the data source for the trigger hold violation.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce?

The query returns the currently defined data source for the trigger hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce] {CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1173

:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
HTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger hold violation, and the
high-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1-4.

<level> A real number for the data threshold level for the trigger hold violation, and is used
with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce: HTHReshold? {CHANnel<N>}

The query returns the specified data source for the trigger hold violation, and the
high data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:HTHReshold {CHANnel<N>},
] <level><NL>

History Legacy command (existed before version 3.10).

1174 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
LTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger hold violation, and the
low-level data threshold for the selected data source. Data is valid when it is above
the high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1-4.

<level> A real number for the data threshold level for the trigger hold violation, and is used
with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce: LTHReshold? {CHANnel<N>
}

The query returns the specified data source for the trigger hold violation, and the
low data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:LTHReshold {CHANnel<N>},
] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1175

:TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME <time>

This command specifies the amount of hold time used to test for a trigger
violation. The hold time is the amount of time that the data must be stable and
valid after a clock edge.

<time> Hold time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME?

The query returns the currently defined hold time for the trigger violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME] <time><NL>

History Legacy command (existed before version 3.10).

1176 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce: {CHANnel<N>}

This command specifies the clock source for the clock used for the trigger setup
and hold violation. The clock must pass through the voltage level you have set
before the trigger circuitry looks for a setup and hold time violation.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce?

The query returns the currently defined clock source for the trigger setup and hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce]
{CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1177

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel {{CHANnel<N>},<lev
el>}

This command specifies the clock source trigger level for the clock used for the
trigger setup and hold violation. The clock must pass through the voltage level you
have set before the trigger circuitry looks for a setup and hold time violation.

<N> An integer, 1-4.

<level> A real number for the voltage level for the trigger setup and hold violation clock
waveform, and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce: LEVel? {CHANnel<N>}

The query returns the specified clock source level for the trigger setup and hold
violation level for the clock source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel {CHANnel<N>},]
<level><NL>

History Legacy command (existed before version 3.10).

1178 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE {RISing|FALLing}

This command specifies the clock source trigger edge for the clock used for the
trigger setup and hold violation. The clock must pass through the voltage level you
have set before the trigger circuitry looks for a setup and hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce: EDGE?

The query returns the currently defined clock source edge for the trigger setup and
hold violation level for the clock source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE]
{RISing|FALLing}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1179

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce
{CHANnel<N>}

The data source commands specify the data source for the trigger setup and hold
violation.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce?

The query returns the currently defined data source for the trigger setup and hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce] {CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

1180 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
HTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger setup and hold violation,
and the high-level data threshold for the selected data source. Data is valid when
it is above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1-4.

<level> A real number for the data threshold level for the trigger setup and hold violation,
and is used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce: HTHReshold? {CHANnel<N>
}

The query returns the specified data source for the trigger setup and hold
violation, and the high data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:HTHReshold {CHANnel<N>}
,] <level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1181

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
LTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger setup and hold violation,
and the low-level data threshold for the selected data source. Data is valid when it
is above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1-4.

<level> A real number for the data threshold level for the trigger setup and hold violation,
and is used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce: LTHReshold? {CHANnel<N
>}

The query returns the specified data source for the setup and trigger hold
violation, and the low data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:LTHReshold {CHANnel<N>}
,] <level><NL>

History Legacy command (existed before version 3.10).

1182 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe (STIMe)

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe <time>

This command specifies the amount of setup time used to test for both a setup
and hold trigger violation. The setup time is the amount of time that the data must
be stable and valid before a clock edge.

<time> Setup time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe?

The query returns the currently defined setup time for the setup and hold trigger
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe] <time><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1183

:TRIGger:ADVanced:VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:HoldTIMe <time>

This command specifies the amount of hold time used to test for both a setup and
hold trigger violation. The hold time is the amount of time that the data must be
stable and valid after a clock edge.

<time> Hold time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLD:HoldTIMe?

The query returns the currently defined hold time for the setup and hold trigger
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLD:HoldTIMe] <time><NL>

History Legacy command (existed before version 3.10).

1184 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

Advanced Transition Violation Trigger Commands

Use Transition Violation Mode to find any edge in your waveform that violates a
rise time or fall time specification. Infiniium Oscilloscopes find a transition violation
trigger by looking for any pulses in your waveform with rising or falling edges that
do not cross two voltage levels in the amount of time you have specified.

The rise time is measured from the time that your waveform crosses the low
threshold until it crosses the high threshold. The fall time is measured from the
time that the waveform crosses the high threshold until it crosses the low
threshold.

• ":TRIGger:ADVanced:VIOLation:TRANsition" on page 1185

• ":TRIGger:ADVanced:VIOLation:TRANsition:SOURce" on page 1186

• ":TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold" on
page 1187

• ":TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold" on
page 1188

• ":TRIGger:ADVanced:VIOLation:TRANsition:TYPE" on page 1189

Source Use Source to select the channel used for a transition violation trigger.

Low Threshold Use Low Threshold to set the low voltage threshold.

High Threshold Use High Threshold to set the high voltage threshold.

Type Use Type to select Rise Time or Fall Time violation.

Trigger On Trigger On parameters include > Time and < Time.

> Time Use > Time to look for transition violations that are longer than the time specified.

< Time Use < Time to look for transition violations that are less than the time specified.

Time Use Time to set the amount of time to determine a rise time or fall time violation.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise Reject).

Set the Mode
Before Executing

Commands

Before executing the :TRIGger:ADVanced:VIOLation:TRANsition commands, set
the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE TRANsition

To query the oscilloscope for the advanced trigger violation mode, enter:

:TRIGger:ADVanced:VIOLation:MODE?

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1185

:TRIGger:ADVanced:VIOLation:TRANsition

Command :TRIGger:ADVanced:VIOLation:TRANsition:{GTHan|LTHan} <time>

This command lets you look for transition violations that are greater than or less
than the time specified.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:ADVanced:VIOLation:TRANsition: {GTHan|LTHan}?

The query returns the currently defined time for the trigger transition violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:{GTHan|LTHan}] <time><NL>

History Legacy command (existed before version 3.10).

1186 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:TRANsition:SOURce

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce {CHANnel<N>}

The transition source command lets you find any edge in your waveform that
violates a rise time or fall time specification. The oscilloscope finds a transition
violation trigger by looking for any pulses in your waveform with rising or falling
edges that do not cross two voltage levels in the amount of time you have
specified.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce?

The query returns the currently defined transition source for the trigger transition
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce] {CHANnel<N>}<NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1187

:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold {{CHANnel<N>},<
level>}

This command lets you specify the source and high threshold for the trigger
violation transition. The oscilloscope finds a transition violation trigger by looking
for any pulses in your waveform with rising or falling edges that do not cross two
voltage levels in the amount of time you have specified.

<N> An integer, 1-4.

<level> A real number for the voltage threshold level for the trigger transition violation,
and is used with the high and low threshold transition source commands.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
HTHReshold? {CHANnel<N>}

The query returns the specified transition source for the trigger transition high
threshold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold {CHANnel<N>},]
<level><NL>

History Legacy command (existed before version 3.10).

1188 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold {{CHANnel<N>},<
level>}

This command lets you specify the source and low threshold for the trigger
violation transition. The oscilloscope finds a transition violation trigger by looking
for any pulses in your waveform with rising or falling edges that do not cross two
voltage levels in the amount of time you have specified.

<N> An integer, 1-4.

<level> A real number for the voltage threshold level for the trigger transition violation,
and is used with the high and low threshold transition source commands.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
LTHReshold? {CHANnel<N>}

The query returns the currently defined transition source for the trigger transition
low threshold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold {CHANnel<N>},]
<level><NL>

History Legacy command (existed before version 3.10).

Trigger Commands 33

Keysight Infiniium Oscilloscopes Programmer's Guide 1189

:TRIGger:ADVanced:VIOLation:TRANsition:TYPE

Command :TRIGger:ADVanced:VIOLation:TRANsition:TYPE {RISetime|FALLtime}

This command lets you select either a rise time or fall time transition violation
trigger event.

Query :TRIGger:ADVanced:VIOLation:TRANsition:TYPE?

The query returns the currently defined transition type for the trigger transition
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:TYPE] {RISetime|FALLtime}<NL>

History Legacy command (existed before version 3.10).

1190 Keysight Infiniium Oscilloscopes Programmer's Guide

33 Trigger Commands

1191

Keysight Infiniium Oscilloscopes
Programmer's Guide

34 Waveform Commands

:WAVeform:BANDpass? / 1194
:WAVeform:BYTeorder / 1195
:WAVeform:COMPlete? / 1196
:WAVeform:COUNt? / 1197
:WAVeform:COUPling? / 1198
:WAVeform:DATA? / 1199
:WAVeform:FORMat / 1221
:WAVeform:POINts? / 1224
:WAVeform:PREamble? / 1225
:WAVeform:SEGMented:ALL / 1230
:WAVeform:SEGMented:COUNt? / 1231
:WAVeform:SEGMented:TTAG? / 1232
:WAVeform:SEGMented:XLISt? / 1233
:WAVeform:SOURce / 1234
:WAVeform:STReaming / 1236
:WAVeform:TYPE? / 1237
:WAVeform:VIEW / 1238
:WAVeform:XDISplay? / 1240
:WAVeform:XINCrement? / 1241
:WAVeform:XORigin? / 1242
:WAVeform:XRANge? / 1243
:WAVeform:XREFerence? / 1244
:WAVeform:XUNits? / 1245
:WAVeform:YDISplay? / 1246
:WAVeform:YINCrement? / 1247
:WAVeform:YORigin? / 1248
:WAVeform:YRANge? / 1249
:WAVeform:YREFerence? / 1250
:WAVeform:YUNits? / 1251

1192 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

The WAVeform subsystem is used to transfer waveform data between a computer
and the oscilloscope. It contains commands to set up the waveform transfer and to
send or receive waveform records to or from the oscilloscope.

Data Acquisition When data is acquired using the DIGitize command, the data is placed in the
channel or function memory of the specified source. After the DIGitize command
executes, the oscilloscope is stopped. If the oscilloscope is restarted by your
program or from the front panel, the data acquired with the DIGitize command is
overwritten.

You can query the preamble, elements of the preamble, or waveform data while
the oscilloscope is running, but the data will reflect only the current acquisition,
and subsequent queries will not reflect consistent data. For example, if the
oscilloscope is running and you query the X origin, the data is queried in a
separate command, it is likely that the first point in the data will have a different
time than that of the X origin. This is due to data acquisitions that may have
occurred between the queries. For this reason, Keysight Technologies does not
recommend this mode of operation. Instead, you should use the DIGitize
command to stop the oscilloscope so that all subsequent queries will be
consistent.

Waveform Data
and Preamble

The waveform record consists of two parts: the preamble and the waveform data.
The waveform data is the actual sampled data acquired for the specified source.
The preamble contains the information for interpreting the waveform data,
including the number of points acquired, the format of the acquired data, and the
type of acquired data. The preamble also contains the X and Y increments, origins,
and references for the acquired data.

The values in the preamble are set when you execute the DIGitize command. The
preamble values are based on the current settings of the oscilloscope's controls.

Data Conversion Data sent from the oscilloscope must be scaled for useful interpretation. The
values used to interpret the data are the X and Y origins and X and Y increments.
These values can be read using the :WAVeform:XORigin?, WAVeform:YORigin?,
WAVeform:XINCrement?, and WAVeform:YINCreament? queries.

Conversion from
Data Values to

Units

To convert the waveform data values (essentially A/D counts) to real-world units,
such as volts, use the following scaling formulas:

Y-axis Units = data value x Yincrement + Yorigin (analog channels) X-axis Units =
data index x Xincrement + Xorigin, where the data index starts at zero: 0, 1, 2,
..., n-1.

The first data point for the time (X-axis units) must be zero, so the time of the first
data point is the X origin.

NOTE Function and channel data are volatile and must be read following a DIGitize command or the
data will be lost when the oscilloscope is turned off.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1193

Data Format for
Data Transfer

There are four types of data formats that you can select using the
:WAVeform:FORMat command: ASCii, BYTE, WORD, and BINary. Refer to the
FORMat command in this chapter for more information on data formats.

1194 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:BANDpass?

Query :WAVeform:BANDpass?

The :WAVeform:BANDpass? query returns an estimate of the maximum and
minimum bandwidth limits of the source waveform. The bandwidth limits are
computed as a function of the coupling and the selected filter mode. The cutoff
frequencies are derived from the acquisition path and software filtering.

Returned Format [:WAVeform:BANDpass]<lower_cutoff>,<upper_cutoff><NL>

<lower_cutoff> Minimum frequency passed by the acquisition system.

<upper_cutoff> Maximum frequency passed by the acquisition system.

Example This example places the estimated maximum and minimum bandwidth limits of
the source waveform in the string variable, strBandwidth, then prints the contents
of the variable to the computer's screen.

Dim strBandwidth As String ' Dimension variable.
myScope.WriteString ":WAVEFORM:BANDPASS?"
strBandwidth = myScope.ReadString
Debug.Print strBandwidth

History Legacy command (existed before version 3.10).

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1195

:WAVeform:BYTeorder

Command :WAVeform:BYTeorder {MSBFirst | LSBFirst}

The :WAVeform:BYTeorder command selects the order in which bytes are
transferred to and from the oscilloscope using WORD and LONG formats. If
MSBFirst is selected, the most significant byte is transferred first. Otherwise, the
least significant byte is transferred first. The default setting is MSBFirst.

Example This example sets up the oscilloscope to send the most significant byte first during
data transmission.

myScope.WriteString ":WAVEFORM:BYTEORDER MSBFIRST"

Query :WAVeform:BYTeorder?

The :WAVeform:BYTeorder? query returns the current setting for the byte order.

Returned Format [:WAVeform:BYTeorder] {MSBFirst | LSBFirst}<NL>

Example This example places the current setting for the byte order in the string variable,
strSetting, then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":WAVEFORM:BYTEORDER?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

NOTE The data transfer rate is faster using the LSBFirst byte order.

MSBFirst is for microprocessors, where the most significant byte resides at the lower address.
LSBFirst is for microprocessors, where the least significant byte resides at the lower address.

1196 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:COMPlete?

Query :WAVeform:COMPlete?

The :WAVeform:COMPlete? query returns the percent of time buckets that are
complete for the currently selected waveform.

For the NORMal, RAW, and INTerpolate waveform types, the percent complete is
the percent of the number of time buckets that have data in them, compared to
the memory depth.

For the AVERage waveform type, the percent complete is the number of time
buckets that have had the specified number of hits divided by the memory depth.
The hits are specified by the :ACQuire:AVERage:COUNt command.

For the VERSus waveform type, percent complete is the least complete of the
X-axis and Y-axis waveforms.

Returned Format [:WAVeform:COMPlete] <criteria><NL>

<criteria> 0 to 100 percent, rounded down to the closest integer.

Example This example places the current completion criteria in the string variable,
strCriteria, then prints the contents of the variable to the computer's screen.

Dim strCriteria As String ' Dimension variable.
myScope.WriteString ":WAVEFORM:COMPLETE?"
strCriteria = myScope.ReadString
Debug.Print strCriteria

History Legacy command (existed before version 3.10).

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1197

:WAVeform:COUNt?

Query :WAVeform:COUNt?

The :WAVeform:COUNt? query returns the fewest number of hits in all of the time
buckets for the currently selected waveform. For the AVERage waveform type, the
count value is the fewest number of hits for all time buckets. This value may be
less than or equal to the value specified with the :ACQuire:AVERage:COUNt
command.

For the NORMal, RAW, INTerpolate, and VERSus waveform types, the count value
returned is one, unless the data contains holes (sample points where no data is
acquired). If the data contains holes, zero is returned.

Returned Format [:WAVeform:COUNt] <number><NL>

<number> An integer. Values range from 0 to 1 for NORMal, RAW, or INTerpolate types, and
VERSus type. If averaging is on values range from 0 to 65536.

Example This example places the current count field value in the string variable, strCount,
then prints the contents of the variable to the computer's screen.

Dim strCount As String ' Dimension variable.
myScope.WriteString ":WAVEFORM:COUNT?"
strCount = myScope.ReadString
Debug.Print strCount

History Legacy command (existed before version 3.10).

1198 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:COUPling?

Query :WAVeform:COUPling?

The :WAVeform:COUPling? query returns the input coupling of the currently
selected source.

Returned Format [:WAVeform:COUPling] {AC | DC | DCFifty | LFReject} <NL>

On 9000 Series, 9000H Series, and Z-Series oscilloscopes, this query can return:

• AC.

• DC.

• DCFifty.

• LFReject.

On 90000A Series, 90000 X-Series, 90000 Q-Series, and Z-Series oscilloscopes,
this query always returns:

• DC — (and is provided for compatibility with other Infiniium oscilloscopes).

Example This example places the current input coupling of the selected waveform in the
string variable, strSetting, then prints the contents of the variable.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":WAVeform:COUPling?"
strSetting = myScope.ReadString
Debug.Print strSetting

See Also The :CHANnel<N>:INPut command sets the coupling for a particular channel.

You can use the :WAVeform:SOURce command to set the source for the coupling
query.

History Legacy command (existed before version 3.10).

Source Return Value

CGRade Coupling of the lowest numbered channel that is on.

HISTogram The coupling of the selected channel. For functions, the coupling of the
lowest numbered channel in the function.

CHANnel The coupling of the channel number

FUNCtion The coupling of the lowest numbered channel in the function

WMEMory The coupling value of the source that was loaded into the waveform
memory. If channel 1 was loaded, it would be the channel 1 coupling
value.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1199

:WAVeform:DATA?

Query :WAVeform:DATA? [<start>[,<size>]]

The :WAVeform:DATA? query outputs waveform data to the computer over the
remote interface. The data is copied from a waveform memory, function, channel,
bus, pod, or digital channel previously specified with the :WAVeform:SOURce
command.

The preamble queries, such as :WAVeform:XINCrement, can be used to determine
the vertical scaling, the horizontal scaling, and so on.

<start> An integer value which is the starting point in the source memory which is the first
waveform point to transfer.

<size> An integer value which is the number of points in the source memory to transfer. If
the size specified is greater than the amount of available data then the size is
adjusted to be the maximum available memory depth minus the <start> value.

Streaming Off The returned waveform data response depends upon the setting of the
:WAVeform:STReaming command. When the data format is BYTE and streaming is
off, the number of waveform points must be less than 1,000,000,000 or an error
occurs and only 999,999,999 bytes of data are sent. When the data format is
WORD and streaming is off, the number of waveform points must be less than
500,000,000 or an error occurs and only 499,999,999 words of data are sent.

The returned waveform data in response to the :WAVeform:DATA? query is in the
following order.

NOTE The data's returned response depends upon the setting of the :WAVeform:STReaming
command. See "Streaming Off" on page 1199 or "Streaming On" on page 1200 for more
detail.

NOTE If the waveform data is ASCII formatted, no header information indicating the number of bytes
being downloaded is included, and the waveform data is separated by commas.

1200 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

Streaming On When streaming is on there is no limit on the number of waveform data points that
are returned. It is recommended that any new programs use streaming on to send
waveform data points. The waveform data response when streaming is on is as
follows.

Returned Format [:WAVeform:DATA] <block_data>[,<block_data>]<NL>

Example This example places the current waveform data from channel 1 into the
varWavData array in the word format.

myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":WAVeform:SOURce CHANnel1 ' Select source.
myScope.WriteString ":WAVeform:FORMat WORD" ' Select word format.
myScope.WriteString ":WAVeform:DATA?"
varWavData = myScope.ReadIEEEBlock(BinaryType_I2)

Figure 5 Streaming Off

N L (N bytes) 0 1 2 ... L-1 End

Start of response

2nd byte of BYTE, WORD, or BINary
format waveform data

1st byte of BYTE, WORD, or BINary
format waveform data

Number of bytes of waveform data to follow

Number of bytes in Length block

Termination character

Last byte of BYTE, WORD, or
BINary format waveform data

Figure 6 Streaming On

0 B1 B2 B3 ... L-1 End

Start of response

2nd byte of BYTE, WORD, or BINary
format waveform data

1st byte of BYTE, WORD, or BINary
format waveform data

Number is zero

Termination character

Last byte of BYTE, WORD, or
BINary format waveform data

3rd byte of BYTE, WORD, or BINary
format waveform data

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1201

The format of the waveform data must match the format previously specified by
the :WAVeform:FORMat and :WAVeform:BYTeorder commands.

DATA? Example for
Analog Channels

The following C example shows how to transfer WORD formatted waveform data
for analog channels to a computer.

/* readdata. c */

/* Reading Word format example. This program demonstrates the order
* of commands suggested for operation of the Infiniium oscilloscope
* via LAN. This program initializes the oscilloscope, acquires data,
* transfers data in WORD format, converts the data into time and
* voltage values, and stores the data in a file as comma-separated
* ascii values. This format is useful for spreadsheet and MATLAB
* applications. It requires a waveform which is connected to Channel 1.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include "sicl.h"

/* Prototypes */
int InitIO(void);
void WriteIO(char *buffer);
unsigned long ReadByte(char *buffer, unsigned long BytesToRead);
unsigned long ReadWord(char *buffer, int *reason,

unsigned long BytesToRead);
void ReadDouble(double *buffer);
void CloseIO(void);
void AcquireData(void);
void GetVoltageConversionFactors(double *yInc, double *yOrg);
void GetTimeConversionFactors(double *xInc, double *xOrg);
void WriteCsvToFile(unsigned long ByteToRead);
void SetupDataTransfer(void);

/* Defines */
#define MAX_LENGTH 10000000
#define INTERFACE "lan[130.29.70.247]:inst0"
#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

/* Globals */
INST bus;
INST scope;
char buffer[MAX_LENGTH]; /* Buffer for reading data */
double xOrg=0L, xInc=0L; /* Values used to create time data */
double yOrg=0L, yInc=0L; /* Values used to convert data to volts */

void main(void)
{

unsigned long BytesToRead;

if (!InitIO())

1202 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

{
exit(1);

}

AcquireData();

WriteIO(":WAVeform:FORMat WORD"); /* Setup transfer format */
WriteIO(":WAVeform:BYTeorder LSBFirst"); /* Setup transfer of

LSB first */
WriteIO(":WAVeform:SOURce CHANnel1"); /* Waveform data source

channel 1 */
WriteIO(":WAVeform:STReaming 1"); /* Turn on waveform

streaming of data */

GetVoltageConversionFactors(&yInc, &yOrg);
GetTimeConversionFactors(&xInc, &xOrg);
BytesToRead = MAX_LENGTH;
SetupDataTransfer();
WriteCsvToFile(BytesToRead);

CloseIO();

}

/***
* Function name: InitIO
* Parameters: none
* Return value: TRUE if successful otherwise FALSE
* Description: This routine initializes the SICL environment.
* It sets up error handling, opens both an interface
* and device session, sets timeout values, clears
* the LAN interface card, and clears the
* oscilloscope's LAN interface by performing a
* Selected Device Clear.
***/
int InitIO(void)
{

ionerror(I_ERROR_EXIT); /* set-up interface error handling */

bus = iopen(INTERFACE); /* open interface session */
if (bus == 0)
{

printf("Bus session invalid\n");
return FALSE;

}

itimeout(bus, IO_TIMEOUT); /* set bus timeout */
iclear(bus); /* clear the interface */

scope = bus; /* open the scope device session */

return TRUE;
}

/**
* Function name: WriteIO

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1203

* Parameters: char *buffer which is a pointer to the character
* string to be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope
* device session using SICL commands.
***/

void WriteIO(char *buffer)
{

unsigned long actualcnt;
unsigned long BytesToRead;
int send_end = 1;

BytesToRead = strlen(buffer);

iwrite(scope, buffer, BytesToRead, send_end, &actualcnt);

}

/***
* Function name: ReadByte
* Parameters: char *buffer which is a pointer to the array to
* store the read bytes
* unsigned long BytesToRead which indicates the
* maximum number of bytes to read
* Return value: integer which indicates the actual number of bytes
* read
* Description: This routine inputs strings from the scope device
* session using SICL commands.
**/

unsigned long ReadByte(char *buffer, unsigned long BytesToRead)
{

unsigned long BytesRead;
int reason;

BytesRead = BytesToRead;

iread(scope, buffer, BytesToRead, &reason, &BytesRead);

return BytesRead;
}

/**
* Function name: ReadWord
* Parameters: short *buffer which is a pointer to the word array
* to store the bytes read
* int reason which is the reason that the read
* terminated
* unsigned long BytesToRead which indicates the
* maximum number of bytes to read
* Return value: integer which indicates the actual number of
* bytes read
* Description: This routine inputs an array of short values from
* the oscilloscope device session using SICL commands.
***/

1204 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

unsigned long ReadWord(char *buffer, int *reason,
unsigned long BytesToRead)

{
long BytesRead;

iread(scope, buffer, BytesToRead, reason, &BytesRead);

return BytesRead;
}

/**
* Function name: ReadDouble
* Parameters: double *buffer which is a pointer to the float
* value to read
* Return value: none
* Description: This routine inputs a float value from the
* oscilloscope device session using SICL commands.
***/

void ReadDouble(double *buffer)
{

iscanf(scope, "%lf", buffer);
}

/**
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions
* for the SICL environment, and calls the routine
* _siclcleanup which de-allocates resources
* used by the SICL environment.
***/

void CloseIO(void)
{

iclose(scope); /* close device session */
iclose(bus); /* close interface session */

_siclcleanup(); /* required for 16-bit applications */

}

/**
* Function name: AcquireData
* Parameters: none
* Return value: none
* Description: This routine acquires data using the current
* oscilloscope settings.
***/

void AcquireData(void)
{

/*
* The root level :DIGitize command is recommended for

* acquiring new waveform data. It initializes the

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1205

* oscilloscope's data buffers, acquires new data,
* and ensures that acquisition criteria are met before the
* acquisition is stopped. Note that the display is
* automatically turned off when you use this form of the
* :DIGitize command and must be turned on to view the
* captured data on screen.

*/

WriteIO(":DIGitize CHANnel1");
WriteIO(":CHANnel1:DISPlay ON");

}

/**
* Function name: GetVoltageConversionFactors
* Parameters: double yInc which is the voltage difference
* represented by adjacent waveform data digital codes
.
* double yOrg which is the voltage value of digital
* code 0.
* Return value: none
* Description: This routine reads the conversion factors used to
* convert waveform data to volts.
***/

void GetVoltageConversionFactors(double *yInc, double *yOrg)
{

/* Read values which are used to convert data to voltage values */

WriteIO(":WAVeform:YINCrement?");
ReadDouble(yInc);

WriteIO(":WAVeform:YORigin?");
ReadDouble(yOrg);

}

/***
* Function name: SetupDataTransfer
* Parameters: none
* Return value: none
* Description: This routine sets up the waveform data transfer and
* removes the # and 0 characters.
**/

void SetupDataTransfer(void)
{

char cData;

WriteIO(":WAVeform:DATA?"); /* Request waveform data */

/* Find the # character */

do
{

ReadByte(&cData, 1L);

1206 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

} while (cData != '#');

/* Find the 0 character */

do
{

ReadByte(&cData, 1L);
} while (cData != '0');

}

/***
* Function name: GetTimeConversionFactors
* Parameters: double xInc which is the time between consecutive
* sample points.
* double xOrg which is the time value of the first
* data point.
* Return value: none
* Description: This routine transfers the waveform conversion
* factors for the time values.
**/

void GetTimeConversionFactors(double *xInc, double *xOrg)
{

/* Read values which are used to create time values */

WriteIO(":WAVeform:XINCrement?");
ReadDouble(xInc);

WriteIO(":WAVeform:XORigin?");
ReadDouble(xOrg);

}

/***
* Function name: WriteCsvToFile
* Parameters: unsigned long BytesToRead which is the number of
* data points to read
* Return value: none
* Description: This routine stores the time and voltage
* information about the waveform as time and
* voltage separated by commas to a file.
**/

void WriteCsvToFile(unsigned long BytesToRead)
{

FILE *fp;
int done = FALSE;
int reason = 0;
unsigned long i;
unsigned long j = 0;
unsigned long BytesRead = 0L;
double Time;
double Volts;
short *buff;

fp = fopen("pairs.csv", "wb"); /* Open file in binary mode - clear

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1207

file if it already exists */

if (fp != NULL)
{

while(!done)
{

BytesRead = ReadWord(buffer, &reason, BytesToRead);

switch(reason)
{
case I_TERM_MAXCNT:

done = FALSE;
break;

case I_TERM_END:
done = TRUE;
break;

case I_TERM_CHR:
done = TRUE;
break;

default:
done = TRUE;
break;

};

buff = (short *) buffer;

for(i = 0; i < ((BytesRead - 1)/2); i++)
{

Time = (j * xInc) + xOrg; /* calculate time */
j = j + 1;

Volts = (buff[i] * yInc) + yOrg;/* calculate voltage */

fprintf(fp, "%e,%f\n", Time, Volts);
}

}
fclose(fp);

}
else
{

printf("Unable to open file 'pairs.csv'\n");
}

}

DATA? Example for
Digital Channels

The following C example shows how to transfer both BYTE and WORD formatted
waveform data for digital channels to a computer. There is a file on the Infiniium
Oscilloscope Example Programs disk called readdig.c in the c directory that
contains this program.

/* readdig. c */

/* Reading Byte and Word format Example. This program demonstrates the
order of
commands suggested for operation of the Infiniium oscilloscope by LAN o
r GPIB.

1208 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

This program initializes the scope, acquires data, transfers data in bo
th the
BYTE and WORD formats, converts the data into hex, octal, binary and ti
me values,
and stores the data in a file as comma-separated values. This format i
s useful
for spreadsheet applications.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include "sicl.h"

/* Prototypes */
int InitIO(void);
void WriteIO(char *buffer);
unsigned long ReadByte(char *buffer, unsigned long BytesToRead);
unsigned long ReadWord(short *buffer, unsigned long BytesToRead);
void ReadDouble(double *buffer);
void CloseIO(void);
void AcquireData(void);
void GetTimeConversionFactors(void);
void CreateTimeData(unsigned long AcquiredLength,

double *TimeValues);
void WriteCsvToFile(double *TimeValues, unsigned short *wordData,

unsigned char *byteData, unsigned long AcquiredLeng
th);
unsigned long SetupDataTransfer(double lTime, double rTime);
int Round(double number);

/* Defines */
#define MAX_LENGTH 8192000

#define LAN

#ifdef LAN
#define INTERFACE "lan[130.29.71.202]:hpib7,7"

#else
#define INTERFACE "hpib7"

#endif

#define DEVICE_ADDR "hpib7,7"
#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

/* Globals */
INST bus;
INST scope;
double TimeValues[MAX_LENGTH]; /* Time value of data */
unsigned short wordData[MAX_LENGTH/2];/* Buffer for reading word format
data */
unsigned char byteData[MAX_LENGTH]; /* Buffer for reading byte format
data */
double xOrg, xInc; /* Values necessary to create time
data */

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1209

int Start;

void main(void)
{

char Term;
unsigned long BytesToRead;

if (!InitIO()) {
exit(1);

}

AcquireData();

WriteIO(":SYStem:HEADer OFF");
WriteIO(":SYStem:LONGform OFF");
WriteIO(":WAVeform:BYTEorder LSBFirst"); /* Setup byte order */
WriteIO(":WAVeform:FORMat WORD"); /* Setup transfer format *

/
WriteIO(":WAVeform:SOURce POD1"); /* Waveform data source pod

1 */

GetTimeConversionFactors();

BytesToRead = SetupDataTransfer(-25E-6, 25E-6);
ReadWord(wordData, BytesToRead);
ReadByte(&Term, 1L); /* Read termination character *

/

WriteIO(":WAVeform:FORMat BYTE"); /* Setup transfer format */

BytesToRead = SetupDataTransfer(-25E-6, 25E-6);
ReadByte(byteData, BytesToRead);
ReadByte(&Term, 1L); /* Read termination character *

/

CreateTimeData(BytesToRead, TimeValues);

WriteCsvToFile(TimeValues, wordData, byteData, BytesToRead);

CloseIO();

}

/***

* Function name: InitIO
* Parameters: none
* Return value: none
* Description: This routine initializes the SICL environment. It se
ts up
* errorhandling, opens both an interface and device ses
sion,
* sets timeout values, clears the GPIB interface card,
and
* clears the oscilloscope's GPIB card by performing a
* Selected Device Clear.

1210 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

**
*******/

int InitIO(void)
{

ionerror(I_ERROR_EXIT); /* set-up interface error handling */

bus = iopen(INTERFACE); /* open interface session */
if (bus == 0) {

printf("Bus session invalid\n");
return FALSE;

}

itimeout(bus, IO_TIMEOUT); /* set bus timeout */
iclear(bus); /* clear the interface */

#ifdef LAN
scope = bus;

#else
scope = iopen(DEVICE_ADDR); /* open the scope device session *

/
if (scope == 0) {

printf("Scope session invalid\n");
iclose(bus); /* close interface session */
_siclcleanup(); /* required for 16-bit applications */
return FALSE;

}

itimeout(scope, IO_TIMEOUT); /* set device timeout */
iclear(scope); /* perform Selected Device Clear on oscilloscop

e */
#endif

return TRUE;
}

/***

* Function name: WriteIO
* Parameters: char *buffer which is a pointer to the character stri
ng to
* be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device
* session using SICL commands.
**
*******/

void WriteIO(char *buffer)
{

unsigned long actualcnt;
unsigned long BytesToWrite;
int send_end = 1;

BytesToWrite = strlen(buffer);

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1211

iwrite(scope, buffer, BytesToWrite, send_end, &actualcnt);

}

/***

* Function name: ReadByte
* Parameters: char *buffer which is a pointer to the array to store
* the read bytes unsigned long BytesToRead which indica
tes
* the maximum number of bytes to read
* Return value: integer which indicates the actual number of bytes re
ad
* Description: This routine inputs strings from the scope device sessi
on
* using SICL commands.
**
******/

unsigned long ReadByte(char *buffer, unsigned long BytesToRead)
{

unsigned long BytesRead=0L;
int reason;

BytesRead = BytesToRead;
iread(scope, buffer, BytesToRead, &reason, &BytesRead);

return BytesRead;
}

/***

* Function name: ReadWord
* Parameters: short *buffer which is a pointer to the word array to
store
* the bytes read unsigned long BytesToRead which indica
tes
* the maximum number of bytes to read
* Return value: integer which indicates the actual number of bytes re
ad
* Description: This routine inputs an array of short values from the
* oscilloscope device session using SICL commands.
**
******/

unsigned long ReadWord(short *buffer, unsigned long BytesToRead)
{

long BytesRead=0L;
int reason;

BytesRead = BytesToRead;
iread(scope, (char *) buffer, BytesToRead, &reason, &BytesRead);

return BytesRead;
}

1212 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

/***

* Function name: ReadDouble
* Parameters: double *buffer which is a pointer to the float value
to read
* Return value: none
* Description: This routine inputs a float value from the oscillosco
pe
* device session using SICL commands.
**
*******/

void ReadDouble(double *buffer)
{

int error;
error = iscanf(scope, "%lf", buffer);

}

/***

* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for
* the SICL environment, and calls the routine _siclclean
up
* which de-allocates resources used by the SICL environm
ent.
**
******/

void CloseIO(void)
{

iclose(scope); /* close device session */
iclose(bus); /* close interface session */

_siclcleanup(); /* required for 16-bit applications */

}

/***

* Function name: AcquireData
* Parameters: none
* Return value: none
* Description: This routine acquires data using the current
* oscilloscope settings.
**
******/

void AcquireData(void)
{

/*
* The root level :DIGitize command is recommended for acquiring ne

w
* waveform data. It initializes the oscilloscope's data buffers,

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1213

* acquires new data, and ensures that acquisition criteria are met
* before the acquisition is stopped. Note that the display is
* automatically turned off when you use this form of the
* :DIGitize command and must be turned on to view the captured dat

a
* on screen.
*/

WriteIO(":DIGitize POD1");
WriteIO(":POD1:DISPlay ON");

}

/***

* Function name: SetupDataTransfer
* Parameters: double lTime which is the time value of the first
* waveform memory location of data.
* double rTime which is the time value of the last
* waveform memory location of data.
* Return value: Number of bytes of waveform data to read.
* Description: This routine sets up the waveform data transfer and get
s
* the number of bytes to be read. The beginning of data
* starts with the # character followed by a number which
* tells how many bytes to read for the integer which is t
he
* total number of data bytes that are being transfered.
* Following this is the waveform data. For example, if 1
024
* bytes of waveform data is being transfered then this
* information will be as follows:
* #41024 <1024 data bytes>
**
******/

unsigned long SetupDataTransfer(double lTime, double rTime)
{

unsigned long BytesToRead;
char header_str[8];
char cData;
unsigned long BytesRead;
int Size;
char Range[100];

/* Find the index value of the first data memory location */

Start = Round((lTime - xOrg)/xInc);
if (Start < 1) {

Start = 1;
}

/* Find the number of data bytes that you want */

Size = Round((rTime - lTime)/xInc);

sprintf(Range, ":WAVeform:DATA? %d,%d", Start, Size);

1214 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

WriteIO(Range); /* Request waveform data */

/* Find the # character */

do {
ReadByte(&cData, 1L);

} while (cData != '#');

/* Read the next byte which tells how many bytes to read for the numb
er

* of waveform data bytes to transfer value.
*/

ReadByte(&cData, 1L);
BytesToRead = cData - '0'; /* Convert to a number */

/* Reads the number of data bytes that will be transfered */

BytesRead = ReadByte(header_str, BytesToRead);
header_str[BytesRead] = '\0';
BytesToRead = atoi(header_str);

return BytesToRead;

}

/***

* Function name: GetTimeConversionFactors
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion
* factors for the time values.
**
*****/

Void GetTimeConversionFactors(void)
{

/* Read values which are used to create time values */

WriteIO(":WAVeform:XINCrement?");
ReadDouble(&xInc);

WriteIO(":WAVeform:XORigin?");
ReadDouble(&xOrg);

}

/***

* Function name: CreateTimeData
* Parameters: unsigned long AcquiredLength which is the number of d
ata
* points
* double TimeValues is a pointer to the array where tim
e

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1215

* values are stored
* Return value: none
* Description: This routine converts the data to time values using
* the values that describe the waveform. These values ar
e stored
* in global variables.
**
*****/

void CreateTimeData(unsigned long AcquiredLength, double *TimeValues)
{

unsigned long i;

for (i = 0; i < AcquiredLength; i++) {
TimeValues[i] =((Start + i) * xInc) + xOrg; /* calculate time va

lues */
}

}

/***

* Function name: WriteCsvToFile
* Parameters: double *TimeValues which is a pointer to an array of
* calculated time values
* unsigned short *wordData which is a pointer to an arr
ay of
* word format digital values
* unsigned char *byteData which is a pointer to an arra
y of
* byte format digital values
* unsigned long AcquiredLength which is the number of d
ata
* points read
* Return value: none
* Description: This routine stores the time and digital information
about
* the waveform as time, word format, and byte format
* separated by commas to a file.
**
******/

void WriteCsvToFile(double *TimeValues, unsigned short *wordData,
unsigned char *byteData, unsigned long AcquiredLength)

{
FILE *fp;
char Binary[9];
unsigned long i;
int j;
int k;

fp = fopen("digital.csv", "wb"); /* Open file in binary mode - clear
file

if it already exists */

if (fp != NULL) {

1216 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

fprintf(fp, "Time,Decimal Word Data,Hex Word Data,Hex Byte Data,Bi
nary Byte Data\n");

Binary[8] = '\0';

for (i = 0; i < AcquiredLength; i++) {

// Create the binary formated byte data
for (j = 7, k = 0; j >= 0; j--, k++) {

Binary[k] = ((byteData[i] & (1 << j)) >> j) + '0';
}

fprintf(fp, "%e,%d,%04X,%02X,%s\
n", TimeValues[i], wordData[i], wordData[i],

byteData[i], Binary);
}

fclose(fp);
}
else {

printf("Unable to open file 'digital.csv'\n");
}

}

/***

* Function name: Round
* Parameters: double number which is a floating point number
* to be converted.
* Return value: The rounded integer value for the number parameter.
* Description: This routine takes a floating point number and create
s an
* integer.
**
*****/

int Round(double number)
{

if (number < 0.0f) {
return ((int) (number - 0.5f));

}
else {

return ((int) (number + 0.5f));
}

}

Understanding
WORD and BYTE

Formats

Before you can understand how the WORD and BYTE downloads work, it is
necessary to understand how Infiniium creates waveform data.

Analog-to-digital
Conversion Basics

The input channel of every digital sampling oscilloscope contains an
analog-to-digital converter (ADC) as shown in Figure 7. The 8-bit ADC in Infiniium
consists of 256 voltage comparators. Each comparator has two inputs. One input
is connected to a reference dc voltage level and the other input is connected to
the channel input. When the voltage of the waveform on the channel input is

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1217

greater than the dc level, then the comparator output is a 1 otherwise the output is
a 0. Each of the comparators has a different reference dc voltage. The output of
the comparators is converted into an 8-bit integer by the encoder.

All ADCs have non-linearity errors which, if not corrected, can give less accurate
vertical measurement results. For example, the non-linearity error for a 3-bit ADC
is shown in the following figure.

Figure 7 Block Diagram of an ADC

_

+

_

+

..

.. ..

_

+

_

+

Encoder

Channel Input

Vref

8 bits

-Vref

1218 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

The graph on the left shows an ADC which has no non-linearity errors. All of the
voltage levels are evenly spaced producing output codes that represent evenly
spaced voltages. In the graph on the right, the voltages are not evenly spaced with
some being wider and some being narrower than the others.

When you calibrate your Infiniium, the input to each channel, in turn, is connected
to the Aux Out connector. The Aux Out is connected to a 16-bit digital-to-analog
converter (DAC) whose input is controlled by Infiniium's CPU. There are 65,536 dc
voltage levels that are produced by the 16-bit DAC at the Aux Out. At each dc
voltage value, the output of the ADC is checked to see if a new digital code is
produced. When this happens, a 16-bit correction factor is calculated for that
digital code and this correction factor is stored in a Calibration Look-up Table.

Figure 8 ADC Non-linearity Errors for a 3-bit ADC

Normalized Analog Input

1/
8F

S

2/
8F

S

3/
8F

S

4/
8F

S

5/
8F

S

6/
8F

S

7/
8F

S

FS0

001

010

011

100

101

110

111

000

O
ut

pu
t D

ig
ita

l N
um

be
r

Ideal ADC Conversion

Normalized Analog Input

1/
8F

S

2/
8F

S

3/
8F

S

4/
8F

S

5/
8F

S

6/
8F

S

7/
8F

S

FS0

001

010

011

100

101

110

111

000

O
ut

pu
t D

ig
ita

l N
um

be
r

Nonlinearity
Errors

Non-ideal ADC Conversion

FS = the full scale
voltage of the ADC

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1219

This process continues until all 256 digital codes are calibrated. The calibration
process removes most of the non-linearity error of the ADC which yields more
accurate vertical voltage values.

During normal operation of the oscilloscope, the output of the ADC is used as an
address to the Calibration Look-up Table which produces 16-bit data for the
oscilloscope to process and display. The output of the ADC is a signed 8-bit
integer and the output of the Calibration Look-up Table is a signed 16-bit integer.
If the amplitude of the input waveform is larger than the maximum dc reference
level of the ADC, the ADC will output the maximum 8-bit value that it can (255).
This condition is called ADC clipping. When the 255 digital code is applied to the
Calibration Look-up Table, a 16-bit value, such as 26,188 could be produced
which represents an ADC clipped value. This number will vary from one
oscilloscope to the next.

WORD and BYTE
Data Formats

When downloading the waveform data in WORD format, the 16-bit signed integer
value for each data point is sent in two consecutive 8-bit bytes over the remote
interface. Whether the least significant byte (LSB) or the most significant byte
(MSB) is sent first depends on the byte order determined by the BYTeorder
command.

Before downloading the waveform data in BYTE format, each 16-bit signed integer
is converted into an 8-bit signed integer. Because there are more possible 16-bit
integers than there are 8-bit integers, a range of 16-bit integers is converted into
single 8-bit numbers. For example, the following 16-bit numbers are all converted
into one 8-bit number.

Figure 9 Data Flow in Infiniium

D0

D1

D2

D3

D4

D5

D6

D7

Calibration
Digital

to
Analog

Converter

CPU
Aux Out

Channel In
Analog

to
Digital

Converter

Calibration
Look-up
Table 16 bits

16 bits

16 bits

8 bits

ASCII
Format

WORD
Format

BYTE
Format

Stream of
8 bit

Characters

1220 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

This conversion is what makes the BYTE download format less accurate than the
WORD format.

History Legacy command (existed before version 3.10).

16-Bit Integers 8-Bit Integer

Decimal Hex Hex Decimal

26,240 0x6680 Truncated to >> 0x66 102

26,200 0x6658

26,160 0x6630

26,120 0x6608

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1221

:WAVeform:FORMat

Command :WAVeform:FORMat {ASCii | BINary | BYTE | WORD}

The :WAVeform:FORMat command sets the data transmission mode for waveform
data output. This command controls how the data is formatted when it is sent from
the oscilloscope, and pertains to all waveforms.

The default format is ASCii.

ASCii ASCii-formatted data consists of waveform data values converted to the currently
selected units, such as volts, and are output as a string of ASCII characters with
each value separated from the next value by a comma. The values are formatted in
floating point engineering notation. For example:

8.0836E+2,8.1090E+2,...,-3.1245E-3

In ASCii format:

• The value "99.999E+36" represents a hole value. A hole can occur when you are
using the equivalent time sampling mode when during a single acquisition not
all of the acquisition memory locations contain sampled waveform data. It can
take several acquisitions in the equivalent time sampling mode to fill all of the
memory locations.

Table 18 Selecting a Format

Type Ad vantages Disad vantages

ASCii • Data is returned as voltage values
and does not need to be converted.

• Is as accurate as WORD format.
• Supports HISTogram SOURce.

• Very slow data download rate.

BYTE • Data download rate is twice as fast
as the WORD format.

• Data is less accurate than the
WORD format for analog channels.

• Not compatible with digital bus
and pod data.

WORD • Data is the most accurate for
analog channels.

• Data download rate takes twice as
long as the BYTE format.

BINary • Supports HISTogram SOURce.
• Can be used for analog channels.

• Data download rate takes twice as
long as the BYTE format for analog
channels.

NOTE The ASCii format does not send out the header information indicating the number of bytes
being downloaded.

1222 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

BYTE BYTE-formatted data is formatted as signed 8-bit integers. Depending on your
programming language and IO library, you may need to create a function to
convert these signed bytes to signed integers. In BYTE format:

• The value 125 represents a hole value. A hole can occur when you are using the
equivalent time sampling mode when during a single acquisition not all of the
acquisition memory locations contain sampled waveform data. It can take
several acquisitions in the equivalent time sampling mode to fill all of the
memory locations.

The waveform data values are converted from 16-bit integers to 8-bit integers
before being downloaded to the computer. For more information, see
"Understanding WORD and BYTE Formats" on page 1216.

WORD WORD-formatted data is transferred as signed 16-bit integers in two bytes. If
:WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each word is
sent first. If the BYTeorder is LSBFirst, the least significant byte of each word is
sent first. In WORD format:

• The value 31232 represents a hole level. A hole can occur when you are using
the equivalent time sampling mode when during a single acquisition not all of
the acquisition memory locations contain sampled waveform data. It can take
several acquisitions in the equivalent time sampling mode to fill all of the
memory locations.

For more information, see "Understanding WORD and BYTE Formats" on
page 1216.

BINary BINary-formatted data can be used with any SOURce. When a source is any valid
source except for histogram, the data is returned in WORD format.

When the source is set to HISTogram, the data is transferred as signed 64-bit
integers in 8 bytes. The are no hole values in the histogram data.

If :WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each long
word is sent first. If the BYTeorder is LSBFirst, the least significant byte of each
long word is sent first.

Example This example selects the WORD format for waveform data transmission.

myScope.WriteString ":WAVeform:FORMat WORD"

Query :WAVeform:FORMat?

The :WAVeform:FORMat? query returns the current output format for transferring
waveform data.

Returned Format [:WAVeform:FORMat] {ASCii | BINary | BYTE | WORD}<NL>

Example This example places the current output format for data transmission in the string
variable, strMode, then prints the contents of the variable to the computer's
screen.

Dim strMode As String ' Dimension variable.
myScope.WriteString ":WAVeform:FORMat?"

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1223

strMode = myScope.ReadString
Debug.Print strMode

History Legacy command (existed before version 3.10).

1224 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:POINts?

Query :WAVeform:POINts?

The :WAVeform:POINts? query returns the points value in the current waveform
preamble. The points value is the number of time buckets contained in the
waveform selected with the :WAVeform:SOURce command. If the Sin(x)/x
interpolation filter is enabled, the number of points can be larger than the
oscilloscope's memory depth setting because the waveform includes the
interpolated points.

Returned Format [:WAVeform:POINts] <points><NL>

<points> An integer. See the :ACQuire:POINts command for a table of possible values.

Example This example places the current acquisition length in the numeric variable,
varLength, then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:POINTS?"
varLength = myScope.ReadNumber
Debug.Print FormatNumber(varLength, 0)

See Also The :ACQuire:POINts command in the ACQuire Commands chapter.

History Legacy command (existed before version 3.10).

NOTE Turn Headers Off

When you are receiving numeric data into numeric variables, you should turn the headers off.
Otherwise, the headers may cause misinterpretation of returned data.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1225

:WAVeform:PREamble?

Query :WAVeform:PREamble?

The :WAVeform:PREamble? query outputs a waveform preamble to the computer
from the waveform source, which can be a waveform memory or channel buffer.

Returned Format [:WAVeform:PREamble] <preamble_data><NL>

The preamble can be used to translate raw data into time and voltage values. The
following lists the elements in the preamble.

<preamble_ data> <format>, <type>, <points>, <count> , <X increment>, <X origin>, < X reference>,
<Y increment>, <Y origin>, <Y reference>, <coupling>, <X display range>, <X
display origin>, <Y display range>, <Y display origin>, <date>, <time>, <frame
model #>, <acquisition mode>, <completion>, <X units>, <Y units>, <max
bandwidth limit>, <min bandwidth limit>

<format> 0 for ASCii format. 1 for BYTE format. 2 for WORD format. 3 for LONG format. 4 for
LONGLONG

<type> Returned type values can be:

• 1 — RAW

• 2 — AVERage

• 3 — VHIStogram

• 4 — HHIStogram

• 5 — not used

• 6 — INTerpolate

• 7 — not used

• 8 — not used

• 9 — DIGITAL

• 10 — PDETect

<points> The number of data points or data pairs contained in the waveform data. (See
":ACQuire:POINts[:ANALog]" on page 175.)

<count> For the AVERAGE waveform type, the count value is the fewest number of hits for
all time buckets. This value may be less than or equal to the value requested with
the :ACQuire:AVERage:COUNt command. For RAW and INTerpolate waveform
types, this value is 0 or 1. The count value is ignored when it is sent to the
oscilloscope in the preamble. (See ":WAVeform:TYPE?" on page 1237 and
":ACQuire[:AVERage]:COUNt" on page 163.)

1226 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

<X increment> The X increment is the duration between data points on the X axis. For time
domain waveforms, this is the time between points. If the value is zero then no
data has been acquired. (See the ":WAVeform:XINCrement?" on page 1241
query.)

<X origin> The X origin is the X-axis value of the first data point in the data record. For time
domain waveforms, it is the time of the first point. This value is treated as a double
precision 64-bit floating point number. If the value is zero then no data has been
acquired. (See the ":WAVeform:XORigin?" on page 1242 query.)

<X reference> The X reference is the data point associated with the X origin. It is at this data point
that the X origin is defined. In this oscilloscope, the value is always zero. (See the
":WAVeform:XREFerence?" on page 1244 query.)

<Y increment> The Y increment is the duration between Y-axis levels. For voltage waveforms, it is
the voltage corresponding to one level. If the value is zero then no data has been
acquired. (See the ":WAVeform:YINCrement?" on page 1247 query.)

<Y origin> The Y origin is the Y-axis value at level zero. For voltage waveforms, it is the
voltage at level zero. If the value is zero then no data has been acquired. (See the
":WAVeform:YORigin?" on page 1248 query.)

<Y reference> The Y reference is the level associated with the Y origin. It is at this level that the Y
origin is defined. In this oscilloscope, this value is always zero. (See the
":WAVeform:YREFerence?" on page 1250 query.)

<coupling> 0 for AC coupling. 1 for DC coupling. 2 for DCFIFTY coupling. 3 for LFREJECT
coupling.

<X display range> The X display range is the X-axis duration of the waveform that is displayed. For
time domain waveforms, it is the duration of time across the display. If the value is
zero then no data has been acquired. (See the ":WAVeform:XRANge?" on
page 1243 query.)

<X display origin> The X display origin is the X-axis value at the left edge of the display. For time
domain waveforms, it is the time at the start of the display. This value is treated as
a double precision 64-bit floating point number. If the value is zero then no data
has been acquired. (See the ":WAVeform:XDISplay?" on page 1240 query.)

<Y display range> The Y display range is the Y-axis duration of the waveform which is displayed. For
voltage waveforms, it is the amount of voltage across the display. If the value is
zero then no data has been acquired. (See the ":WAVeform:YRANge?" on
page 1249 query.)

<Y display origin> The Y-display origin is the Y-axis value at the center of the display. For voltage
waveforms, it is the voltage at the center of the display. If the value is zero then no
data has been acquired. (See the ":WAVeform:YDISplay?" on page 1246 query.)

<date> A string containing the date in the format DD MMM YYYY, where DD is the day, 1
to 31; MMM is the month; and YYYY is the year.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1227

<time> A string containing the time in the format HH:MM:SS:TT, where HH is the hour, 0
to 23, MM is the minutes, 0 to 59, SS is the seconds, 0 to 59, and TT is the
hundreds of seconds, 0 to 99.

<frame_ model_#> A string containing the model number and serial number of the oscilloscope in the
format of MODEL#:SERIAL#.

<acquisition
_mode>

0 for RTIMe mode. 1 for ETIMe mode. 2 not used. 3 for PDETect.

<completion> The completion value is the percent of time buckets that are complete. The
completion value is ignored when it is sent to the oscilloscope in the preamble.
(See the ":WAVeform:COMPlete?" on page 1196 query.)

<x_units>
<y_units>

0 for UNKNOWN units. 1 for VOLT units. 2 for SECOND units. 3 for CONSTANT
units. 4 for AMP units. 5 for DECIBEL units.

<max bandwidth
limit> <min

bandwidth limit>

The band pass consists of two values that are an estimation of the maximum and
minimum bandwidth limits of the source waveform. The bandwidth limit is
computed as a function of the selected coupling and filter mode. (See the
":WAVeform:BANDpass?" on page 1194 query.)

See Table 19 for descriptions of all the waveform preamble elements.

Example This example outputs the current waveform preamble for the selected source to
the string variable, strPreamble.

Dim strPreamble As String ' Dimension variable.
myScope.WriteString ":SYSTem:HEADer OFF" ' Response headers off.
myScope.WriteString ":WAVeform:PREamble?"
strPreamble = myScope.ReadString

Table 19 Waveform Preamble Elements

Element Description

Format The format value describes the data transmission mode for waveform data
output. This command controls how the data is formatted when it is sent
from the oscilloscope. (See ":WAVeform:FORMat" on page 1221.)

Type This value describes how the waveform was acquired. (See also the
":WAVeform:TYPE?" on page 1237 query.)

Points The number of data points or data pairs contained in the waveform data.
(See ":ACQuire:POINts[:ANALog]" on page 175.)

Count For the AVERAGE waveform type, the count is the number of averages that
have occurred. For RAW and INTERPOLATE waveform types, this value is 0
or 1. The count value is ignored when it is sent to the oscilloscope in the
preamble. (See ":WAVeform:TYPE?" on page 1237 and
":ACQuire[:AVERage]:COUNt" on page 163.)

X Increment The X increment is the duration between data points on the X axis. For time
domain waveforms, this is the time between points. (See the
":WAVeform:XINCrement?" on page 1241 query.)

1228 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

X Origin The X origin is the X-axis value of the first data point in the data record. For
time domain waveforms, it is the time of the first point. This value is treated
as a double precision 64-bit floating point number. (See the
":WAVeform:XORigin?" on page 1242 query.)

X Reference The X reference is the data point associated with the X origin. It is at this
data point that the X origin is defined. In this oscilloscope, the value is
always zero. (See the ":WAVeform:XREFerence?" on page 1244
query.)

Y Increment The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level. (See the
":WAVeform:YINCrement?" on page 1247 query.)

Y Origin The Y origin is the Y-axis value at level zero. For voltage waveforms, it is
the voltage at level zero. (See the ":WAVeform:YORigin?" on page 1248
query.)

Y Reference The Y reference is the level associated with the Y origin. It is at this level
that the Y origin is defined. In this oscilloscope, this value is always zero.
(See the ":WAVeform:YREFerence?" on page 1250 query.)

Coupling The input coupling of the waveform. The coupling value is ignored when
sent to the oscilloscope in the preamble. (See the
":WAVeform:COUPling?" on page 1198 query.)

X Display Range The X display range is the X-axis duration of the waveform that is
displayed. For time domain waveforms, it is the duration of time across the
display. (See the ":WAVeform:XRANge?" on page 1243 query.)

X Display Origin The X display origin is the X-axis value at the left edge of the display. For
time domain waveforms, it is the time at the start of the display. This value
is treated as a double precision 64-bit floating point number. (See the
":WAVeform:XDISplay?" on page 1240 query.)

Y Display Range The Y display range is the Y-axis duration of the waveform which is
displayed. For voltage waveforms, it is the amount of voltage across the
display. (See the ":WAVeform:YRANge?" on page 1249 query.)

Y Display Origin The Y-display origin is the Y-axis value at the center of the display. For
voltage waveforms, it is the voltage at the center of the display. (See the
":WAVeform:YDISplay?" on page 1246 query.)

Date The date that the waveform was acquired or created.

Time The time that the waveform was acquired or created.

Frame Model # The model number of the frame that acquired or created this waveform.
The frame model number is ignored when it is sent to an oscilloscope in
the preamble.

Acquisition Mode The acquisition sampling mode of the waveform. (See ":ACQuire:MODE"
on page 173.)

Table 19 Waveform Preamble Elements (continued)

Element Description

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1229

See Also • ":WAVeform:DATA?" on page 1199

History Legacy command (existed before version 3.10).

Complete The complete value is the percent of time buckets that are complete. The
complete value is ignored when it is sent to the oscilloscope in the
preamble. (See the ":WAVeform:COMPlete?" on page 1196 query.)

X Units The X-axis units of the waveform. (See the ":WAVeform:XUNits?" on
page 1245 query.)

Y Units The Y-axis units of the waveform. (See the ":WAVeform:YUNits?" on
page 1251 query.)

Band Pass The band pass consists of two values that are estimates of the maximum
and minimum bandwidth limits of the source waveform. The bandwidth
limit is computed as a function of the selected coupling and filter mode.
(See the ":WAVeform:BANDpass?" on page 1194 query.)

Table 19 Waveform Preamble Elements (continued)

Element Description

1230 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:SEGMented:ALL

Command :WAVeform:SEGMented:ALL {{ON | 1} | {OFF | 0}}

The :WAVeform:SEGmented:ALL command configures the DATA query for rapidly
downloading all segments in one query.

The <start> and <size> optional parameters for the DATA query are still supported
and represent the start and size of the data for each segment.

Powering on the oscilloscope or performing a Default Setup sets this command to
OFF.

There is complete backwards compatibility when this command is set to OFF.

The ON setting only supports channel and pod sources. If other sources such as
functions are selected, a settings conflict message appears during the DATA query
and no data is downloaded.

In segmented acquisition mode, with this command set to ON, the number of
segments is appended to end of the waveform preamble.

Example This example turns on this command.

myScope.WriteString ":WAVeform:SEGMented:ALL ON"

Query :WAVeform:SEGMented:ALL?

This query returns the status of this command.

History Legacy command (existed before version 3.10).

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1231

:WAVeform:SEGMented:COUNt?

Query :WAVeform:SEGMented:COUNt?

The :WAVeform:SEGMented:COUNt? query returns the index number of the last
captured segment. A return value of zero indicates that the :ACQuire:MODE is not
set to SEGMented.

<index_number> An integer number representing the index value of the last segment.

Returned Format [:WAVeform:SEGMented:COUNt] <index_number><NL>

Example This example returns the number of the last segment that was captured in the
variable varIndex and prints it to the computer screen.

myScope.WriteString ":WAVEFORM:SEGMENTED:COUNT?"
varIndex = myScope.ReadNumber
Debug.Print FormatNumber(varIndex, 0)

History Legacy command (existed before version 3.10).

1232 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:SEGMented:TTAG?

Query :WAVeform:SEGMented:TTAG?

The :WAVeform:SEGMented:TTAG? query returns the time difference between the
first segment's trigger point and the trigger point of the currently displayed
segment.

<delta_time> A real number in exponential format representing the time value difference
between the first segment's trigger point and the currently displayed segment.

Returned Format [:WAVeform:SEGMented:TTAG] <delta_time><NL>

Example This example returns the time from the first segment's trigger point and the
currently displayed segment's trigger point in the variable varDtime and prints it to
the computer screen.

myScope.WriteString ":WAVEFORM:SEGMENTED:TTAG?"
varDtime = myScope.ReadNumber
Debug.Print FormatNumber(vardtime, 0)

History Legacy command (existed before version 3.10).

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1233

:WAVeform:SEGMented:XLISt?

Query :WAVeform:SEGMented:XLISt? {RELXorigin | ABSXorigin | TTAG}

The :WAVeform:SEGMented:XLISt? query rapidly downloads x-parameter values
for all segments.

RELXorigin = relative X origin for each segment.

ABSXorigin = relative origin + time tag for each segment

TTAG = time tag for each segment

This query uses the DATA query format for the returned data and supports all
waveform command options including: BYTeorder, FORmat (only ASCii or BINary
(float64 with 8 bytes per value), SOURce (only CHANnel<N> or POD<N>),
STReaming, VIEW.

History Legacy command (existed before version 3.10).

1234 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:SOURce

Command :WAVeform:SOURce {CHANnel<N> | COMMonmode<P> DIFF<P>
| FUNCtion<F> | HISTogram | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized | BUS<N>
| POD1 | POD2 | PODALL}

The :WAVeform:SOURce command selects a channel, function, waveform
memory, or histogram as the waveform source.

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

POD1 is the activated digital channels in the D0-D7 set while POD2 is the
activated digital channels in the D8-D15 set. PODALL is all the activated digital
channels.

<N> CHANnel<N> is an integer, 1-4.

BUS<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

<P> An integer, 1-2.

Example This example selects channel 1 as the waveform source.

myScope.WriteString ":WAVeform:SOURce CHANnel1"

Query :WAVeform:SOURce?

The :WAVeform:SOURce? query returns the currently selected waveform source.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1235

Returned Format [:WAVeform:SOURce] {CHANnel<N> | COMMonmode<P> | DIFFerential<P>
| FUNCtion<F> | HISTogram | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized | BUS<N>
| POD1 | POD2 | PODALL}<NL>

Example This example places the current selection for the waveform source in the string
variable, strSelection, then prints the contents of the variable to the computer's
screen.

Dim strSelection As String ' Dimension variable.
myScope.WriteString ":WAVeform:SOURce?"
strSelection = myScope.ReadString
Debug.Print strSelection

History Legacy command (existed before version 3.10).

1236 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:STReaming

Command :WAVeform:STReaming {{ON | 1} | {OFF | 0}}

When enabled, :WAVeform:STReaming allows more than 999,999,999 bytes of
data to be transfered from the Infiniium oscilloscope to a PC when using the
:WAVeform:DATA? query. See the :WAVeform:DATA? query for information on
receiving this much data.

Example This example turns on the streaming feature.

myScope.WriteString ":WAVeform:STReaming ON"

Query :WAVeform:STReaming?

The :WAVeform:STReaming? query returns the status of the streaming feature.

Returned Format [:WAVeform:STReaming] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1237

:WAVeform:TYPE?

Query :WAVeform:TYPE?

The :WAVeform:TYPE? query returns the current acquisition data type for the
currently selected source. The type returned describes how the waveform was
acquired. The waveform type may be:

• RAW — data consists of one data point in each time bucket with no
interpolation.

• AVERage — data consists of the average of the first n hits in a time bucket,
where n is the value in the count portion of the preamble. Time buckets that
have fewer than n hits return the average of the data they contain. If the
:ACQuire:COMPlete parameter is set to 100%, then each time bucket must
contain the number of data hits specified with the :ACQuire:AVERage:COUNt
command.

• VHIStogram — data is a vertical histogram. Histograms are transferred using
the LONGLONG format. They can be generated using the Histogram subsystem
commands.

• HHIStogram — data is a horizontal histogram. Histograms are transferred using
the LONGLONG format. They can be generated using the Histogram subsystem
commands.

• INTerpolate — In the INTerpolate acquisition type, the last data point in each
time bucket is stored, and additional data points between the acquired data
points are filled by interpolation.

• DIGITAL — data consists of digital pod or bus values for each time bucket.

• PDETect — data consists of two data points in each time bucket: the minimum
values and the maximum values.

Returned Format [:WAVeform:TYPE] {RAW | AVER | VHIS | HHIS | INT | DIGITAL | PDET}<NL>

Example This example places the current acquisition data type in the string variable,
strType, then prints the contents of the variable to the computer's screen.

Dim strType As String ' Dimension variable.
myScope.WriteString ":WAVeform:TYPE?"
strType = myScope.ReadString
Debug.Print strType

History Legacy command (existed before version 3.10).

1238 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:VIEW

Command :WAVeform:VIEW {ALL | MAIN | WINDow}

The :WAVeform:VIEW command selects which view of the waveform is selected for
data and preamble queries. You can set the command to ALL, MAIN, or WINDow.
The view has different meanings depending upon the waveform source selected.
The default setting for this command is ALL.

Channels For channels, you may select ALL, MAIN, or WINDow views. If you select ALL, all of
the data in the waveform record is referenced. If you select MAIN, only the data in
the main time base range is referenced. The first value corresponds to the first time
bucket in the main time base range, and the last value corresponds to the last time
bucket in the main time base range. If WINDow is selected, only data in the
delayed view is referenced. The first value corresponds to the first time bucket in
the delayed view and the last value corresponds to the last time bucket in the
delayed view.

Memories For memories, if you specify ALL, all the data in the waveform record is referenced.
WINDow and MAIN refer to the data contained in the memory time base range for
the particular memory. The first value corresponds to the first time bucket in the
memory time base range, and the last value corresponds to the last time bucket in
the memory time base range.

Functions For functions, ALL, MAIN, and WINDow refer to all of the data in the waveform
record.

Table 20 summarizes the parameters for this command for each source.

Example This example sets up the oscilloscope to view all of the data.

myScope.WriteString ":WAVEFORM:VIEW ALL"

Query :WAVeform:VIEW?

The :WAVeform:VIEW? query returns the currently selected view.

Returned Format [:WAVeform:VIEW] {ALL | MAIN | WINDow}<NL>

Example This example returns the current view setting to the string variable, strSetting,
then prints the contents of the variable to the computer's screen.

Table 20 Waveform View Parameters

Source/Parameter ALL MAIN WINDow

CHANNEL All data Main time base Zoom

MEMORY All data Memory time base Memory time base

FUNCTION All data All data All data

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1239

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":WAVEFORM:VIEW?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

1240 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:XDISplay?

Query :WAVeform:XDISplay?

The :WAVeform:XDISplay? query returns the X-axis value at the left edge of the
display. For time domain waveforms, it is the time at the start of the display. For
VERSus type waveforms, it is the value at the center of the X-axis of the display.
This value is treated as a double precision 64-bit floating point number.

Returned Format [:WAVeform:XDISplay] <value><NL>

<value> A real number representing the X-axis value at the left edge of the display.

Example This example returns the X-axis value at the left edge of the display to the numeric
variable, varValue, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:XDISPLAY?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1241

:WAVeform:XINCrement?

Query :WAVeform:XINCrement?

The :WAVeform:XINCrement? query returns the duration between consecutive
data points for the currently specified waveform source. For time domain
waveforms, this is the time difference between consecutive data points. For
VERSus type waveforms, this is the duration between levels on the X axis. For
voltage waveforms, this is the voltage corresponding to one level.

Returned Format [:WAVeform:XINCrement] <value><NL>

<value> A real number representing the duration between data points on the X axis.

Example This example places the current X-increment value for the currently specified
source in the numeric variable, varValue, then prints the contents of the variable to
the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:XINCREMENT?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also You can obtain the X-increment value through the :WAVeform:PREamble? query.

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

1242 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:XORigin?

Query :WAVeform:XORigin?

The :WAVeform:XORigin? query returns the X-axis value of the first data point in
the data record. For time domain waveforms, it is the time of the first point. For
VERSus type waveforms, it is the X-axis value at level zero. For voltage waveforms,
it is the voltage at level zero. The value returned by this query is treated as a
double precision 64-bit floating point number.

Returned Format [:WAVeform:XORigin] <value><NL>

<value> A real number representing the X-axis value of the first data point in the data
record.

Example This example places the current X-origin value for the currently specified source in
the numeric variable, varValue, then prints the contents of the variable to the
computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:XORIGIN?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also You can obtain the X-origin value through the :WAVeform:PREamble? query.

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1243

:WAVeform:XRANge?

Query :WAVeform:XRANge?

The :WAVeform:XRANge? query returns the X-axis duration of the displayed
waveform. For time domain waveforms, it is the duration of the time across the
display. For VERSus type waveforms, it is the duration of the waveform that is
displayed on the X axis.

Returned Format [:WAVeform:XRANge] <value><NL>

<value> A real number representing the X-axis duration of the displayed waveform.

Example This example returns the X-axis duration of the displayed waveform to the numeric
variable, varValue, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:XRANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

1244 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:XREFerence?

Query :WAVeform:XREFerence?

The :WAVeform:XREFerence? query returns the data point or level associated with
the X-origin data value. It is at this data point or level that the X origin is defined.
In this oscilloscope, the value is always zero.

Returned Format [:WAVeform:XREFerence] 0<NL>

Example This example places the current X-reference value for the currently specified
source in the numeric variable, varValue, then prints the contents of the variable to
the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:XREFERENCE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also You can obtain the X-reference value through the :WAVeform:PREamble? query.

History Legacy command (existed before version 3.10).

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1245

:WAVeform:XUNits?

Query :WAVeform:XUNits?

The :WAVeform:XUNits? query returns the X-axis units of the currently selected
waveform source. The currently selected source may be a channel, function, or
waveform memory.

Returned Format [:WAVeform:XUNits] {UNKNown | VOLT | SECond | CONStant | AMP | DECibels
| HERTz | WATT}<NL>

Example This example returns the X-axis units of the currently selected waveform source to
the string variable, strUnit, then prints the contents of the variable to the
computer's screen.

Dim strUnit As String ' Dimension variable.
myScope.WriteString ":WAVEFORM:XUNITS?"
strUnit = myScope.ReadString
Debug.Print strUnit

History Legacy command (existed before version 3.10).

1246 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:YDISplay?

Query :WAVeform:YDISplay?

The :WAVeform:YDISplay? query returns the Y-axis value at the center of the
display. For voltage waveforms, it is the voltage at the center of the display.

Returned Format [:WAVeform:YDISplay] <value><NL>

<value> A real number representing the Y-axis value at the center of the display.

Example This example returns the current Y-display value to the numeric variable, varValue,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":":WAVEFORM:YDISPLAY?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1247

:WAVeform:YINCrement?

Query :WAVeform:YINCrement?

The :WAVeform:YINCrement? query returns the y-increment voltage value for the
currently specified source. This voltage value is the voltage difference between
two adjacent waveform data digital codes. Adjacent digital codes are codes that
differ by one least significant bit. For example, the digital codes 24680 and 24681
vary by one least significant bit.

• For BYTE and WORD data, and voltage waveforms, it is the voltage
corresponding to one least significant bit change.

• For ASCii data format, the YINCrement is the full scale voltage range covered
by the A/D converter.

Returned Format [:WAVeform:YINCrement] <real_value><NL>

<real_value> A real number in exponential format.

Example This example places the current Y-increment value for the currently specified
source in the numeric variable, varValue, then prints the contents of the variable to
the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:YINCREMENT?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also For more information on BYTE and WORD formats, see "Understanding WORD
and BYTE Formats" on page 1216.

You can also obtain the Y-increment value through the :WAVeform:PREamble?
query.

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

1248 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:YORigin?

Query :WAVeform:YORigin?

The :WAVeform:YORigin? query returns the y-origin voltage value for the currently
specified source. The voltage value returned is the voltage value represented by
the waveform data digital code 00000.

• For BYTE and WORD data, and voltage waveforms, it is the voltage at digital
code zero.

• For ASCii data format, the YORigin is the Y-axis value at the center of the data
range. Data range is returned in the Y increment.

Returned Format [:WAVeform:YORigin] <real_value><NL>

<real_value> A real number in exponential format.

Example This example places the current Y-origin value in the numeric variable, varCenter,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:YORIGIN?"
varCenter = myScope.ReadNumber
Debug.Print FormatNumber(varCenter, 0)

See Also For more information on BYTE and WORD formats, see "Understanding WORD
and BYTE Formats" on page 1216.

You can obtain the Y-origin value through the :WAVeform:PREamble? query.

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1249

:WAVeform:YRANge?

Query :WAVeform:YRANge?

The :WAVeform:YRANge? query returns the Y-axis duration of the displayed
waveform. For voltage waveforms, it is the voltage across the entire display.

Returned Format [:WAVeform:YRANge] <value><NL>

<value> A real number representing the Y-axis duration of the displayed waveform.

Example This example returns the current Y-range value to the numeric variable, varValue,
then prints the contents of the variable to the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:YRANGE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History Legacy command (existed before version 3.10).

NOTE A "Waveform data is not valid" error occurs when there is no data available for a channel.
When this occurs, a zero value is returned.

1250 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

:WAVeform:YREFerence?

Query :WAVeform:YREFerence?

The :WAVeform:YREFerence? query returns the y-reference voltage value for the
currently specified source. It is at this level that the Y origin is defined. In this
oscilloscope, the value is always zero.

Returned Format [:WAVeform:YREFerence] 0<NL>

Example This example places the current Y-reference value for the currently specified
source in the numeric variable, varValue, then prints the contents of the variable to
the computer's screen.

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":WAVEFORM:YREFERENCE?"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

See Also For more information on BYTE and WORD formats, see "Understanding WORD
and BYTE Formats" on page 1216.

You can obtain the Y-reference value through the :WAVeform:PREamble? query.

History Legacy command (existed before version 3.10).

Waveform Commands 34

Keysight Infiniium Oscilloscopes Programmer's Guide 1251

:WAVeform:YUNits?

Query :WAVeform:YUNits?

The :WAVeform:YUNits? query returns the Y-axis units of the currently selected
waveform source. The currently selected source may be a channel, function, or
waveform memory.

Returned Format [:WAVeform:YUNits] {UNKNown | VOLT | SECond | HITS | DECibels | CONStant
| AMP}<NL>

Example This example returns the Y-axis units of the currently selected waveform source to
the string variable, strUnit, then prints the contents of the variable to the
computer's screen.

Dim strUnit As String ' Dimension variable.
myScope.WriteString ":WAVEFORM:YUNITS?"
strUnit = myScope.ReadString
Debug.Print strUnit

History Legacy command (existed before version 3.10).

1252 Keysight Infiniium Oscilloscopes Programmer's Guide

34 Waveform Commands

1253

Keysight Infiniium Oscilloscopes
Programmer's Guide

35 Waveform Memory
Commands

:WMEMory<N>:CLEar / 1254
:WMEMory<N>:DISPlay / 1255
:WMEMory<N>:LOAD / 1256
:WMEMory<N>:SAVE / 1257
:WMEMory<N>:TIETimebase / 1258
:WMEMory<N>:XOFFset / 1259
:WMEMory<N>:XRANge / 1260
:WMEMory<N>:YOFFset / 1261
:WMEMory<N>:YRANge / 1262

The Waveform Memory Subsystem commands let you save and display
waveforms, memories, and functions.

NOTE <N> in WMEMory<N> Ind icates the Waveform Memory Number

In Waveform Memory commands, the <N> in WMEMory<N> represents the waveform memory
number (1-4).

1254 Keysight Infiniium Oscilloscopes Programmer's Guide

35 Waveform Memory Commands

:WMEMory<N>:CLEar

Command :WMEMory<N>:CLEar

The :WMEMory<N>:CLEar clears the associated wave memory.

<N> The memory number is an integer from 1 to 4.

Example This example clears the waveform memory 1.

myScope.WriteString ":WMEMORY1:CLEar"

History Legacy command (existed before version 3.10).

Waveform Memory Commands 35

Keysight Infiniium Oscilloscopes Programmer's Guide 1255

:WMEMory<N>:DISPlay

Command :WMEMory<N>:DISPlay {{ON | 1} | {OFF | 0}}

The :WMEMory<N>:DISPlay command enables or disables the viewing of the
selected waveform memory.

<N> The memory number is an integer from 1 to 4.

Example This example turns on the waveform memory 1 display.

myScope.WriteString ":WMEMORY1:DISPLAY ON"

Query :WMEMory<N>:DISPlay?

The :WMEMory<N>:DISPlay? query returns the state of the selected waveform
memory.

Returned Format [:WMEMory<N>:DISPlay] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

1256 Keysight Infiniium Oscilloscopes Programmer's Guide

35 Waveform Memory Commands

:WMEMory<N>:LOAD

Command :WMEMory<N>:LOAD <file_name>

The :WMEMory<N>:LOAD command loads an oscilloscope waveform memory
location with a waveform from a file that has an internal waveform format
(extension .wfm), comma separated xypairs, (extension .csv), tab separated xypairs
(extension .tsv), and yvalues text (extension .txt). You can load the file from either
the c: or a: drive, or any lan connected drive. See the examples below.

The oscilloscope assumes that the default path for waveforms is c:\Document and
Settings\All Users\Shared Documents\Infiniium\Data. To use a different path,
specify the path and file name completely.

<N> The memory number is an integer from 1 to 4.

<file_name> A quoted string which specifies the file to load, and has a .wfm, .csv, .tsv, or .txt
extension.

Examples This example loads waveform memory 4 with a file.

myScope.WriteString _
":WMEMORY4:LOAD ""c:\Document and Settings\All Users\Shared Documents\
Infiniium\Data\waveform.wfm"""

This example loads waveform memory 3 with a file that has the internal waveform
format and is stored on drive U:.

myScope.WriteString ":WMEMORY3:LOAD ""U:\waveform.wfm"""

Related
Commands

:DISK:LOAD
:DISK:STORe

See Also • ":DISK:LOAD" on page 304

• ":DISK:SAVE:SETup" on page 313

• ":DISK:SAVE:WAVeform" on page 314

History Legacy command (existed before version 3.10).

Waveform Memory Commands 35

Keysight Infiniium Oscilloscopes Programmer's Guide 1257

:WMEMory<N>:SAVE

Command :WMEMory<N>:SAVE {CHANnel<N> | COMMonmode<P> | DIFF<P> | CLOCk
| FUNCtion<F> | MTRend | MSPectrum | WMEMory<N>}

The :WMEMory<N>:SAVE command stores the specified channel, waveform
memory, or function to the waveform memory. You can save waveforms to
waveform memories regardless of whether the waveform memory is displayed or
not.

The :WAVeform:VIEW command determines the view of the data being saved.

<N> CHANnel<N> is an integer, 1-4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

<P> An integer, 1-2.

The COMMonmode and DIFF sources are just aliases that can be used in place of
the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are
not in differential mode. DIFF1 refers to the differential signal between channels 1
and 3 (and COMMonmode3 refers to the common mode channel between these
same channels). DIFF2 refers to the differential signal between channels 2 and 4
(and COMMonmode4 refers to the common mode channel between these same
channels).

Example This example saves channel 1 to waveform memory 4.

myScope.WriteString ":WMEMORY4:SAVE CHANNEL1"

History Legacy command (existed before version 3.10).

1258 Keysight Infiniium Oscilloscopes Programmer's Guide

35 Waveform Memory Commands

:WMEMory<N>:TIETimebase

Command :WMEMory<N>:TIETimebase {{ON | 1} | {OFF | 0}}

The :WMEMory<N>:TIETimebase command specifies whether the waveform
memory horizontal scale is tied to the main horizontal time/div setting or can be
adjusted separately.

<N> The memory number is an integer from 1 to 4.

Example This example ties the waveform memory horizontal scale to the main horizontal
time/div setting.

myScope.WriteString ":WMEMory1:TIETimebase ON"

Query :WMEMory<N>:TIETimebase?

The :WMEMory<N>:TIETimebase? query returns the state of the "tie to timebase"
control.

Returned Format [:WMEMory<N>:TIETimebase] {1 | 0}<NL>

History Legacy command (existed before version 3.10).

Waveform Memory Commands 35

Keysight Infiniium Oscilloscopes Programmer's Guide 1259

:WMEMory<N>:XOFFset

Command :WMEMory<N>:XOFFset <offset_value>

The :WMEMory<N>:XOFFset command sets thex-axis, horizontal position for the
selected waveform memory's display scale. The position is referenced to center
screen.

<N> The memory number is an integer from 1 to 4.

<offset_value> A real number for the horizontal offset (position) value.

Example This example sets the X-axis, horizontal position for waveform memory 3 to 0.1
seconds (100 ms).

myScope.WriteString ":WMEMORY3:XOFFSET 0.1"

Query :WMEMory<N>:XOFFset?

The :WMEMory<N>:XOFFset? query returns the current X-axis, horizontal position
for the selected waveform memory.

Returned Format [:WMEMory<N>:XOFFset] <offset_value><NL>

History Legacy command (existed before version 3.10).

1260 Keysight Infiniium Oscilloscopes Programmer's Guide

35 Waveform Memory Commands

:WMEMory<N>:XRANge

Command :WMEMory<N>:XRANge <range_value>

The :WMEMory<N>:XRANge command sets theX-axis, horizontal range for the
selected waveform memory's display scale. The horizontal scale is the horizontal
range divided by 10.

<N> The memory number is an integer from 1 to 4.

<range_value> A real number for the horizontal range value.

Example This example sets the X-axis, horizontal range of waveform memory 2 to
435 microseconds.

myScope.WriteString ":WMEMORY2:XRANGE 435E-6"

Query :WMEMory<N>:XRANge?

The :WMEMory<N>:XRANge? query returns the current X-axis, horizontal range
for the selected waveform memory.

Returned Format [:WMEMory<N>:XRANge] <range_value><NL>

History Legacy command (existed before version 3.10).

Waveform Memory Commands 35

Keysight Infiniium Oscilloscopes Programmer's Guide 1261

:WMEMory<N>:YOFFset

Command :WMEMory<N>:YOFFset <offset_value>

The :WMEMory<N>:YOFFset command sets the Y-axis (vertical axis) offset for the
selected waveform memory.

<N> The memory number is an integer from 1 to 4.

<offset_value> A real number for the vertical offset value.

Example This example sets the Y-axis (vertical) offset of waveform memory 2 to 0.2V.

myScope.WriteString ":WMEMORY2:YOFFSET 0.2"

Query :WMEMory<N>:YOFFset?

The :WMEMory<N>:YOFFset? query returns the current Y-axis (vertical) offset for
the selected waveform memory.

Returned Format [:WMEMory<N>:YOFFset] <offset_value><NL>

History Legacy command (existed before version 3.10).

1262 Keysight Infiniium Oscilloscopes Programmer's Guide

35 Waveform Memory Commands

:WMEMory<N>:YRANge

Command :WMEMory<N>:YRANge <range_value>

The :WMEMory<N>:YRANge command sets the Y-axis, vertical range for the
selected memory. The vertical scale is the vertical range divided by 8.

<N> The memory number is an integer from 1 to 4.

<range_value> A real number for the vertical range value.

Example This example sets the Y-axis (vertical) range of waveform memory 3 to 0.2 volts.

myScope.WriteString ":WMEMORY3:YRANGE 0.2"

Query :WMEMory<N>:YRANge?

The :WMEMory<N>:YRANge? query returns the Y-axis, vertical range for the
selected memory.

Returned Format [:WMEMory<N>:YRANge]<range_value><NL>

History Legacy command (existed before version 3.10).

1263

Keysight Infiniium Oscilloscopes
Programmer's Guide

36 Obsolete and Discontinued
Commands

Obsolete commands are deprecated, older forms of commands that still work but
have been replaced by newer commands.

Discontinued
Commands

Discontinued commands are commands that were supported in previous versions
of the Infiniium oscilloscope software, but are not supported by this version of the
Infiniium oscilloscope software. Listed below are the Discontinued commands and
the nearest equivalent command available (if any).

Obsolete Command Current Command Equivalent Behavior Differences

:DISPlay:COLumn (see
page 1265)

:DISPlay:BOOKmark<N>:XPOSi
tion (see page 322)

Bookmarks are now the
method used to place text
strings or annotations on
screen.:DISPlay:LINE (see

page 1266)
:DISPlay:BOOKmark<N>:SET
(see page 319)

:DISPlay:ROW (see
page 1267)

:DISPlay:BOOKmark<N>:YPOSi
tion (see page 323)

:DISPlay:STRing (see
page 1268)

:DISPlay:BOOKmark<N>:SET
(see page 319)

:DISPlay:TEXT (see
page 1269)

:DISPlay:BOOKmark<N>:DELet
e (see page 318)

:MEASure:CLOCk:METHod (see
page 1270)

• :MEASure:CLOCk:METHod
(see page 559)

• :MEASure:CLOCk:METHod:JTF
 (see page 566)

• :MEASure:CLOCk:METHod:OJ
TF (see page 568)

The command options for
specifying clock recovery PLL
options have been moved to
the new commands
:MEASure:CLOCk:METHod:JTF
and
:MEASure:CLOCk:METHod:OJT
F.

:MEASure:DDPWS (see
page 1273)

:MEASure:RJDJ:ALL? (see
page 684)

The :MEASure:RJDJ:ALL? query
returns all of the RJDJ jitter
measurements.

1264 Keysight Infiniium Oscilloscopes Programmer's Guide

36 Obsolete and Discontinued Commands

Discontinued Command Current Command Equivalent Comments

:DISK:STORe ":DISK:SAVE:SETup" on
page 313
":DISK:SAVE:WAVeform"
on page 314

For saving setups and
waveforms to disk.

:DISPlay:GRATicule:SIZE None Graticule sizing is different in
the version 5.00
next-generation Infiniium user
interface software.

Obsolete and Discontinued Commands 36

Keysight Infiniium Oscilloscopes Programmer's Guide 1265

:DISPlay:COLumn

Command

:DISPlay:COLumn <column_number>

The :DISPlay:COLumn command specifies the starting column for subsequent
:DISPlay:STRing and :DISPlay:LINE commands.

<column
_number>

An integer representing the starting column for subsequent :DISPlay:STRing and
:DISPlay:LINE commands. The range of values is 0 to 90.

Example This example sets the starting column for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to column 10.

myScope.WriteString ":DISPLAY:COLUMN 10"

Query :DISPlay:COLumn?

The :DISPlay:COLumn? query returns the column where the next :DISPlay:LINE or
:DISPlay:STRing starts.

Returned Format [:DISPlay:COLumn] <value><NL>

Example This example returns the current column setting to the string variable, strSetting,
then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPLAY:COLUMN?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Obsoleted in version 5.00.

NOTE This command is deprecated. It is accepted but ignored. Bookmarks are now the method used
to place text strings or annotations on screen. The closest command equivalent is
":DISPlay:BOOKmark<N>:XPOSition" on page 322.

1266 Keysight Infiniium Oscilloscopes Programmer's Guide

36 Obsolete and Discontinued Commands

:DISPlay:LINE

Command

:DISPlay:LINE "<string_argument>"

The :DISPlay:LINE command writes a quoted string to the screen, starting at the
location specified by the :DISPlay:ROW and :DISPlay:COLumn commands.

<string
_argument>

Any series of ASCII characters enclosed in quotation marks.

Example This example writes the message "Infiniium Test" to the screen, starting at the
current row and column location.

myScope.WriteString ":DISPLAY:LINE ""Infiniium Test"""

When using the C programming language, quotation marks within a string are
escaped using the backslash (\) character as shown in the next example. This
example writes the message "Infiniium Test" to the screen.

printf("\"Infiniium Test\"");

You may write text up to column 94. If the characters in the string do not fill the
line, the rest of the line is blanked. If the string is longer than the space available
on the current line, the excess characters are discarded.

In any case, the ROW is incremented and the COLumn remains the same. The next
:DISPlay:LINE command will write on the next line of the display. After writing the
last line in the display area, the ROW is reset to 0.

History Legacy command (existed before version 3.10).

Obsoleted in version 5.00.

NOTE This command is deprecated. It is accepted but ignored. Bookmarks are now the method used
to place text strings or annotations on screen. The closest command equivalent is
":DISPlay:BOOKmark<N>:SET" on page 319.

Obsolete and Discontinued Commands 36

Keysight Infiniium Oscilloscopes Programmer's Guide 1267

:DISPlay:ROW

Command

:DISPlay:ROW <row_number>

The :DISPlay:ROW command specifies the starting row on the screen for
subsequent :DISPlay:STRing and :DISPlay:LINE commands. The row number
remains constant until another :DISPlay:ROW command is received, or the row is
incremented by the :DISPlay:LINE command.

<row_number> An integer representing the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands. The range of values is 9 to 23.

Example This example sets the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to 10.

myScope.WriteString ":DISPLAY:ROW 10"

Query :DISPlay:ROW?

The :DISPlay:ROW? query returns the current value of the row.

Returned Format [:DISPlay:ROW] <row_number><NL>

Example This example places the current value for row in the string variable, strSetting,
then prints the contents of the variable to the computer's screen.

Dim strSetting As String ' Dimension variable.
myScope.WriteString ":DISPLAY:ROW?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Obsoleted in version 5.00.

NOTE This command is deprecated. It is accepted but ignored. Bookmarks are now the method used
to place text strings or annotations on screen. The closest command equivalent is
":DISPlay:BOOKmark<N>:YPOSition" on page 323.

1268 Keysight Infiniium Oscilloscopes Programmer's Guide

36 Obsolete and Discontinued Commands

:DISPlay:STRing

Command

:DISPlay:STRing "<string_argument>"

The :DISPlay:STRing command writes text to the oscilloscope screen. The text is
written starting at the current row and column settings. If the column limit is
reached, the excess text is discarded. The :DISPlay:STRing command does not
increment the row value, but :DISPlay:LINE does.

<string
_argument>

Any series of ASCII characters enclosed in quotation marks.

Example This example writes the message "Example 1" to the oscilloscope's display starting
at the current row and column settings.

myScope.WriteString ":DISPLAY:STRING ""Example 1"""

History Legacy command (existed before version 3.10).

Obsoleted in version 5.00.

NOTE This command is deprecated. It is accepted but ignored. Bookmarks are now the method used
to place text strings or annotations on screen. The closest command equivalent is
":DISPlay:BOOKmark<N>:SET" on page 319.

Obsolete and Discontinued Commands 36

Keysight Infiniium Oscilloscopes Programmer's Guide 1269

:DISPlay:TEXT

Command

:DISPlay:TEXT BLANk

The :DISPlay:TEXT command blanks the user text area of the screen.

Example This example blanks the user text area of the oscilloscope's screen.

myScope.WriteString ":DISPLAY:TEXT BLANK"

History Legacy command (existed before version 3.10).

Obsoleted in version 5.00.

NOTE This command is deprecated. It is accepted but ignored. Bookmarks are now the method used
to place text strings or annotations on screen. The closest command equivalent is
":DISPlay:BOOKmark<N>:DELete" on page 318.

1270 Keysight Infiniium Oscilloscopes Programmer's Guide

36 Obsolete and Discontinued Commands

:MEASure:CLOCk:METHod

Obsolete and Discontinued Commands 36

Keysight Infiniium Oscilloscopes Programmer's Guide 1271

(deprecated)

Command

:MEASure:CLOCk:METHod {FOPLL,<data_rate>,<loop_bandwidth>}
| {EQFOPLL,<data_rate>,<loop_bandwidth>}
| {SOPLL,<data_rate>,<loop_bandwidth>, <damping_factor>}
| {EQSOPLL,<data_rate>,<loop_bandwidth>, <damping_factor>}
| {FC,{FC1063 | FC2125 | FC425}}
| {EXPFOPLL,<source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<loop_bandwidth>}
| {EXPSOPLL,<source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<loop_bandwidth>,<damping_fact>}
| {EXPlicit,<source>,{RISing | FALLing | BOTH}[,<multiplier>]}
| {FIXed,{AUTO | {SEMI[,<data_rate>]} | <data_rate>}}
| {FLEXR,<baud_rate>}
| {FLEXT,<baud_rate>}

The :MEASure:CLOCk:METHod command sets the clock recovery method to:

• FOPLL (first order phase-locked loop).

• SOPLL (second order phase-locked loop).

• EQFOPLL (equalized first order phase-locked loop).

• EQSOPLL (equalized second order phase-locked loop).

• FC (Fibre Channel).

• EXPFOPLL (Explicit First Order PLL).

• EXPSOPLL (Explicit Second Order PLL).

• EXPlicit (Explicit Clock).

• FIXed (Constant Frequency).

• FLEXR (FlexRay Receiver).

• FLEXT (FlexRay Transmitter).

The EQUalized clock recovery methods are only available if the oscilloscope has
the High Speed Serial option and the Serial Data Equalization option installed and
the features are enabled.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

NOTE Some of these command options have been deprecated — options for specifying clock
recovery PLL options have been moved to the new commands
":MEASure:CLOCk:METHod:JTF" on page 566 and
":MEASure:CLOCk:METHod:OJTF" on page 568. See also
":MEASure:CLOCk:METHod" on page 559.

NOTE :MEASure:CLOCk commands are available when clock recovery is used by licensed software
(like the E2688A High Speed Serial software or the N5400A/N5401A EZJIT Plus jitter analysis
software).

1272 Keysight Infiniium Oscilloscopes Programmer's Guide

36 Obsolete and Discontinued Commands

<N> CHANnel<N> is an integer, 1-4.

FUNCtion<N> and WMEMory<N> are:

An integer, 1-4, representing the selected function or waveform memory.

<data_rate> A real number for the base data rate in Hertz.

<damping_ factor> A real number for the damping factor of the PLL in bits per second.

<loop_
bandwidth>

A real number for the cutoff frequency for the PLL to track.

<multiplier> An integer used as the multiplication factor.

<clock_freq> A real number used for the clock frequency of the PLL.

<track_freq> A real number used for the tracking frequency of the PLL.

<damping_fact> A real number used for the damping factor of the PLL.

<baud_rate> A real number used for the baud rate.

Example This example sets the clock recovery method to phase-locked loop.

myScope.WriteString ":MEASURE:CLOCK:METHOD FOPLL,2E9,1.19E6"

Query :MEASure:CLOCk:METHod?

The :MEASure:CLOCk:METHod? query returns the state of the clock recovery
method.

Returned Format [:MEASure:CLOCk:METHod] {FOPLL,<data_rate>,<loop_bandwidth>}
| {EQFOPLL,<data_rate>,<loop_bandwidth>}
| {SOPLL,<data_rate>,<loop_bandwidth>,<damping_factor>}
| {EQSOPLL,<data_rate>,<loop_bandwidth>,<damping_factor>}
| {FC,{FC1063 | FC2125 | FC425}}
| {EXPFOPLL <source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<track_freq>}
| {EXPSOPLL <source>,{RISing | FALLing | BOTH},

<multiplier>,<clock_freq>,<track_freq>,<damping_fact>}
| {EXPlict,<source>,{RISing | FALLing | BOTH},<multiplier>}
| {FIXed,{AUTO | {SEMI,<data_rate>} | <data_rate>}}
| {FLEXR,<baud_rate>}
| {FLEXT,<baud_rate>}

Example This example places the current setting of the clock recovery method in the
variable strSetting, then prints the contents of the variable to the computer's
screen.

myScope.WriteString ":SYSTem:HEADer OFF"
myScope.WriteString ":MEASURE:CLOCK:METHOD?"
strSetting = myScope.ReadString
Debug.Print strSetting

History Legacy command (existed before version 3.10).

Version 5.10: The PCIE clock recovery method has been removed.

Obsolete and Discontinued Commands 36

Keysight Infiniium Oscilloscopes Programmer's Guide 1273

:MEASure:DDPWS

Data Dependent Pulse Width Shrinkage

Command

:MEASure:DDPWS <source>

The :MEASure:DDPWS command measures the data dependent pulse width
shrinkage for the selected source.

<source> {CHANnel<N> | FUNCtion<F> | WMEMory<N> | CLOCk | MTRend | MSPectrum |
EQUalized}

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

The EQUalized source is only available if the oscilloscope has the High Speed
Serial option and the Serial Data Equalization option installed and the features are
enabled. This command uses the Feed-Forward Equalized (FFE) signal as the
source.

<N> CHANnel<N> is an integer, 1- 4.

WMEMory<N> is an integer, 1-4.

<F> FUNCtion<F> is an integer, 1-16.

Example This example measures the data rate of channel 1.

myScope.WriteString ":MEASure:DDPWS CHANnel1"

Query :MEASure:DDPWS? <source>

The :MEASure:DDPWS? query returns the measured data dependent pulse width
shrinkage.

Returned Format [:MEASure:DDPWS] <value><NL>

<value> Data dependent pulse width shrinkage in seconds for the selected source.

Example This example places the current data dependent pulse width shrinkage value of
the channel 1 waveform in the numeric variable, varValue, then prints the contents
of the variable to the computer's screen.

NOTE This command is deprecated. In its place, use the query ":MEASure:RJDJ:ALL?" on
page 684 which returns all of the RJDJ jitter measurements.

NOTE This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

1274 Keysight Infiniium Oscilloscopes Programmer's Guide

36 Obsolete and Discontinued Commands

myScope.WriteString ":SYSTEM:HEADER OFF" ' Response headers off.
myScope.WriteString ":MEASURE:DDPWS? CHANNEL1"
varValue = myScope.ReadNumber
Debug.Print FormatNumber(varValue, 0)

History New in version 3.10.

Version 4.20: Obsoleted, replaced by the :MEASure:RJDJ:ALL? query which
returns all of the RJDJ jitter measurements.

1275

Keysight Infiniium Oscilloscopes
Programmer's Guide

37 Error Messages

Error Queue / 1276
Error Numbers / 1277
Command Error / 1278
Execution Error / 1279
Device- or Oscilloscope-Specific Error / 1280
Query Error / 1281
List of Error Messages / 1282

This chapter describes the error messages and how they are generated. The
possible causes for the generation of the error messages are also listed in the
following table.

1276 Keysight Infiniium Oscilloscopes Programmer's Guide

37 Error Messages

Error Queue

As errors are detected, they are placed in an error queue. This queue is first in, first
out. If the error queue overflows, the last error in the queue is replaced with error
-350, "Queue overflow." Anytime the error queue overflows, the oldest errors
remain in the queue, and the most recent error is discarded. The length of the
oscilloscope's error queue is 30 (29 positions for the error messages, and 1
position for the "Queue overflow" message).

Reading an error from the head of the queue removes that error from the queue,
and opens a position at the tail of the queue for a new error. When all errors have
been read from the queue, subsequent error queries return 0, "No error."

The error queue is cleared when any of the following occur:

• the instrument is powered up,

• a *CLS command is sent,

• the last item from the queue is read, or

• the instrument is switched from talk only to addressed mode on the front panel.

Error Messages 37

Keysight Infiniium Oscilloscopes Programmer's Guide 1277

Error Numbers

The error numbers are grouped according to the type of error that is detected.

• +0 indicates no errors were detected.

• -100 to -199 indicates a command error was detected

• -200 to -299 indicates an execution error was detected.

• -300 to -399 indicates a device-specific error was detected.

• -400 to-499 indicates a query error was detected.

• +1 to +32767 indicates an oscilloscope specific error has been detected.

1278 Keysight Infiniium Oscilloscopes Programmer's Guide

37 Error Messages

Command Error

An error number in the range -100 to -199 indicates that an IEEE 488.2 syntax
error has been detected by the instrument's parser. The occurrence of any error in
this class sets the command error bit (bit 5) in the event status register and
indicates that one of the following events occurred:

• An IEEE 488.2 syntax error was detected by the parser. That is, a
computer-to-oscilloscope message was received that is in violation of the IEEE
488.2 standard. This may be a data element that violates the oscilloscope's
listening formats, or a data type that is unacceptable to the oscilloscope.

• An unrecognized header was received. Unrecognized headers include incorrect
oscilloscope-specific headers and incorrect or unimplemented IEEE 488.2
common commands.

• A Group Execute Trigger (GET) was entered into the input buffer inside of an
IEEE 488.2 program message.

Events that generate command errors do not generate eexecution errors,
oscilloscope-specific errors, or query errors.

Error Messages 37

Keysight Infiniium Oscilloscopes Programmer's Guide 1279

Execution Error

An error number in the range -200 to -299 indicates that an error was detected by
the instrument's execution control block. The occurrence of any error in this class
causes the execution error bit (bit 4) in the event status register to be set. It also
indicates that one of the following events occurred:

• The program data following a header is outside the legal input range or is
inconsistent with the oscilloscope's capabilities.

• A valid program message could not be properly executed due to some
oscilloscope condition.

Execution errors are reported by the oscilloscope after expressions are evaluated
and rounding operations are completed. For example, rounding a numeric data
element will not be reported as an execution error. Events that generate execution
errors do not generate command errors, oscilloscope specific errors, or query
errors.

1280 Keysight Infiniium Oscilloscopes Programmer's Guide

37 Error Messages

Device- or Oscilloscope-Specific Error

An error number in the range of -300 to -399 or +1 to +32767 indicates that the
instrument has detected an error caused by an oscilloscope operation that did not
properly complete. This may be due to an abnormal hardware or firmware
condition. For example, this error may be generated by a self-test response error,
or a full error queue. The occurrence of any error in this class causes the
oscilloscope-specific error bit (bit 3) in the event status register to be set.

Error Messages 37

Keysight Infiniium Oscilloscopes Programmer's Guide 1281

Query Error

An error number in the range-400 to-499 indicates that the output queue control
of the instrument has detected a problem with the message exchange protocol. An
occurrence of any error in this class should cause the query error bit (bit 2) in the
event status register to be set. An occurrence of an error also means one of the
following is true:

• An attempt is being made to read data from the output queue when no output
is either present or pending.

• Data in the output queue has been lost.

1282 Keysight Infiniium Oscilloscopes Programmer's Guide

37 Error Messages

List of Error Messages

Table 21 a list of the error messages that are returned by the parser on this
oscilloscope.

Table 21 Error Messages

0 No error The error queue is empty. Every error in the queue has been read
(SYSTEM:ERROR? query) or the queue was cleared by power-up or *CLS.

-100 Command error This is the generic syntax error used if the oscilloscope cannot detect
more specific errors.

-101 Invalid character A syntactic element contains a character that is invalid for that type.

-102 Syntax error An unrecognized command or data type was encountered.

-103 Invalid separator The parser was expecting a separator and encountered an illegal
character.

-104 Data type error The parser recognized a data element different than one allowed. For
example, numeric or string data was expected but block data was
received.

-105 GET not allowed A Group Execute Trigger was received within a program message.

-108 Parameter not allowed More parameters were received than expected for the header.

-109 Missing parameter Fewer parameters were received than required for the header.

-112 Program mnemonic too long The header or character data element contains more than twelve
characters.

-113 Undefined header The header is syntactically correct, but it is undefined for the oscilloscope.
For example, *XYZ is not defined for the oscilloscope.

-121 Invalid character in number An invalid character for the data type being parsed was encountered. For
example, a "9" in octal data.

-123 Numeric overflow Number is too large or too small to be represented internally.

-124 Too many digits The mantissa of a decimal numeric data element contained more than 255
digits excluding leading zeros.

-128 Numeric data not allowed A legal numeric data element was received, but the oscilloscope does not
accept one in this position for the header.

-131 Invalid suffix The suffix does not follow the syntax described in IEEE 488.2 or the suffix
is inappropriate for the oscilloscope.

-138 Suffix not allowed A suffix was encountered after a numeric element that does not allow
suffixes.

-141 Invalid character data Either the character data element contains an invalid character or the
particular element received is not valid for the header.

-144 Character data too long

Error Messages 37

Keysight Infiniium Oscilloscopes Programmer's Guide 1283

-148 Character data not allowed A legal character data element was encountered where prohibited by the
oscilloscope.

-150 String data error This error can be generated when parsing a string data element. This
particular error message is used if the oscilloscope cannot detect a more
specific error.

-151 Invalid string data A string data element was expected, but was invalid for some reason. For
example, an END message was received before the terminal quote
character.

-158 String data not allowed A string data element was encountered but was not allowed by the
oscilloscope at this point in parsing.

-160 Block data error This error can be generated when parsing a block data element. This
particular error message is used if the oscilloscope cannot detect a more
specific error.

-161 Invalid block data

-168 Block data not allowed A legal block data element was encountered but was not allowed by the
oscilloscope at this point in parsing.

-170 Expression error This error can be generated when parsing an expression data element. It is
used if the oscilloscope cannot detect a more specific error.

-171 Invalid expression

-178 Expression data not allowed Expression data was encountered but was not allowed by the oscilloscope
at this point in parsing.

-200 Execution error This is a generic syntax error which is used if the oscilloscope cannot
detect more specific errors.

-212 Arm ignored

-213 Init ignored

-214 Trigger deadlock

-215 Arm deadlock

-220 Parameter error

-221 Settings conflict

-222 Data out of range Indicates that a legal program data element was parsed but could not be
executed because the interpreted value is outside the legal range defined
by the oscilloscope.

-223 Too much data Indicates that a legal program data element of block, expression, or string
type was received that contained more data than the oscilloscope could
handle due to memory or related oscilloscope-specific requirements.

-224 Illegal parameter value

-230 Data corrupt or stale

Table 21 Error Messages (continued)

1284 Keysight Infiniium Oscilloscopes Programmer's Guide

37 Error Messages

-231 Data questionable

-240 Hardware error

-241 Hardware missing

-250 Mass storage error

-251 Missing mass storage

-252 Missing media

-253 Corrupt media

-254 Media full

-255 Directory full

-256 File name not found

-257 File name error

-258 Media protected

-260 Expression error

-261 Math error in expression

-300 Device specific error

-310 System error Indicates that a system error occurred.

-311 Memory error

-312 PUD memory error

-313 Calibration memory lost

-314 Save/recall memory lost

-315 Configuration memory lost

-321 Out of memory

-330 Self-test failed

-350 Queue overflow Indicates that there is no room in the error queue and an error occurred
but was not recorded.

-370 No sub tests are defined for the
selected self test

-371 Self Test status is corrupt or no
self test has been executed

-372 This product configuration does not
support the requested self test

-373 This product configuration does not
support the requested source

Table 21 Error Messages (continued)

Error Messages 37

Keysight Infiniium Oscilloscopes Programmer's Guide 1285

-374 The requested self test log file
could not be found

-375 Attenuator relay actuation counts
can only be modified during factory
service

-400 Query error This is the generic query error.

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-430 Query DEADLOCKED

-440 Query UNTERMINATED after
indefinite response

Table 21 Error Messages (continued)

1286 Keysight Infiniium Oscilloscopes Programmer's Guide

37 Error Messages

1287

Keysight Infiniium Oscilloscopes
Programmer's Guide

38 Sample Programs

VISA COM Examples / 1288
VISA Examples / 1326
SICL Examples / 1376
SCPI.NET Examples / 1395

Example programs are ASCII text files that can be cut from the help file and pasted
into your favorite text editor.

1288 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

VISA COM Examples

• "VISA COM Example in Visual Basic" on page 1288

• "VISA COM Example in C#" on page 1299

• "VISA COM Example in Visual Basic .NET" on page 1309

• "VISA COM Example in Python" on page 1318

VISA COM Example in Visual Basic

To run this example in Visual Basic for Applications (VBA):

1 Start the application that provides Visual Basic for Applications (for example,
Microsoft Excel).

2 Press ALT+F11 to launch the Visual Basic editor.

3 Reference the Keysight VISA COM library:

a Choose Tools>References... from the main menu.

b In the References dialog, check:

• VISA COM 3.0 Type Library

• Microsoft Scripting Runtime

c Click OK.

4 Choose Insert>Module.

5 Cut-and-paste the code that follows into the editor.

6 Edit the program to use the VISA address of your oscilloscope, and save the
changes.

7 Run the program.

'
' Keysight VISA COM Example in Visual Basic
' ---
' This program illustrates a few commonly-used programming
' features of your Keysight Infiniium Series oscilloscope.
' ---

Option Explicit

Public myMgr As VisaComLib.ResourceManager
Public myScope As VisaComLib.FormattedIO488
Public varQueryResult As Variant
Public strQueryResult As String

' For Sleep subroutine.
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

'
' Main Program
' ---

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1289

Sub Main()

On Error GoTo VisaComError

' Create the VISA COM I/O resource.
Set myMgr = New VisaComLib.ResourceManager
Set myScope = New VisaComLib.FormattedIO488
Set myScope.IO = _

myMgr.Open("TCPIP0::130.29.71.191::inst0::INSTR")
myScope.IO.Timeout = 15000 ' Set I/O communication timeout.
myScope.IO.Clear ' Clear the interface.

' Initialize - start from a known state.
Initialize

' Capture data.
Capture

' Analyze the captured waveform.
Analyze

Exit Sub

VisaComError:
MsgBox "VISA COM Error:" + vbCrLf + Err.Description
End

End Sub

'
' Initialize the oscilloscope to a known state.
' ---

Private Sub Initialize()

On Error GoTo VisaComError

' Clear status.
DoCommand "*CLS"

' Get and display the device's *IDN? string.
strQueryResult = DoQueryString("*IDN?")
Debug.Print "Identification string: " + strQueryResult

' Load the default setup.
DoCommand "*RST"

Exit Sub

VisaComError:
MsgBox "VISA COM Error:" + vbCrLf + Err.Description
End

End Sub

'

1290 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Capture the waveform.
' ---

Private Sub Capture()

On Error GoTo VisaComError

' Set probe attenuation factor.
DoCommand ":CHANnel1:PROBe 1.0"
Debug.Print "Channel 1 probe attenuation factor: " + _

DoQueryString(":CHANnel1:PROBe?")

' Use auto-scale to automatically set up oscilloscope.
' ---
Debug.Print "Autoscale."
DoCommand ":AUToscale"

' Set trigger mode.
DoCommand ":TRIGger:MODE EDGE"
Debug.Print "Trigger mode: " + _

DoQueryString(":TRIGger:MODE?")

' Set EDGE trigger parameters.
DoCommand ":TRIGger:EDGE:SOURCe CHANnel1"
Debug.Print "Trigger edge source: " + _

DoQueryString(":TRIGger:EDGE:SOURce?")

DoCommand ":TRIGger:LEVel CHANnel1,-2E-3"
Debug.Print "Trigger level, channel 1: " + _

DoQueryString(":TRIGger:LEVel? CHANnel1")

DoCommand ":TRIGger:EDGE:SLOPe POSitive"
Debug.Print "Trigger edge slope: " + _

DoQueryString(":TRIGger:EDGE:SLOPe?")

' Save oscilloscope setup.
' ---
varQueryResult = DoQueryIEEEBlock_UI1(":SYSTem:SETup?")

' Output setup string to a file:
Dim strPath As String
strPath = "c:\scope\config\setup.dat"
Dim hFile As Long
hFile = FreeFile
Open strPath For Binary Access Write Lock Write As hFile
Put hFile, , varQueryResult ' Write data.
Close hFile ' Close file.
Debug.Print "Setup bytes saved: " + CStr(LenB(varQueryResult))

' Change oscilloscope settings with individual commands:
' ---

' Set vertical scale and offset.
DoCommand ":CHANnel1:SCALe 0.1"
Debug.Print "Channel 1 vertical scale: " + _

DoQueryString(":CHANnel1:SCALe?")

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1291

DoCommand ":CHANnel1:OFFSet 0.0"
Debug.Print "Channel 1 vertical offset: " + _

DoQueryString(":CHANnel1:OFFSet?")

' Set horizontal scale and offset.
DoCommand ":TIMebase:SCALe 200E-6"
Debug.Print "Timebase scale: " + _

DoQueryString(":TIMebase:SCALe?")

DoCommand ":TIMebase:POSition 0.0"
Debug.Print "Timebase position: " + _

DoQueryString(":TIMebase:POSition?")

' Set the acquisition mode.
DoCommand ":ACQuire:MODE RTIMe"
Debug.Print "Acquire mode: " + _

DoQueryString(":ACQuire:MODE?")

' Or, configure by loading a previously saved setup.
' ---
Dim varSetupString As Variant
strPath = "c:\scope\config\setup.dat"
Open strPath For Binary Access Read As hFile ' Open file for input.
Get hFile, , varSetupString ' Read data.
Close hFile ' Close file.
' Write learn string back to oscilloscope using ":SYSTem:SETup"
' command:
DoCommandIEEEBlock ":SYSTem:SETup", varSetupString
Debug.Print "Setup bytes restored: " + CStr(LenB(varSetupString))

' Set the desired number of waveform points,
' and capture an acquisition.
' ---
DoCommand ":ACQuire:POINts 32000"
DoCommand ":DIGitize"

Exit Sub

VisaComError:
MsgBox "VISA COM Error:" + vbCrLf + Err.Description
End

End Sub

'
' Analyze the captured waveform.
' ---

Private Sub Analyze()

On Error GoTo VisaComError

' Make measurements.
' ---
DoCommand ":MEASure:SOURce CHANnel1"
Debug.Print "Measure source: " + _

DoQueryString(":MEASure:SOURce?")

1292 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

DoCommand ":MEASure:FREQuency"
varQueryResult = DoQueryNumber(":MEASure:FREQuency?")
MsgBox "Frequency:" + vbCrLf + _

FormatNumber(varQueryResult / 1000, 4) + " kHz"

DoCommand ":MEASure:VAMPlitude"
varQueryResult = DoQueryNumber(":MEASure:VAMPlitude?")
MsgBox "Vertical amplitude:" + vbCrLf + _

FormatNumber(varQueryResult, 4) + " V"

' Download the screen image.
' ---
' Get screen image.
Dim byteData() As Byte
byteData = DoQueryIEEEBlock_UI1(":DISPlay:DATA? PNG")

' Save screen image to a file.
Dim strPath As String
strPath = "c:\scope\data\screen.png"
If Len(Dir(strPath)) Then
Kill strPath ' Remove file if it exists.

End If

Dim hFile As Long
hFile = FreeFile
Open strPath For Binary Access Write Lock Write As hFile
Put hFile, , byteData ' Write data.
Close hFile ' Close file.
MsgBox "Screen image (" + CStr(UBound(byteData) + 1) + _

" bytes) written to " + strPath

' Download waveform data.
' ---

' Get the waveform type.
Debug.Print "Waveform type: " + _

DoQueryString(":WAVeform:TYPE?")

' Get the number of waveform points.
Debug.Print "Waveform points available: " + _

DoQueryString(":WAVeform:POINts?")

' Set the waveform source.
DoCommand ":WAVeform:SOURce CHANnel1"
Debug.Print "Waveform source: " + _

DoQueryString(":WAVeform:SOURce?")

' Choose the format of the data returned:
DoCommand ":WAVeform:FORMat WORD"
Debug.Print "Waveform format: " + _

DoQueryString(":WAVeform:FORMat?")

' Display the waveform settings from preamble:
Dim Preamble()

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1293

Dim intFormat As Integer
Dim intType As Integer
Dim lngPoints As Long
Dim lngCount As Long
Dim dblXIncrement As Double
Dim dblXOrigin As Double
Dim lngXReference As Long
Dim sngYIncrement As Single
Dim sngYOrigin As Single
Dim lngYReference As Long
Dim intCoupling As Integer
Dim dblXDispRange As Double
Dim dblXDispOrigin As Double
Dim dblYDispRange As Double
Dim dblYDispOrigin As Double
Dim strDate As String
Dim strTime As String
Dim strFrameModel As String
Dim intAcqMode As Integer
Dim intCompletion As Integer
Dim intXUnits As Integer
Dim intYUnits As Integer
Dim dblMaxBwLimit As Double
Dim dblMinBwLimit As Double

Dim dctWavFormat As Scripting.Dictionary
Set dctWavFormat = New Scripting.Dictionary
dctWavFormat.Add 0, "ASCii"
dctWavFormat.Add 1, "BYTE"
dctWavFormat.Add 2, "WORD"
dctWavFormat.Add 3, "LONG"
dctWavFormat.Add 4, "LONGLONG"

Dim dctAcqType As Scripting.Dictionary
Set dctAcqType = New Scripting.Dictionary
dctAcqType.Add 1, "RAW"
dctAcqType.Add 2, "AVERage"
dctAcqType.Add 3, "VHIStogram"
dctAcqType.Add 4, "HHIStogram"
dctAcqType.Add 6, "INTerpolate"
dctAcqType.Add 10, "PDETect"

Dim dctAcqMode As Scripting.Dictionary
Set dctAcqMode = New Scripting.Dictionary
dctAcqMode.Add 0, "RTIMe"
dctAcqMode.Add 1, "ETIMe"
dctAcqMode.Add 3, "PDETect"

Dim dctCoupling As Scripting.Dictionary
Set dctCoupling = New Scripting.Dictionary
dctCoupling.Add 0, "AC"
dctCoupling.Add 1, "DC"
dctCoupling.Add 2, "DCFIFTY"
dctCoupling.Add 3, "LFREJECT"

Dim dctUnits As Scripting.Dictionary
Set dctUnits = New Scripting.Dictionary

1294 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

dctUnits.Add 0, "UNKNOWN"
dctUnits.Add 1, "VOLT"
dctUnits.Add 2, "SECOND"
dctUnits.Add 3, "CONSTANT"
dctUnits.Add 4, "AMP"
dctUnits.Add 5, "DECIBEL"

Preamble() = DoQueryNumbers(":WAVeform:PREamble?")

intFormat = Preamble(0)
intType = Preamble(1)
lngPoints = Preamble(2)
lngCount = Preamble(3)
dblXIncrement = Preamble(4)
dblXOrigin = Preamble(5)
lngXReference = Preamble(6)
sngYIncrement = Preamble(7)
sngYOrigin = Preamble(8)
lngYReference = Preamble(9)
intCoupling = Preamble(10)
dblXDispRange = Preamble(11)
dblXDispOrigin = Preamble(12)
dblYDispRange = Preamble(13)
dblYDispOrigin = Preamble(14)
strDate = Preamble(15)
strTime = Preamble(16)
strFrameModel = Preamble(17)
intAcqMode = Preamble(18)
intCompletion = Preamble(19)
intXUnits = Preamble(20)
intYUnits = Preamble(21)
dblMaxBwLimit = Preamble(22)
dblMinBwLimit = Preamble(23)

Debug.Print "Waveform format: " + dctWavFormat.Item(intFormat)
Debug.Print "Acquisition type: " + dctAcqType.Item(intType)

Debug.Print "Waveform points desired: " + _
FormatNumber(lngPoints, 0)

Debug.Print "Waveform average count: " + _
FormatNumber(lngCount, 0)

Debug.Print "Waveform X increment: " + _
Format(dblXIncrement, "Scientific")

Debug.Print "Waveform X origin: " + _
Format(dblXOrigin, "Scientific")

Debug.Print "Waveform X reference: " + _
FormatNumber(lngXReference, 0)

Debug.Print "Waveform Y increment: " + _
Format(sngYIncrement, "Scientific")

Debug.Print "Waveform Y origin: " + _
FormatNumber(sngYOrigin, 0)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1295

Debug.Print "Waveform Y reference: " + _
FormatNumber(lngYReference, 0)

Debug.Print "Coupling: " + dctCoupling.Item(intCoupling)

Debug.Print "Waveform X display range: " + _
Format(dblXDispRange, "Scientific")

Debug.Print "Waveform X display origin: " + _
Format(dblXDispOrigin, "Scientific")

Debug.Print "Waveform Y display range: " + _
Format(dblYDispRange, "Scientific")

Debug.Print "Waveform Y display origin: " + _
Format(dblYDispOrigin, "Scientific")

Debug.Print "Date: " + strDate
Debug.Print "Time: " + strTime
Debug.Print "Frame model: " + strFrameModel
Debug.Print "Acquire mode: " + dctAcqMode.Item(intAcqMode)

Debug.Print "Completion pct: " + _
FormatNumber(intCompletion, 0)

Debug.Print "Waveform X units: " + dctUnits.Item(intXUnits)
Debug.Print "Waveform Y units: " + dctUnits.Item(intYUnits)

Debug.Print "Max BW limit: " + _
Format(dblMaxBwLimit, "Scientific")

Debug.Print "Min BW limit: " + _
Format(dblMinBwLimit, "Scientific")

' Get the waveform data.
DoCommand ":WAVeform:STReaming OFF"
varQueryResult = DoQueryIEEEBlock_I2(":WAVeform:DATA?")
Debug.Print "Number of data values: " + _

CStr(UBound(varQueryResult) + 1)

' Set up output file:
strPath = "c:\scope\data\waveform_data.csv"

' Open file for output.
Open strPath For Output Access Write Lock Write As hFile

' Output waveform data in CSV format.
Dim lngDataValue As Long
Dim lngI As Long

For lngI = 0 To UBound(varQueryResult)
lngDataValue = varQueryResult(lngI)

' Write time value, voltage value.
Print #hFile, _

FormatNumber(dblXOrigin + (lngI * dblXIncrement), 9) + _

1296 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

", " + _
FormatNumber((lngDataValue * sngYIncrement) + sngYOrigin)

Next lngI

' Close output file.
Close hFile ' Close file.
MsgBox "Waveform format WORD data written to " + _

"c:\scope\data\waveform_data.csv."

Exit Sub

VisaComError:
MsgBox "VISA COM Error:" + vbCrLf + Err.Description
End

End Sub

Private Sub DoCommand(command As String)

On Error GoTo VisaComError

myScope.WriteString command
CheckInstrumentErrors

Exit Sub

VisaComError:
MsgBox "VISA COM Error: " + vbCrLf + CStr(Err.Number) + ", " + _

Err.Source + ", " + _
Err.Description, vbExclamation, "VISA COM Error"

End

End Sub

Private Sub DoCommandIEEEBlock(command As String, data As Variant)

On Error GoTo VisaComError

Dim strErrors As String

myScope.WriteIEEEBlock command, data
CheckInstrumentErrors

Exit Sub

VisaComError:
MsgBox "VISA COM Error: " + vbCrLf + CStr(Err.Number) + ", " + _

Err.Source + ", " + _
Err.Description, vbExclamation, "VISA COM Error"

End

End Sub

Private Function DoQueryString(query As String) As String

On Error GoTo VisaComError

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1297

myScope.WriteString query
DoQueryString = myScope.ReadString
CheckInstrumentErrors

Exit Function

VisaComError:
MsgBox "VISA COM Error: " + vbCrLf + CStr(Err.Number) + ", " + _

Err.Source + ", " + _
Err.Description, vbExclamation, "VISA COM Error"

End

End Function

Private Function DoQueryNumber(query As String) As Variant

On Error GoTo VisaComError

myScope.WriteString query
DoQueryNumber = myScope.ReadNumber
CheckInstrumentErrors

Exit Function

VisaComError:
MsgBox "VISA COM Error: " + vbCrLf + CStr(Err.Number) + ", " + _

Err.Source + ", " + _
Err.Description, vbExclamation, "VISA COM Error"

End

End Function

Private Function DoQueryNumbers(query As String) As Variant()

On Error GoTo VisaComError

Dim strErrors As String

myScope.WriteString query
DoQueryNumbers = myScope.ReadList
CheckInstrumentErrors

Exit Function

VisaComError:
MsgBox "VISA COM Error: " + vbCrLf + CStr(Err.Number) + ", " + _

Err.Source + ", " + _
Err.Description, vbExclamation, "VISA COM Error"

End

End Function

Private Function DoQueryIEEEBlock_UI1(query As String) As Variant

On Error GoTo VisaComError

1298 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

myScope.WriteString query
DoQueryIEEEBlock_UI1 = myScope.ReadIEEEBlock(BinaryType_UI1)
CheckInstrumentErrors

Exit Function

VisaComError:
MsgBox "VISA COM Error: " + vbCrLf + CStr(Err.Number) + ", " + _

Err.Source + ", " + _
Err.Description, vbExclamation, "VISA COM Error"

End

End Function

Private Function DoQueryIEEEBlock_I2(query As String) As Variant

On Error GoTo VisaComError

myScope.WriteString query
DoQueryIEEEBlock_I2 = myScope.ReadIEEEBlock(BinaryType_I2)
CheckInstrumentErrors

Exit Function

VisaComError:
MsgBox "VISA COM Error: " + vbCrLf + CStr(Err.Number) + ", " + _

Err.Source + ", " + _
Err.Description, vbExclamation, "VISA COM Error"

End

End Function

Private Sub CheckInstrumentErrors()

On Error GoTo VisaComError

Dim strErrVal As String
Dim strOut As String

myScope.WriteString ":SYSTem:ERRor? STRing" ' Query any errors data.
strErrVal = myScope.ReadString ' Read: Errnum,"Error String".
While Val(strErrVal) <> 0 ' End if find: 0,"No Error".
strOut = strOut + "INST Error: " + strErrVal
myScope.WriteString ":SYSTem:ERRor? STRing" ' Request error message.
strErrVal = myScope.ReadString ' Read error message.

Wend

If Not strOut = "" Then
MsgBox strOut, vbExclamation, "INST Error Messages"
myScope.FlushWrite (False)
myScope.FlushRead

End If

Exit Sub

VisaComError:

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1299

MsgBox "VISA COM Error: " + vbCrLf + Err.Description

End Sub

VISA COM Example in C#

To compile and run this example in Microsoft Visual Studio 2008:

1 Open Visual Studio.

2 Create a new Visual C#, Windows, Console Application project.

3 Cut-and-paste the code that follows into the C# source file.

4 Edit the program to use the VISA address of your oscilloscope.

5 Add a reference to the VISA COM 3.0 Type Library:

a Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment.

b Choose Add Reference....

c In the Add Reference dialog, select the COM tab.

d Select VISA COM 3.0 Type Library; then click OK.

6 Build and run the program.

For more information, see the VISA COM Help that comes with Keysight IO
Libraries Suite 15.

/*
* Keysight VISA COM Example in C#
* ---
* This program illustrates a few commonly used programming
* features of your Keysight Infiniium Series oscilloscope.
* ---
*/

using System;
using System.IO;
using System.Text;
using System.Collections.Generic;
using Ivi.Visa.Interop;
using System.Runtime.InteropServices;

namespace Infiniium
{

class VisaComInstrumentApp
{
private static VisaComInstrument myScope;

public static void Main(string[] args)
{

try
{

myScope = new
VisaComInstrument("TCPIP0::130.29.71.191::inst0::INSTR");

1300 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

myScope.SetTimeoutSeconds(10);

// Initialize - start from a known state.
Initialize();

// Capture data.
Capture();

// Analyze the captured waveform.
Analyze();

Console.WriteLine("Press any key to exit");
Console.ReadKey();

}
catch (System.ApplicationException err)
{

Console.WriteLine("*** VISA COM Error : " + err.Message);
}
catch (System.SystemException err)
{

Console.WriteLine("*** System Error Message : " + err.Message);
}
catch (System.Exception err)
{

System.Diagnostics.Debug.Fail("Unexpected Error");
Console.WriteLine("*** Unexpected Error : " + err.Message);

}
finally
{

myScope.Close();
}

}

/*
* Initialize the oscilloscope to a known state.
* --
*/
private static void Initialize()
{

string strResults;

// Clear status.
myScope.DoCommand("*CLS");

// Get and display the device's *IDN? string.
strResults = myScope.DoQueryString("*IDN?");
Console.WriteLine("*IDN? result is: {0}", strResults);

// Load the default setup.
myScope.DoCommand("*RST");

}

/*
* Capture the waveform.
* --
*/
private static void Capture()

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1301

{
// Set probe attenuation factor.
myScope.DoCommand(":CHANnel1:PROBe 1.0");
Console.WriteLine("Channel 1 probe attenuation factor: {0}",

myScope.DoQueryString(":CHANnel1:PROBe?"));

// Use auto-scale to automatically set up oscilloscope.
myScope.DoCommand(":AUToscale");

// Set trigger mode.
myScope.DoCommand(":TRIGger:MODE EDGE");
Console.WriteLine("Trigger mode: {0}",

myScope.DoQueryString(":TRIGger:MODE?"));

// Set EDGE trigger parameters.
myScope.DoCommand(":TRIGger:EDGE:SOURCe CHANnel1");
Console.WriteLine("Trigger edge source: {0}",

myScope.DoQueryString(":TRIGger:EDGE:SOURce?"));

myScope.DoCommand(":TRIGger:LEVel CHANnel1,-2E-3");
Console.WriteLine("Trigger level, channel 1: {0}",

myScope.DoQueryString(":TRIGger:LEVel? CHANnel1"));

myScope.DoCommand(":TRIGger:EDGE:SLOPe POSitive");
Console.WriteLine("Trigger edge slope: {0}",

myScope.DoQueryString(":TRIGger:EDGE:SLOPe?"));

// Save oscilloscope setup.
byte[] ResultsArray; // Results array.
int nLength; // Number of bytes returned from instrument.
string strPath;

// Query and read setup string.
ResultsArray = myScope.DoQueryIEEEBlock_UI1(":SYSTem:SETup?");
nLength = ResultsArray.Length;

// Write setup string to file.
strPath = "c:\\scope\\config\\setup.stp";
FileStream fStream = File.Open(strPath, FileMode.Create);
fStream.Write(ResultsArray, 0, nLength);
fStream.Close();
Console.WriteLine("Setup bytes saved: {0}", nLength);

// Change settings with individual commands:

// Set vertical scale and offset.
myScope.DoCommand(":CHANnel1:SCALe 0.1");
Console.WriteLine("Channel 1 vertical scale: {0}",

myScope.DoQueryString(":CHANnel1:SCALe?"));

myScope.DoCommand(":CHANnel1:OFFSet 0.0");
Console.WriteLine("Channel 1 vertical offset: {0}",

myScope.DoQueryString(":CHANnel1:OFFSet?"));

// Set horizontal scale and offset.
myScope.DoCommand(":TIMebase:SCALe 0.0002");
Console.WriteLine("Timebase scale: {0}",

1302 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

myScope.DoQueryString(":TIMebase:SCALe?"));

myScope.DoCommand(":TIMebase:POSition 0.0");
Console.WriteLine("Timebase position: {0}",

myScope.DoQueryString(":TIMebase:POSition?"));

// Set the acquisition mode.
myScope.DoCommand(":ACQuire:MODE RTIMe");
Console.WriteLine("Acquire mode: {0}",

myScope.DoQueryString(":ACQuire:MODE?"));

// Or, configure by loading a previously saved setup.
byte[] DataArray;
int nBytesWritten;

// Read setup string from file.
strPath = "c:\\scope\\config\\setup.stp";
DataArray = File.ReadAllBytes(strPath);
nBytesWritten = DataArray.Length;

// Restore setup string.
myScope.DoCommandIEEEBlock(":SYSTem:SETup", DataArray);
Console.WriteLine("Setup bytes restored: {0}", nBytesWritten);

// Set the desired number of waveform points,
// and capture an acquisition.
myScope.DoCommand(":ACQuire:POINts 32000");
myScope.DoCommand(":DIGitize");

}

/*
* Analyze the captured waveform.
* --
*/
private static void Analyze()
{

byte[] ResultsArray; // Results array.
int nLength; // Number of bytes returned from instrument.
string strPath;

// Make measurements.
// ---
myScope.DoCommand(":MEASure:SOURce CHANnel1");
Console.WriteLine("Measure source: {0}",

myScope.DoQueryString(":MEASure:SOURce?"));

double fResult;
myScope.DoCommand(":MEASure:FREQuency");
fResult = myScope.DoQueryNumber(":MEASure:FREQuency?");
Console.WriteLine("Frequency: {0:F4} kHz", fResult / 1000);

myScope.DoCommand(":MEASure:VAMPlitude");
fResult = myScope.DoQueryNumber(":MEASure:VAMPlitude?");
Console.WriteLine("Vertical amplitude: {0:F2} V", fResult);

// Download the screen image.
// ---

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1303

// Get the screen data.
ResultsArray =

myScope.DoQueryIEEEBlock_UI1(":DISPlay:DATA? PNG");
nLength = ResultsArray.Length;

// Store the screen data to a file.
strPath = "c:\\scope\\data\\screen.png";
FileStream fStream = File.Open(strPath, FileMode.Create);
fStream.Write(ResultsArray, 0, nLength);
fStream.Close();
Console.WriteLine("Screen image ({0} bytes) written to {1}",

nLength, strPath);

// Download waveform data.
// ---

// Get the waveform points mode.
Console.WriteLine("Waveform type: {0}",

myScope.DoQueryString(":WAVeform:TYPE?"));

// Get the number of waveform points.
Console.WriteLine("Waveform points: {0}",

myScope.DoQueryString(":WAVeform:POINts?"));

// Set the waveform source.
myScope.DoCommand(":WAVeform:SOURce CHANnel1");
Console.WriteLine("Waveform source: {0}",

myScope.DoQueryString(":WAVeform:SOURce?"));

// Choose the format of the data returned:
myScope.DoCommand(":WAVeform:FORMat WORD");
Console.WriteLine("Waveform format: {0}",

myScope.DoQueryString(":WAVeform:FORMat?"));

// Display the waveform settings from preamble:
Dictionary<string, string> dctWavFormat =

new Dictionary<string, string>()
{

{"0", "ASCii"},
{"1", "BYTE"},
{"2", "WORD"},
{"3", "LONG"},
{"4", "LONGLONG"},

};
Dictionary<string, string> dctAcqType =

new Dictionary<string, string>()
{

{"1", "RAW"},
{"2", "AVERage"},
{"3", "VHIStogram"},
{"4", "HHIStogram"},
{"6", "INTerpolate"},
{"10", "PDETect"},

};
Dictionary<string, string> dctAcqMode =

new Dictionary<string, string>()

1304 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

{
{"0", "RTIMe"},
{"1", "ETIMe"},
{"3", "PDETect"},

};
Dictionary<string, string> dctCoupling =

new Dictionary<string, string>()
{

{"0", "AC"},
{"1", "DC"},
{"2", "DCFIFTY"},
{"3", "LFREJECT"},

};
Dictionary<string, string> dctUnits =

new Dictionary<string, string>()
{

{"0", "UNKNOWN"},
{"1", "VOLT"},
{"2", "SECOND"},
{"3", "CONSTANT"},
{"4", "AMP"},
{"5", "DECIBEL"},

};
string strPreamble;
string[] strsPreamble;

strPreamble = myScope.DoQueryString(":WAVeform:PREamble?");
strsPreamble = strPreamble.Split(',');

Console.WriteLine("Waveform format: {0}",
dctWavFormat[strsPreamble[0]]);

Console.WriteLine("Acquire type: {0}",
dctAcqType[strsPreamble[1]]);

Console.WriteLine("Waveform points: {0}", strsPreamble[2]);
Console.WriteLine("Waveform average count: {0}", strsPreamble[3]);
Console.WriteLine("Waveform X increment: {0}", strsPreamble[4]);
Console.WriteLine("Waveform X origin: {0}", strsPreamble[5]);
Console.WriteLine("Waveform X reference: {0}", strsPreamble[6]);
Console.WriteLine("Waveform Y increment: {0}", strsPreamble[7]);
Console.WriteLine("Waveform Y origin: {0}", strsPreamble[8]);
Console.WriteLine("Waveform Y reference: {0}", strsPreamble[9]);
Console.WriteLine("Coupling: {0}", dctCoupling[strsPreamble[10]]);
Console.WriteLine("Waveform X display range: {0}",

strsPreamble[11]);
Console.WriteLine("Waveform X display origin: {0}",

strsPreamble[12]);
Console.WriteLine("Waveform Y display range: {0}",

strsPreamble[13]);
Console.WriteLine("Waveform Y display origin: {0}",

strsPreamble[14]);
Console.WriteLine("Date: {0}", strsPreamble[15]);
Console.WriteLine("Time: {0}", strsPreamble[16]);
Console.WriteLine("Frame model: {0}", strsPreamble[17]);
Console.WriteLine("Acquire mode: {0}",

dctAcqMode[strsPreamble[18]]);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1305

Console.WriteLine("Completion pct: {0}", strsPreamble[19]);
Console.WriteLine("Waveform X inits: {0}",

dctUnits[strsPreamble[20]]);
Console.WriteLine("Waveform Y units: {0}",

dctUnits[strsPreamble[21]]);
Console.WriteLine("Max BW limit: {0}", strsPreamble[22]);
Console.WriteLine("Min BW limit: {0}", strsPreamble[23]);

// Get numeric values for later calculations.
double fXincrement;
fXincrement = myScope.DoQueryNumber(":WAVeform:XINCrement?");
double fXorigin;
fXorigin = myScope.DoQueryNumber(":WAVeform:XORigin?");
double fYincrement;
fYincrement = myScope.DoQueryNumber(":WAVeform:YINCrement?");
double fYorigin;
fYorigin = myScope.DoQueryNumber(":WAVeform:YORigin?");

// Get the waveform data.
myScope.DoCommand(":WAVeform:STReaming OFF");
short[] WordDataArray; // Results array.
WordDataArray = myScope.DoQueryIEEEBlock_I2(":WAVeform:DATA?");
nLength = WordDataArray.Length;
Console.WriteLine("Number of data values: {0}", nLength);

// Set up output file:
strPath = "c:\\scope\\data\\waveform_data.csv";
if (File.Exists(strPath)) File.Delete(strPath);

// Open file for output.
StreamWriter writer = File.CreateText(strPath);

// Output waveform data in CSV format.
for (int i = 0; i < nLength - 1; i++)

writer.WriteLine("{0:f9}, {1:f6}",
fXorigin + ((float)i * fXincrement),
(((float)WordDataArray[i])
* fYincrement) + fYorigin);

// Close output file.
writer.Close();
Console.WriteLine("Waveform format WORD data written to {0}",

strPath);
}

}

class VisaComInstrument
{
private ResourceManagerClass m_ResourceManager;
private FormattedIO488Class m_IoObject;
private string m_strVisaAddress;

// Constructor.
public VisaComInstrument(string strVisaAddress)
{

// Save VISA address in member variable.
m_strVisaAddress = strVisaAddress;

1306 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

// Open the default VISA COM IO object.
OpenIo();

// Clear the interface.
m_IoObject.IO.Clear();

}

public void DoCommand(string strCommand)
{

// Send the command.
m_IoObject.WriteString(strCommand, true);

// Check for inst errors.
CheckInstrumentErrors(strCommand);

}

public void DoCommandIEEEBlock(string strCommand,
byte[] DataArray)

{
// Send the command to the device.
m_IoObject.WriteIEEEBlock(strCommand, DataArray, true);

// Check for inst errors.
CheckInstrumentErrors(strCommand);

}

public string DoQueryString(string strQuery)
{

// Send the query.
m_IoObject.WriteString(strQuery, true);

// Get the result string.
string strResults;
strResults = m_IoObject.ReadString();

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return results string.
return strResults;

}

public double DoQueryNumber(string strQuery)
{

// Send the query.
m_IoObject.WriteString(strQuery, true);

// Get the result number.
double fResult;
fResult = (double)m_IoObject.ReadNumber(

IEEEASCIIType.ASCIIType_R8, true);

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return result number.

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1307

return fResult;
}

public double[] DoQueryNumbers(string strQuery)
{

// Send the query.
m_IoObject.WriteString(strQuery, true);

// Get the result numbers.
double[] fResultsArray;
fResultsArray = (double[])m_IoObject.ReadList(

IEEEASCIIType.ASCIIType_R8, ",;");

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return result numbers.
return fResultsArray;

}

public byte[] DoQueryIEEEBlock_UI1(string strQuery)
{

// Send the query.
m_IoObject.WriteString(strQuery, true);

// Get the results array.
System.Threading.Thread.Sleep(2000); // Delay before reading.
byte[] ResultsArray;
ResultsArray = (byte[])m_IoObject.ReadIEEEBlock(

IEEEBinaryType.BinaryType_UI1, false, true);

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return results array.
return ResultsArray;

}

public short[] DoQueryIEEEBlock_I2(string strQuery)
{

// Send the query.
m_IoObject.WriteString(strQuery, true);

// Get the results array.
System.Threading.Thread.Sleep(2000); // Delay before reading.
short[] ResultsArray;
ResultsArray = (short[])m_IoObject.ReadIEEEBlock(

IEEEBinaryType.BinaryType_I2, false, true);

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return results array.
return ResultsArray;

}

private void CheckInstrumentErrors(string strCommand)

1308 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

{
// Check for instrument errors.
string strInstrumentError;
bool bFirstError = true;

do // While not "0,No error".
{

m_IoObject.WriteString(":SYSTem:ERRor? STRing", true);
strInstrumentError = m_IoObject.ReadString();

if (!strInstrumentError.ToString().StartsWith("0,"))
{

if (bFirstError)
{
Console.WriteLine("ERROR(s) for command '{0}': ",

strCommand);
bFirstError = false;

}
Console.Write(strInstrumentError);

}
} while (!strInstrumentError.ToString().StartsWith("0,"));

}

private void OpenIo()
{

m_ResourceManager = new ResourceManagerClass();
m_IoObject = new FormattedIO488Class();

// Open the default VISA COM IO object.
try
{

m_IoObject.IO =
(IMessage)m_ResourceManager.Open(m_strVisaAddress,
AccessMode.NO_LOCK, 0, "");

}
catch (Exception e)
{

Console.WriteLine("An error occurred: {0}", e.Message);
}

}

public void SetTimeoutSeconds(int nSeconds)
{

m_IoObject.IO.Timeout = nSeconds * 1000;
}

public void Close()
{

try
{

m_IoObject.IO.Close();
}
catch { }

try
{

Marshal.ReleaseComObject(m_IoObject);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1309

}
catch { }

try
{

Marshal.ReleaseComObject(m_ResourceManager);
}
catch { }

}
}

}

VISA COM Example in Visual Basic .NET

To compile and run this example in Microsoft Visual Studio 2008:

1 Open Visual Studio.

2 Create a new Visual Basic, Windows, Console Application project.

3 Cut-and-paste the code that follows into the C# source file.

4 Edit the program to use the VISA address of your oscilloscope.

5 Add a reference to the VISA COM 3.0 Type Library:

a Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment.

b Choose Add Reference....

c In the Add Reference dialog, select the COM tab.

d Select VISA COM 3.0 Type Library; then click OK.

e Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment and choose
Properties; then, select "Infiniium.VisaComInstrumentApp" as the Startup
object.

6 Build and run the program.

For more information, see the VISA COM Help that comes with Keysight IO
Libraries Suite 15.

'
' Keysight VISA COM Example in Visual Basic .NET
' ---
' This program illustrates a few commonly used programming
' features of your Keysight Infiniium Series oscilloscope.
' ---

Imports System
Imports System.IO
Imports System.Text
Imports System.Collections.Generic
Imports Ivi.Visa.Interop
Imports System.Runtime.InteropServices

1310 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

Namespace Infiniium
Class VisaComInstrumentApp
Private Shared myScope As VisaComInstrument

Public Shared Sub Main(ByVal args As String())
Try

myScope = New _
VisaComInstrument("TCPIP0::130.29.71.191::inst0::INSTR")

myScope.SetTimeoutSeconds(10)

' Initialize - start from a known state.
Initialize()

' Capture data.
Capture()

' Analyze the captured waveform.
Analyze()

Catch err As System.ApplicationException
Console.WriteLine("*** VISA Error Message : " + err.Message)

Catch err As System.SystemException
Console.WriteLine("*** System Error Message : " + err.Message)

Catch err As System.Exception
System.Diagnostics.Debug.Fail("Unexpected Error")
Console.WriteLine("*** Unexpected Error : " + err.Message)

Finally
myScope.Close()

End Try
End Sub

' Initialize the oscilloscope to a known state.
' --

Private Shared Sub Initialize()
Dim strResults As String

' Clear status.
myScope.DoCommand("*CLS")

' Get and display the device's *IDN? string.
strResults = myScope.DoQueryString("*IDN?")
Console.WriteLine("*IDN? result is: {0}", strResults)

' Load the default setup.
myScope.DoCommand("*RST")

End Sub

' Capture the waveform.
' --

Private Shared Sub Capture()

' Set probe attenuation factor.
myScope.DoCommand(":CHANnel1:PROBe 1.0")
Console.WriteLine("Channel 1 probe attenuation factor: {0}", _

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1311

myScope.DoQueryString(":CHANnel1:PROBe?"))

' Use auto-scale to automatically configure oscilloscope.
myScope.DoCommand(":AUToscale")

' Set trigger mode.
myScope.DoCommand(":TRIGger:MODE EDGE")
Console.WriteLine("Trigger mode: {0}", _

myScope.DoQueryString(":TRIGger:MODE?"))

' Set EDGE trigger parameters.
myScope.DoCommand(":TRIGger:EDGE:SOURCe CHANnel1")
Console.WriteLine("Trigger edge source: {0}", _

myScope.DoQueryString(":TRIGger:EDGE:SOURce?"))

myScope.DoCommand(":TRIGger:LEVel CHANnel1,-2E-3")
Console.WriteLine("Trigger level, channel 1: {0}", _

myScope.DoQueryString(":TRIGger:LEVel? CHANnel1"))

myScope.DoCommand(":TRIGger:EDGE:SLOPe POSitive")
Console.WriteLine("Trigger edge slope: {0}", _

myScope.DoQueryString(":TRIGger:EDGE:SLOPe?"))

' Save oscilloscope configuration.
Dim ResultsArray As Byte() ' Results array.
Dim nLength As Integer ' Number of bytes returned from inst.
Dim strPath As String
Dim fStream As FileStream

' Query and read setup string.
ResultsArray = myScope.DoQueryIEEEBlock_UI1(":SYSTem:SETup?")
nLength = ResultsArray.Length

' Write setup string to file.
strPath = "c:\scope\config\setup.stp"
fStream = File.Open(strPath, FileMode.Create)
fStream.Write(ResultsArray, 0, nLength)
fStream.Close()
Console.WriteLine("Setup bytes saved: {0}", nLength)

' Change settings with individual commands:

' Set vertical scale and offset.
myScope.DoCommand(":CHANnel1:SCALe 0.1")
Console.WriteLine("Channel 1 vertical scale: {0}", _

myScope.DoQueryString(":CHANnel1:SCALe?"))

myScope.DoCommand(":CHANnel1:OFFSet 0.0")
Console.WriteLine("Channel 1 vertical offset: {0}", _

myScope.DoQueryString(":CHANnel1:OFFSet?"))

' Set horizontal scale and offset.
myScope.DoCommand(":TIMebase:SCALe 0.0002")
Console.WriteLine("Timebase scale: {0}", _

myScope.DoQueryString(":TIMebase:SCALe?"))

myScope.DoCommand(":TIMebase:POSition 0.0")

1312 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

Console.WriteLine("Timebase position: {0}", _
myScope.DoQueryString(":TIMebase:POSition?"))

' Set the acquisition mode.
myScope.DoCommand(":ACQuire:MODE RTIMe")
Console.WriteLine("Acquire mode: {0}", _

myScope.DoQueryString(":ACQuire:MODE?"))

' Or, configure by loading a previously saved setup.
Dim DataArray As Byte()
Dim nBytesWritten As Integer

' Read setup string from file.
strPath = "c:\scope\config\setup.stp"
DataArray = File.ReadAllBytes(strPath)
nBytesWritten = DataArray.Length

' Restore setup string.
myScope.DoCommandIEEEBlock(":SYSTem:SETup", DataArray)
Console.WriteLine("Setup bytes restored: {0}", nBytesWritten)

' Set the desired number of waveform points,
' and capture an acquisition.
myScope.DoCommand(":ACQuire:POINts 32000")
myScope.DoCommand(":DIGitize")

End Sub

' Analyze the captured waveform.
' --

Private Shared Sub Analyze()

Dim fResult As Double
Dim ResultsArray As Byte() ' Results array.
Dim nLength As Integer ' Number of bytes returned from inst.
Dim strPath As String

' Make measurements.
' --
myScope.DoCommand(":MEASure:SOURce CHANnel1")
Console.WriteLine("Measure source: {0}", _

myScope.DoQueryString(":MEASure:SOURce?"))

myScope.DoCommand(":MEASure:FREQuency")
fResult = myScope.DoQueryNumber(":MEASure:FREQuency?")
Console.WriteLine("Frequency: {0:F4} kHz", fResult / 1000)

myScope.DoCommand(":MEASure:VAMPlitude")
fResult = myScope.DoQueryNumber(":MEASure:VAMPlitude?")
Console.WriteLine("Vertical amplitude: {0:F2} V", fResult)

' Download the screen image.
' --

' Get the screen data.
ResultsArray = myScope.DoQueryIEEEBlock_UI1(":DISPlay:DATA? PNG")

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1313

nLength = ResultsArray.Length

' Store the screen data to a file.
strPath = "c:\scope\data\screen.png"
Dim fStream As FileStream
fStream = File.Open(strPath, FileMode.Create)
fStream.Write(ResultsArray, 0, nLength)
fStream.Close()
Console.WriteLine("Screen image ({0} bytes) written to {1}", _

nLength, strPath)

' Download waveform data.
' --

' Get the waveform type.
Console.WriteLine("Waveform type: {0}", _

myScope.DoQueryString(":WAVeform:TYPE?"))

' Get the number of waveform points.
Console.WriteLine("Waveform points: {0}", _

myScope.DoQueryString(":WAVeform:POINts?"))

' Set the waveform source.
myScope.DoCommand(":WAVeform:SOURce CHANnel1")
Console.WriteLine("Waveform source: {0}", _

myScope.DoQueryString(":WAVeform:SOURce?"))

' Choose the format of the data returned:
myScope.DoCommand(":WAVeform:FORMat WORD")
Console.WriteLine("Waveform format: {0}", _

myScope.DoQueryString(":WAVeform:FORMat?"))

' Display the waveform settings from preamble:
Dim dctWavFormat As New Dictionary(Of String, String)
dctWavFormat.Add("0", "ASCii")
dctWavFormat.Add("1", "BYTE")
dctWavFormat.Add("2", "WORD")
dctWavFormat.Add("3", "LONG")
dctWavFormat.Add("4", "LONGLONG")

Dim dctAcqType As New Dictionary(Of String, String)
dctAcqType.Add("1", "RAW")
dctAcqType.Add("2", "AVERage")
dctAcqType.Add("3", "VHIStogram")
dctAcqType.Add("4", "HHIStogram")
dctAcqType.Add("6", "INTerpolate")
dctAcqType.Add("10", "PDETect")

Dim dctAcqMode As New Dictionary(Of String, String)()
dctAcqMode.Add("0", "RTIMe")
dctAcqMode.Add("1", "ETIMe")
dctAcqMode.Add("3", "PDETect")

Dim dctCoupling As New Dictionary(Of String, String)()
dctCoupling.Add("0", "AC")
dctCoupling.Add("1", "DC")
dctCoupling.Add("2", "DCFIFTY")

1314 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

dctCoupling.Add("3", "LFREJECT")

Dim dctUnits As New Dictionary(Of String, String)()
dctUnits.Add("0", "UNKNOWN")
dctUnits.Add("1", "VOLT")
dctUnits.Add("2", "SECOND")
dctUnits.Add("3", "CONSTANT")
dctUnits.Add("4", "AMP")
dctUnits.Add("5", "DECIBEL")

Dim strPreamble As String
Dim strsPreamble As String()

strPreamble = myScope.DoQueryString(":WAVeform:PREamble?")
strsPreamble = strPreamble.Split(","c)

Console.WriteLine("Waveform format: {0}", _
dctWavFormat(strsPreamble(0)))

Console.WriteLine("Acquire type: {0}", _
dctAcqType(strsPreamble(1)))

Console.WriteLine("Waveform points: {0}", strsPreamble(2))
Console.WriteLine("Waveform average count: {0}", strsPreamble(3))
Console.WriteLine("Waveform X increment: {0}", strsPreamble(4))
Console.WriteLine("Waveform X origin: {0}", strsPreamble(5))
Console.WriteLine("Waveform X reference: {0}", strsPreamble(6))
Console.WriteLine("Waveform Y increment: {0}", strsPreamble(7))
Console.WriteLine("Waveform Y origin: {0}", strsPreamble(8))
Console.WriteLine("Waveform Y reference: {0}", strsPreamble(9))
Console.WriteLine("Coupling: {0}", dctCoupling(strsPreamble(10)))
Console.WriteLine("Waveform X display range: {0}", _

strsPreamble(11))
Console.WriteLine("Waveform X display origin: {0}", _

strsPreamble(12))
Console.WriteLine("Waveform Y display range: {0}", _

strsPreamble(13))
Console.WriteLine("Waveform Y display origin: {0}", _

strsPreamble(14))
Console.WriteLine("Date: {0}", strsPreamble(15))
Console.WriteLine("Time: {0}", strsPreamble(16))
Console.WriteLine("Frame model: {0}", strsPreamble(17))
Console.WriteLine("Acquire mode: {0}", _

dctAcqMode(strsPreamble(18)))
Console.WriteLine("Completion pct: {0}", strsPreamble(19))
Console.WriteLine("Waveform X inits: {0}", _

dctUnits(strsPreamble(20)))
Console.WriteLine("Waveform Y units: {0}", _

dctUnits(strsPreamble(21)))
Console.WriteLine("Max BW limit: {0}", strsPreamble(22))
Console.WriteLine("Min BW limit: {0}", strsPreamble(23))

' Get numeric values for later calculations.
Dim fXincrement As Double
fXincrement = myScope.DoQueryNumber(":WAVeform:XINCrement?")
Dim fXorigin As Double
fXorigin = myScope.DoQueryNumber(":WAVeform:XORigin?")

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1315

Dim fYincrement As Double
fYincrement = myScope.DoQueryNumber(":WAVeform:YINCrement?")
Dim fYorigin As Double
fYorigin = myScope.DoQueryNumber(":WAVeform:YORigin?")

' Get the waveform data.
myScope.DoCommand(":WAVeform:STReaming OFF")
Dim WordDataArray As Short()
WordDataArray = myScope.DoQueryIEEEBlock_I2(":WAVeform:DATA?")
nLength = WordDataArray.Length
Console.WriteLine("Number of data values: {0}", nLength)

' Set up output file:
strPath = "c:\scope\data\waveform_data.csv"
If File.Exists(strPath) Then

File.Delete(strPath)
End If

' Open file for output.
Dim writer As StreamWriter = File.CreateText(strPath)

' Output waveform data in CSV format.
For index As Integer = 0 To nLength - 1

' Write time value, voltage value.
writer.WriteLine("{0:f9}, {1:f6}", _

fXorigin + (CSng(index) * fXincrement), _
(CSng(WordDataArray(index)) * fYincrement) + fYorigin)

Next

' Close output file.
writer.Close()
Console.WriteLine("Waveform format WORD data written to {0}", _

strPath)

End Sub

End Class

Class VisaComInstrument
Private m_ResourceManager As ResourceManagerClass
Private m_IoObject As FormattedIO488Class
Private m_strVisaAddress As String

' Constructor.
Public Sub New(ByVal strVisaAddress As String)

' Save VISA address in member variable.
m_strVisaAddress = strVisaAddress

' Open the default VISA COM IO object.
OpenIo()

' Clear the interface.
m_IoObject.IO.Clear()

End Sub

1316 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

Public Sub DoCommand(ByVal strCommand As String)

' Send the command.
m_IoObject.WriteString(strCommand, True)

' Check for inst errors.
CheckInstrumentErrors(strCommand)

End Sub

Public Sub DoCommandIEEEBlock(ByVal strCommand As String, _
ByVal DataArray As Byte())

' Send the command to the device.
m_IoObject.WriteIEEEBlock(strCommand, DataArray, True)

' Check for inst errors.
CheckInstrumentErrors(strCommand)

End Sub

Public Function DoQueryString(ByVal strQuery As String) As String
' Send the query.
m_IoObject.WriteString(strQuery, True)

' Get the result string.
Dim strResults As String
strResults = m_IoObject.ReadString()

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return results string.
Return strResults

End Function

Public Function DoQueryNumber(ByVal strQuery As String) As Double
' Send the query.
m_IoObject.WriteString(strQuery, True)

' Get the result number.
Dim fResult As Double
fResult = _

CDbl(m_IoObject.ReadNumber(IEEEASCIIType.ASCIIType_R8, True))

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return result number.
Return fResult

End Function

Public Function DoQueryNumbers(ByVal strQuery As String) As _
Double()

' Send the query.
m_IoObject.WriteString(strQuery, True)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1317

' Get the result numbers.
Dim fResultsArray As Double()
fResultsArray = _

m_IoObject.ReadList(IEEEASCIIType.ASCIIType_R8, ",;")

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return result numbers.
Return fResultsArray

End Function

Public _
Function _

DoQueryIEEEBlock_UI1(ByVal strQuery As String) As Byte()
' Send the query.
m_IoObject.WriteString(strQuery, True)

' Get the results array.
System.Threading.Thread.Sleep(2000) ' Delay before reading data.
Dim ResultsArray As Byte()
ResultsArray = _

m_IoObject.ReadIEEEBlock(IEEEBinaryType.BinaryType_UI1, _
False, True)

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return results array.
Return ResultsArray

End Function

Public _
Function _

DoQueryIEEEBlock_I2(ByVal strQuery As String) As Short()
' Send the query.
m_IoObject.WriteString(strQuery, True)

' Get the results array.
System.Threading.Thread.Sleep(2000) ' Delay before reading data.
Dim ResultsArray As Short()
ResultsArray = _

m_IoObject.ReadIEEEBlock(IEEEBinaryType.BinaryType_I2, _
False, True)

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return results array.
Return ResultsArray

End Function

Private Sub CheckInstrumentErrors(ByVal strCommand As String)
' Check for instrument errors.
Dim strInstrumentError As String
Dim bFirstError As Boolean = True
Do ' While not "0,No error".

1318 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

m_IoObject.WriteString(":SYSTem:ERRor? STRing", True)
strInstrumentError = m_IoObject.ReadString()

If Not strInstrumentError.ToString().StartsWith("0,") Then
If bFirstError Then
Console.WriteLine("ERROR(s) for command '{0}': ", _

strCommand)
bFirstError = False

End If
Console.Write(strInstrumentError)

End If
Loop While Not strInstrumentError.ToString().StartsWith("0,")

End Sub

Private Sub OpenIo()
m_ResourceManager = New ResourceManagerClass()
m_IoObject = New FormattedIO488Class()

' Open the default VISA COM IO object.
Try

m_IoObject.IO = _
DirectCast(m_ResourceManager.Open(m_strVisaAddress, _

AccessMode.NO_LOCK, 0, ""), IMessage)
Catch e As Exception

Console.WriteLine("An error occurred: {0}", e.Message)
End Try

End Sub

Public Sub SetTimeoutSeconds(ByVal nSeconds As Integer)
m_IoObject.IO.Timeout = nSeconds * 1000

End Sub

Public Sub Close()
Try

m_IoObject.IO.Close()
Catch
End Try

Try
Marshal.ReleaseComObject(m_IoObject)

Catch
End Try

Try
Marshal.ReleaseComObject(m_ResourceManager)

Catch
End Try

End Sub
End Class

End Namespace

VISA COM Example in Python

You can use the Python programming language with the "comtypes" package to
control Keysight oscilloscopes.

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1319

The Python language and "comtypes" package can be downloaded from the web
at "http://www.python.org/" and
"http://starship.python.net/crew/theller/comtypes/", respectively.

To run this example with Python and "comtypes":

1 Cut-and-paste the code that follows into a file named "example.py".

2 Edit the program to use the VISA address of your oscilloscope.

3 If "python.exe" can be found via your PATH environment variable, open a
Command Prompt window; then, change to the folder that contains the
"example.py" file, and enter:

python example.py

#
Keysight VISA COM Example in Python using "comtypes"

This program illustrates a few commonly used programming
features of your Keysight Infiniium Series oscilloscope.

Import Python modules.

import string
import time
import sys
import array

from comtypes.client import GetModule
from comtypes.client import CreateObject

Run GetModule once to generate comtypes.gen.VisaComLib.
if not hasattr(sys, "frozen"):
GetModule("C:\Program Files (x86)\IVI Foundation\VISA\VisaCom\
GlobMgr.dll")

import comtypes.gen.VisaComLib as VisaComLib

Global variables (booleans: 0 = False, 1 = True).

===
Initialize:
===
def initialize():
Get and display the device's *IDN? string.
idn_string = do_query_string("*IDN?")
print "Identification string '%s'" % idn_string

Clear status and load the default setup.
do_command("*CLS")
do_command("*RST")

http://www.python.org/
http://starship.python.net/crew/theller/comtypes/

1320 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

===
Capture:
===
def capture():

Set probe attenuation factor.
do_command(":CHANnel1:PROBe 1.0")
qresult = do_query_string(":CHANnel1:PROBe?")
print "Channel 1 probe attenuation factor: %s" % qresult

Use auto-scale to automatically set up oscilloscope.
print "Autoscale."
do_command(":AUToscale")

Set trigger mode.
do_command(":TRIGger:MODE EDGE")
qresult = do_query_string(":TRIGger:MODE?")
print "Trigger mode: %s" % qresult

Set EDGE trigger parameters.
do_command(":TRIGger:EDGE:SOURCe CHANnel1")
qresult = do_query_string(":TRIGger:EDGE:SOURce?")
print "Trigger edge source: %s" % qresult

do_command(":TRIGger:LEVel CHANnel1,-2E-3")
qresult = do_query_string(":TRIGger:LEVel? CHANnel1")
print "Trigger level, channel 1: %s" % qresult

do_command(":TRIGger:EDGE:SLOPe POSitive")
qresult = do_query_string(":TRIGger:EDGE:SLOPe?")
print "Trigger edge slope: %s" % qresult

Save oscilloscope setup.
setup_bytes = do_query_ieee_block_UI1(":SYSTem:SETup?")
nLength = len(setup_bytes)
f = open("setup.stp", "wb")
f.write(bytearray(setup_bytes))
f.close()
print "Setup bytes saved: %d" % nLength

Change oscilloscope settings with individual commands:

Set vertical scale and offset.
do_command(":CHANnel1:SCALe 0.1")
qresult = do_query_number(":CHANnel1:SCALe?")
print "Channel 1 vertical scale: %f" % qresult

do_command(":CHANnel1:OFFSet 0.0")
qresult = do_query_number(":CHANnel1:OFFSet?")
print "Channel 1 offset: %f" % qresult

Set horizontal scale and offset.
do_command(":TIMebase:SCALe 200e-6")
qresult = do_query_string(":TIMebase:SCALe?")
print "Timebase scale: %s" % qresult

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1321

do_command(":TIMebase:POSition 0.0")
qresult = do_query_string(":TIMebase:POSition?")
print "Timebase position: %s" % qresult

Set the acquisition mode.
do_command(":ACQuire:MODE RTIMe")
qresult = do_query_string(":ACQuire:MODE?")
print "Acquire mode: %s" % qresult

Or, configure by loading a previously saved setup.
f = open("setup.stp", "rb")
setup_bytes = f.read()
f.close()
do_command_ieee_block(":SYSTem:SETup", array.array('B', setup_bytes))
print "Setup bytes restored: %d" % len(setup_bytes)

Set the desired number of waveform points,
and capture an acquisition.
do_command(":ACQuire:POINts 32000")
do_command(":DIGitize")

===
Analyze:
===
def analyze():

Make measurements.
--
do_command(":MEASure:SOURce CHANnel1")
qresult = do_query_string(":MEASure:SOURce?")
print "Measure source: %s" % qresult

do_command(":MEASure:FREQuency")
qresult = do_query_string(":MEASure:FREQuency?")
print "Measured frequency on channel 1: %s" % qresult

do_command(":MEASure:VAMPlitude")
qresult = do_query_string(":MEASure:VAMPlitude?")
print "Measured vertical amplitude on channel 1: %s" % qresult

Download the screen image.
--
image_bytes = do_query_ieee_block_UI1(":DISPlay:DATA? PNG")
nLength = len(image_bytes)
f = open("screen_image.png", "wb")
f.write(bytearray(image_bytes))
f.close()
print "Screen image written to 'screen_image.png'."

Download waveform data.
--

Get the waveform type.
qresult = do_query_string(":WAVeform:TYPE?")
print "Waveform type: %s" % qresult

1322 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

Get the number of waveform points.
qresult = do_query_string(":WAVeform:POINts?")
print "Waveform points: %s" % qresult

Set the waveform source.
do_command(":WAVeform:SOURce CHANnel1")
qresult = do_query_string(":WAVeform:SOURce?")
print "Waveform source: %s" % qresult

Choose the format of the data returned:
do_command(":WAVeform:FORMat WORD")
print "Waveform format: %s" % do_query_string(":WAVeform:FORMat?")

Display the waveform settings from preamble:
wav_form_dict = {
0 : "ASCii",
1 : "BYTE",
2 : "WORD",
3 : "LONG",
4 : "LONGLONG",
}
acq_type_dict = {
1 : "RAW",
2 : "AVERage",
3 : "VHIStogram",
4 : "HHIStogram",
6 : "INTerpolate",
10 : "PDETect",
}
acq_mode_dict = {
0 : "RTIMe",
1 : "ETIMe",
3 : "PDETect",
}
coupling_dict = {
0 : "AC",
1 : "DC",
2 : "DCFIFTY",
3 : "LFREJECT",
}
units_dict = {
0 : "UNKNOWN",
1 : "VOLT",
2 : "SECOND",
3 : "CONSTANT",
4 : "AMP",
5 : "DECIBEL",
}

preamble_string = do_query_string(":WAVeform:PREamble?")
(
wav_form, acq_type, wfmpts, avgcnt, x_increment, x_origin,
x_reference, y_increment, y_origin, y_reference, coupling,
x_display_range, x_display_origin, y_display_range,
y_display_origin, date, time, frame_model, acq_mode,
completion, x_units, y_units, max_bw_limit, min_bw_limit
) = string.split(preamble_string, ",")

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1323

print "Waveform format: %s" % wav_form_dict[int(wav_form)]
print "Acquire type: %s" % acq_type_dict[int(acq_type)]
print "Waveform points desired: %s" % wfmpts
print "Waveform average count: %s" % avgcnt
print "Waveform X increment: %s" % x_increment
print "Waveform X origin: %s" % x_origin
print "Waveform X reference: %s" % x_reference # Always 0.
print "Waveform Y increment: %s" % y_increment
print "Waveform Y origin: %s" % y_origin
print "Waveform Y reference: %s" % y_reference # Always 0.
print "Coupling: %s" % coupling_dict[int(coupling)]
print "Waveform X display range: %s" % x_display_range
print "Waveform X display origin: %s" % x_display_origin
print "Waveform Y display range: %s" % y_display_range
print "Waveform Y display origin: %s" % y_display_origin
print "Date: %s" % date
print "Time: %s" % time
print "Frame model #: %s" % frame_model
print "Acquire mode: %s" % acq_mode_dict[int(acq_mode)]
print "Completion pct: %s" % completion
print "Waveform X units: %s" % units_dict[int(x_units)]
print "Waveform Y units: %s" % units_dict[int(y_units)]
print "Max BW limit: %s" % max_bw_limit
print "Min BW limit: %s" % min_bw_limit

Get numeric values for later calculations.
x_increment = do_query_number(":WAVeform:XINCrement?")
x_origin = do_query_number(":WAVeform:XORigin?")
y_increment = do_query_number(":WAVeform:YINCrement?")
y_origin = do_query_number(":WAVeform:YORigin?")

Get the waveform data.
do_command(":WAVeform:STReaming OFF")
data_words = do_query_ieee_block_I2(":WAVeform:DATA?")
nLength = len(data_words)
print "Number of data values: %d" % nLength

Open file for output.
strPath = "waveform_data.csv"
f = open(strPath, "w")

Output waveform data in CSV format.
for i in xrange(0, nLength - 1):
time_val = x_origin + (i * x_increment)
voltage = (data_words[i] * y_increment) + y_origin
f.write("%E, %f\n" % (time_val, voltage))

Close output file.
f.close()
print "Waveform format WORD data written to %s." % strPath

===
Send a command and check for errors:
===
def do_command(command):

1324 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

myScope.WriteString("%s" % command, True)
check_instrument_errors(command)

===
Send a command and check for errors:
===
def do_command_ieee_block(command, data):
myScope.WriteIEEEBlock(command, data, True)
check_instrument_errors(command)

===
Send a query, check for errors, return string:
===
def do_query_string(query):
myScope.WriteString("%s" % query, True)
result = myScope.ReadString()
check_instrument_errors(query)
return result

===
Send a query, check for errors, return string:
===
def do_query_ieee_block_UI1(query):
myScope.WriteString("%s" % query, True)
result = myScope.ReadIEEEBlock(VisaComLib.BinaryType_UI1, \

False, True)
check_instrument_errors(query)
return result

===
Send a query, check for errors, return string:
===
def do_query_ieee_block_I2(query):
myScope.WriteString("%s" % query, True)
result = myScope.ReadIEEEBlock(VisaComLib.BinaryType_I2, \

False, True)
check_instrument_errors(query)
return result

===
Send a query, check for errors, return values:
===
def do_query_number(query):
myScope.WriteString("%s" % query, True)
result = myScope.ReadNumber(VisaComLib.ASCIIType_R8, True)
check_instrument_errors(query)
return result

===
Send a query, check for errors, return values:
===

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1325

def do_query_numbers(query):
myScope.WriteString("%s" % query, True)
result = myScope.ReadList(VisaComLib.ASCIIType_R8, ",;")
check_instrument_errors(query)
return result

===
Check for instrument errors:
===
def check_instrument_errors(command):

while True:
myScope.WriteString(":SYSTem:ERRor? STRing", True)
error_string = myScope.ReadString()
if error_string: # If there is an error string value.

if error_string.find("0,", 0, 2) == -1: # Not "No error".
print "ERROR: %s, command: '%s'" % (error_string, command)
print "Exited because of error."
sys.exit(1)

else: # "No error"
break

else: # :SYSTem:ERRor? STRing should always return string.
print "ERROR: :SYSTem:ERRor? STRing returned nothing, command: '%s'"

\
% command

print "Exited because of error."
sys.exit(1)

===
Main program:
===
rm = CreateObject("VISA.GlobalRM", \
interface=VisaComLib.IResourceManager)
myScope = CreateObject("VISA.BasicFormattedIO", \
interface=VisaComLib.IFormattedIO488)
myScope.IO = \
rm.Open("TCPIP0::lab-qrex-lp2-10.cos.is.keysight.com::inst0::INSTR")

Clear the interface.
myScope.IO.Clear
print "Interface cleared."

Set the Timeout to 15 seconds.
myScope.IO.Timeout = 15000 # 15 seconds.
print "Timeout set to 15000 milliseconds."

Initialize the oscilloscope, capture data, and analyze.
initialize()
capture()
analyze()

print "End of program"

1326 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

VISA Examples

• "VISA Example in C" on page 1326

• "VISA Example in Visual Basic" on page 1335

• "VISA Example in C#" on page 1345

• "VISA Example in Visual Basic .NET" on page 1357

• "VISA Example in Python" on page 1369

VISA Example in C

To compile and run this example in Microsoft Visual Studio 2008:

1 Open Visual Studio.

2 Create a new Visual C++, Win32, Win32 Console Application project.

3 In the Win32 Application Wizard, click Next >. Then, check Empty project, and
click Finish.

4 Cut-and-paste the code that follows into a file named "example.c" in the
project directory.

5 In Visual Studio 2008, right-click the Source Files folder, choose Add > Add
Existing Item..., select the example.c file, and click Add.

6 Edit the program to use the VISA address of your oscilloscope.

7 Choose Project > Properties.... In the Property Pages dialog, update these project
settings:

a Under Configuration Properties, Linker, Input, add "visa32.lib" to the
Additional Dependencies field.

b Under Configuration Properties, C/C++, Code Generation, select
Multi-threaded DLL for the Runtime Library field.

c Click OK to close the Property Pages dialog.

8 Add the include files and library files search paths:

a Choose Tools > Options....

b In the Options dialog, select VC++ Directories under Projects and Solutions.

c Show directories for Include files, and add the include directory (for example,
Program Files\IVI Foundation\VISA\WinNT\include).

d Show directories for Library files, and add the library files directory (for
example, Program Files\IVI Foundation\VISA\WinNT\lib\msc).

e Click OK to close the Options dialog.

9 Build and run the program.

/*
* Keysight VISA Example in C
* --

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1327

* This program illustrates a few commonly-used programming
* features of your Keysight Infiniium Series oscilloscope.
*/

#include <stdio.h> /* For printf(). */
#include <string.h> /* For strcpy(), strcat(). */
#include <time.h> /* For clock(). */
#include <visa.h> /* Keysight VISA routines. */

#define VISA_ADDRESS "TCPIP0::130.29.71.191::inst0::INSTR"
#define IEEEBLOCK_SPACE 5000000

/* Function prototypes */
void initialize(void); /* Initialize to known state. */
void capture(void); /* Capture the waveform. */
void analyze(void); /* Analyze the captured waveform. */

void do_command(char *command); /* Send command. */
int do_command_ieeeblock(char *command); /* Command w/IEEE block. */
void do_query_string(char *query); /* Query for string. */
void do_query_number(char *query); /* Query for number. */
void do_query_numbers(char *query); /* Query for numbers. */
int do_query_ieeeblock(char *query); /* Query for IEEE byte block. */
int do_query_ieeeblock_words(char *query); /* Query for word block. */
void check_instrument_errors(); /* Check for inst errors. */
void error_handler(); /* VISA error handler. */

/* Global variables */
ViSession defaultRM, vi; /* Device session ID. */
ViStatus err; /* VISA function return value. */
char str_result[256] = {0}; /* Result from do_query_string(). */
double num_result; /* Result from do_query_number(). */
unsigned char ieeeblock_data[IEEEBLOCK_SPACE]; /* Result from

do_query_ieeeblock(). */
signed short ieeeblock_data_words[IEEEBLOCK_SPACE]; /* Result from

do_query_ieeeblock_words(). */
double dbl_results[10]; /* Result from do_query_numbers(). */

/* Main Program
* --- */
void main(void)
{

/* Open the default resource manager session. */
err = viOpenDefaultRM(&defaultRM);
if (err != VI_SUCCESS) error_handler();

/* Open the session using the oscilloscope's VISA address. */
err = viOpen(defaultRM, VISA_ADDRESS, VI_NULL, VI_NULL, &vi);
if (err != VI_SUCCESS) error_handler();

/* Set the I/O timeout to fifteen seconds. */
err = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 15000);
if (err != VI_SUCCESS) error_handler();

/* Clear the interface. */
err = viClear(vi);
if (err != VI_SUCCESS) error_handler();

1328 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

/* Initialize - start from a known state. */
initialize();

/* Capture data. */
capture();

/* Analyze the captured waveform. */
analyze();

/* Close the vi session and the resource manager session. */
viClose(vi);
viClose(defaultRM);

}

/* Initialize the oscilloscope to a known state.
* --- */
void initialize (void)
{

/* Clear status. */
do_command("*CLS");

/* Get and display the device's *IDN? string. */
do_query_string("*IDN?");
printf("Oscilloscope *IDN? string: %s\n", str_result);

/* Load the default setup. */
do_command("*RST");

}

/* Capture the waveform.
* --- */
void capture (void)
{

int num_values;
FILE *fp;

/* Set probe attenuation factor. */
do_command(":CHANnel1:PROBe 1.0");
do_query_string(":CHANnel1:PROBe?");
printf("Channel 1 probe attenuation factor: %s\n", str_result);

/* Use auto-scale to automatically configure oscilloscope. */
do_command(":AUToscale");

/* Set trigger mode. */
do_command(":TRIGger:MODE EDGE");
do_query_string(":TRIGger:MODE?");
printf("Trigger mode: %s\n", str_result);

/* Set EDGE trigger parameters. */
do_command(":TRIGger:EDGE:SOURCe CHANnel1");
do_query_string(":TRIGger:EDGE:SOURce?");
printf("Trigger edge source: %s\n", str_result);

do_command(":TRIGger:LEVel CHANnel1,-2E-3");
do_query_string(":TRIGger:LEVel? CHANnel1");

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1329

printf("Trigger level, channel 1: %s\n", str_result);

do_command(":TRIGger:EDGE:SLOPe POSitive");
do_query_string(":TRIGger:EDGE:SLOPe?");
printf("Trigger edge slope: %s\n", str_result);

/* Save oscilloscope setup. */

/* Read system setup. */
num_values = do_query_ieeeblock(":SYSTem:SETup?");
printf("Read setup string query (%d bytes).\n", num_values);

/* Write setup string to file. */
fp = fopen ("c:\\scope\\config\\setup.stp", "wb");
num_values = fwrite(ieeeblock_data, sizeof(unsigned char), num_values,
fp);

fclose (fp);
printf("Wrote setup string (%d bytes) to ", num_values);
printf("c:\\scope\\config\\setup.stp.\n");

/* Change settings with individual commands:

/* Set vertical scale and offset. */
do_command(":CHANnel1:SCALe 0.1");
do_query_string(":CHANnel1:SCALe?");
printf("Channel 1 vertical scale: %s\n", str_result);

do_command(":CHANnel1:OFFSet 0.0");
do_query_string(":CHANnel1:OFFSet?");
printf("Channel 1 offset: %s\n", str_result);

/* Set horizontal scale and offset. */
do_command(":TIMebase:SCALe 0.0002");
do_query_string(":TIMebase:SCALe?");
printf("Timebase scale: %s\n", str_result);

do_command(":TIMebase:POSition 0.0");
do_query_string(":TIMebase:POSition?");
printf("Timebase position: %s\n", str_result);

/* Set the acquisition mode. */
do_command(":ACQuire:MODE RTIMe");
do_query_string(":ACQuire:MODE?");
printf("Acquire mode: %s\n", str_result);

/* Or, set up by loading a previously saved setup. */

/* Read setup string from file. */
fp = fopen ("c:\\scope\\config\\setup.stp", "rb");
num_values = fread (ieeeblock_data, sizeof(unsigned char),
IEEEBLOCK_SPACE, fp);

fclose (fp);
printf("Read setup string (%d bytes) from file ", num_values);
printf("c:\\scope\\config\\setup.stp.\n");

/* Restore setup string. */
num_values = do_command_ieeeblock(":SYSTem:SETup", num_values);

1330 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

printf("Restored setup string (%d bytes).\n", num_values);

/* Set the desired number of waveform points,
* and capture an acquisition. */
do_command(":ACQuire:POINts 32000");
do_command(":DIGitize");

}

/* Analyze the captured waveform.
* --- */
void analyze (void)
{

double wav_format;
double acq_type;
double wav_points;
double avg_count;
double x_increment;
double x_origin;
double y_increment;
double y_origin;

FILE *fp;
int num_values; /* Number of bytes returned from instrument. */
int i;

/* Make measurements.
* --- */
do_command(":MEASure:SOURce CHANnel1");
do_query_string(":MEASure:SOURce?");
printf("Measure source: %s\n", str_result);

do_command(":MEASure:FREQuency");
do_query_number(":MEASure:FREQuency?");
printf("Frequency: %.4f kHz\n", num_result / 1000);

do_command(":MEASure:VAMPlitude");
do_query_number(":MEASure:VAMPlitude?");
printf("Vertical amplitude: %.2f V\n", num_result);

/* Download the screen image.
* --- */

/* Read screen image. */
num_values = do_query_ieeeblock(":DISPlay:DATA? PNG");
printf("Screen image bytes: %d\n", num_values);

/* Write screen image bytes to file. */
fp = fopen ("c:\\scope\\data\\screen.png", "wb");
num_values = fwrite(ieeeblock_data, sizeof(unsigned char), num_values,
fp);

fclose (fp);
printf("Wrote screen image (%d bytes) to ", num_values);
printf("c:\\scope\\data\\screen.bmp.\n");

/* Download waveform data.
* --- */

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1331

/* Get the waveform type. */
do_query_string(":WAVeform:TYPE?");
printf("Waveform type: %s\n", str_result);

/* Get the number of waveform points. */
do_query_string(":WAVeform:POINts?");
printf("Waveform points: %s\n", str_result);

/* Set the waveform source. */
do_command(":WAVeform:SOURce CHANnel1");
do_query_string(":WAVeform:SOURce?");
printf("Waveform source: %s\n", str_result);

/* Choose the format of the data returned: */
do_command(":WAVeform:FORMat WORD");
do_query_string(":WAVeform:FORMat?");
printf("Waveform format: %s\n", str_result);

/* Display the waveform settings: */
do_query_number(":WAVeform:XINCrement?");
x_increment = num_result;
printf("Waveform X increment: %e\n", x_increment);

do_query_number(":WAVeform:XORigin?");
x_origin = num_result;
printf("Waveform X origin: %e\n", x_origin);

do_query_number(":WAVeform:YINCrement?");
y_increment = num_result;
printf("Waveform Y increment: %e\n", y_increment);

do_query_number(":WAVeform:YORigin?");
y_origin = num_result;
printf("Waveform Y origin: %e\n", y_origin);

/* Read waveform data. */
num_values = do_query_ieeeblock_words(":WAVeform:DATA?");
printf("Number of data values: %d\n", num_values);

/* Open file for output. */
fp = fopen("c:\\scope\\data\\waveform_data.csv", "wb");

/* Output waveform data in CSV format. */
for (i = 0; i < num_values - 1; i++)
{
/* Write time value, voltage value. */
fprintf(fp, "%9f, %6f\n",

x_origin + ((float)i * x_increment),
((float)ieeeblock_data_words[i] * y_increment) + y_origin);

}

/* Close output file. */
fclose(fp);
printf("Waveform format WORD data written to ");
printf("c:\\scope\\data\\waveform_data.csv.\n");

}

1332 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

/* Send a command to the instrument.
* --- */
void do_command(command)
char *command;
{

char message[80];

strcpy(message, command);
strcat(message, "\n");
err = viPrintf(vi, message);
if (err != VI_SUCCESS) error_handler();

check_instrument_errors();
}

/* Command with IEEE definite-length block.
* --- */
int do_command_ieeeblock(command, num_bytes)
char *command;
int num_bytes;
{

char message[80];
int data_length;

strcpy(message, command);
strcat(message, " #8%08d");
err = viPrintf(vi, message, num_bytes);
if (err != VI_SUCCESS) error_handler();

err = viBufWrite(vi, ieeeblock_data, num_bytes, &data_length);
if (err != VI_SUCCESS) error_handler();

check_instrument_errors();

return(data_length);
}

/* Query for a string result.
* --- */
void do_query_string(query)
char *query;
{

char message[80];

strcpy(message, query);
strcat(message, "\n");

err = viPrintf(vi, message);
if (err != VI_SUCCESS) error_handler();

err = viScanf(vi, "%t", str_result);
if (err != VI_SUCCESS) error_handler();

check_instrument_errors();
}

/* Query for a number result.

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1333

* --- */
void do_query_number(query)
char *query;
{

char message[80];

strcpy(message, query);
strcat(message, "\n");

err = viPrintf(vi, message);
if (err != VI_SUCCESS) error_handler();

err = viScanf(vi, "%lf", &num_result);
if (err != VI_SUCCESS) error_handler();

check_instrument_errors();
}

/* Query for numbers result.
* --- */
void do_query_numbers(query)
char *query;
{

char message[80];

strcpy(message, query);
strcat(message, "\n");

err = viPrintf(vi, message);
if (err != VI_SUCCESS) error_handler();

err = viScanf(vi, "%,10lf\n", dbl_results);
if (err != VI_SUCCESS) error_handler();

check_instrument_errors();
}

/* Query for an IEEE definite-length byte block result.
* --- */
int do_query_ieeeblock(query)
char *query;
{

char message[80];
int data_length;

strcpy(message, query);
strcat(message, "\n");
err = viPrintf(vi, message);
if (err != VI_SUCCESS) error_handler();

data_length = IEEEBLOCK_SPACE;
err = viScanf(vi, "%#b\n", &data_length, ieeeblock_data);
if (err != VI_SUCCESS) error_handler();

if (data_length == IEEEBLOCK_SPACE)
{
printf("IEEE block buffer full: ");

1334 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

printf("May not have received all data.\n");
}

check_instrument_errors();

return(data_length);
}

/* Query for an IEEE definite-length word block result.
* --- */
int do_query_ieeeblock_words(query)
char *query;
{

char message[80];
int data_length;

strcpy(message, query);
strcat(message, "\n");
err = viPrintf(vi, message);
if (err != VI_SUCCESS) error_handler();

data_length = IEEEBLOCK_SPACE;
err = viScanf(vi, "%#hb\n", &data_length, ieeeblock_data_words);
if (err != VI_SUCCESS) error_handler();

if (data_length == IEEEBLOCK_SPACE)
{
printf("IEEE block buffer full: ");
printf("May not have received all data.\n");

}

check_instrument_errors();

return(data_length);
}

/* Check for instrument errors.
* --- */
void check_instrument_errors()
{

char str_err_val[256] = {0};
char str_out[800] = "";

err = viQueryf(vi, ":SYSTem:ERRor? STRing\n", "%t", str_err_val);
if (err != VI_SUCCESS) error_handler();
while(strncmp(str_err_val, "0,", 2) != 0)
{
strcat(str_out, ", ");
strcat(str_out, str_err_val);
err = viQueryf(vi, ":SYSTem:ERRor? STRing\n", "%t", str_err_val);
if (err != VI_SUCCESS) error_handler();

}

if (strcmp(str_out, "") != 0)
{
printf("INST Error%s\n", str_out);
err = viFlush(vi, VI_READ_BUF);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1335

if (err != VI_SUCCESS) error_handler();
err = viFlush(vi, VI_WRITE_BUF);
if (err != VI_SUCCESS) error_handler();

}
}

/* Handle VISA errors.
* --- */
void error_handler()
{

char err_msg[1024] = {0};

viStatusDesc(vi, err, err_msg);
printf("VISA Error: %s\n", err_msg);
if (err < VI_SUCCESS)
{
exit(1);

}
}

VISA Example in Visual Basic

To run this example in Visual Basic for Applications:

1 Start the application that provides Visual Basic for Applications (for example,
Microsoft Excel).

2 Press ALT+F11 to launch the Visual Basic editor.

3 Add the visa32.bas file to your project:

a Choose File>Import File....

b Navigate to the header file, visa32.bas (installed with Keysight IO Libraries
Suite and found in the Program Files\IVI Foundation\VISA\WinNT\include),
select it, and click Open.

4 Choose Insert>Module.

5 Cut-and-paste the code that follows into the editor.

6 Edit the program to use the VISA address of your oscilloscope, and save the
changes.

7 Run the program.

'
' Keysight VISA Example in Visual Basic
' ---
' This program illustrates a few commonly-used programming
' features of your Keysight Infiniium Series oscilloscope.
' ---

Option Explicit

Public err As Long ' Error returned by VISA function calls.
Public drm As Long ' Session to Default Resource Manager.
Public vi As Long ' Session to instrument.

1336 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Declare variables to hold numeric values returned by
' viVScanf/viVQueryf.
Public dblQueryResult As Double
Public Const ByteArraySize = 5000000
Public Const WordArraySize = 5000000
Public retCount As Long
Public byteArray(ByteArraySize) As Byte
Public wordArray(WordArraySize) As Integer
Public paramsArray(2) As Long
Public Const DblArraySize = 20
Public dblArray(DblArraySize) As Double

' Declare fixed length string variable to hold string value returned
' by viVScanf/viVQueryf.
Public strQueryResult As String * 200

' For Sleep subroutine.
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

'
' Main Program
' ---

Sub Main()

' Open the default resource manager session.
err = viOpenDefaultRM(drm)
If (err <> VI_SUCCESS) Then HandleVISAError drm

' Open the session using the oscilloscope's VISA address.
err = viOpen(drm, _

"TCPIP0::130.29.71.191::inst0::INSTR", 0, 15000, vi)
If (err <> VI_SUCCESS) Then HandleVISAError drm

' Set the I/O timeout to ten seconds.
err = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 10000)
If (err <> VI_SUCCESS) Then HandleVISAError vi

' Clear the interface.
err = viClear(vi)
If Not (err = VI_SUCCESS) Then HandleVISAError vi

' Initialize - start from a known state.
Initialize

' Capture data.
Capture

' Analyze the captured waveform.
Analyze

' Close the vi session and the resource manager session.
err = viClose(vi)
err = viClose(drm)

End Sub

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1337

'
' Initialize the oscilloscope to a known state.
' ---

Private Sub Initialize()

' Clear status.
DoCommand "*CLS"

' Get and display the device's *IDN? string.
strQueryResult = DoQueryString("*IDN?")
MsgBox "*IDN? string: " + strQueryResult, vbOKOnly, "*IDN? Result"

' Load the default setup.
DoCommand "*RST"

End Sub

'
' Capture the waveform.
' ---

Private Sub Capture()

' Set probe attenuation factor.
DoCommand ":CHANnel1:PROBe 1.0"
Debug.Print "Channel 1 probe attenuation factor: " + _

DoQueryString(":CHANnel1:PROBe?")

' Use auto-scale to automatically configure oscilloscope.
' ---
DoCommand ":AUToscale"

' Set trigger mode (EDGE, PULSe, PATTern, etc., and input source.
DoCommand ":TRIGger:MODE EDGE"
Debug.Print "Trigger mode: " + _

DoQueryString(":TRIGger:MODE?")

' Set EDGE trigger parameters.
DoCommand ":TRIGger:EDGE:SOURCe CHANnel1"
Debug.Print "Trigger edge source: " + _

DoQueryString(":TRIGger:EDGE:SOURce?")

DoCommand ":TRIGger:LEVel CHANnel1,-2E-3"
Debug.Print "Trigger level, channel 1: " + _

DoQueryString(":TRIGger:LEVel? CHANnel1")

DoCommand ":TRIGger:EDGE:SLOPe POSitive"
Debug.Print "Trigger edge slope: " + _

DoQueryString(":TRIGger:EDGE:SLOPe?")

' Save oscilloscope configuration.
' ---
Dim lngSetupStringSize As Long
lngSetupStringSize = DoQueryIEEEBlock_Bytes(":SYSTem:SETup?")
Debug.Print "Setup bytes saved: " + CStr(lngSetupStringSize)

1338 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Output setup string to a file:
Dim strPath As String
strPath = "c:\scope\config\setup.dat"
If Len(Dir(strPath)) Then
Kill strPath ' Remove file if it exists.

End If

' Open file for output.
Dim hFile As Long
hFile = FreeFile
Open strPath For Binary Access Write Lock Write As hFile
Dim lngI As Long
For lngI = 0 To lngSetupStringSize - 1
Put hFile, , byteArray(lngI) ' Write data.

Next lngI
Close hFile ' Close file.

' Change settings with individual commands:
' ---

' Set vertical scale and offset.
DoCommand ":CHANnel1:SCALe 0.1"
Debug.Print "Channel 1 vertical scale: " + _

DoQueryString(":CHANnel1:SCALe?")

DoCommand ":CHANnel1:OFFSet 0.0"
Debug.Print "Channel 1 vertical offset: " + _

DoQueryString(":CHANnel1:OFFSet?")

' Set horizontal scale and position.
DoCommand ":TIMebase:SCALe 0.0002"
Debug.Print "Timebase scale: " + _

DoQueryString(":TIMebase:SCALe?")

DoCommand ":TIMebase:POSition 0.0"
Debug.Print "Timebase position: " + _

DoQueryString(":TIMebase:POSition?")

' Set the acquisition mode.
DoCommand ":ACQuire:MODE RTIMe"
Debug.Print "Acquire mode: " + _

DoQueryString(":ACQuire:MODE?")

' Or, configure by loading a previously saved setup.
' ---
strPath = "c:\scope\config\setup.dat"
Open strPath For Binary Access Read As hFile ' Open file for input.
Dim lngSetupFileSize As Long
lngSetupFileSize = LOF(hFile) ' Length of file.
Get hFile, , byteArray ' Read data.
Close hFile ' Close file.
' Write learn string back to oscilloscope using ":SYSTem:SETup"
' command:
Dim lngRestored As Long
lngRestored = DoCommandIEEEBlock(":SYSTem:SETup", lngSetupFileSize)
Debug.Print "Setup bytes restored: " + CStr(lngRestored)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1339

' Set the desired number of waveform points,
' and capture an acquisition.
' ---
DoCommand ":ACQuire:POINts 32000"
DoCommand ":DIGitize"

End Sub

'
' Analyze the captured waveform.
' ---

Private Sub Analyze()

' Make a couple of measurements.
' ---
DoCommand ":MEASure:SOURce CHANnel1"
Debug.Print "Measure source: " + _

DoQueryString(":MEASure:SOURce?")

DoCommand ":MEASure:FREQuency"
dblQueryResult = DoQueryNumber(":MEASure:FREQuency?")
MsgBox "Frequency:" + vbCrLf + _

FormatNumber(dblQueryResult / 1000, 4) + " kHz"

DoCommand ":MEASure:VAMPlitude"
dblQueryResult = DoQueryNumber(":MEASure:VAMPlitude?")
MsgBox "Vertical amplitude:" + vbCrLf + _

FormatNumber(dblQueryResult, 4) + " V"

' Download the screen image.
' ---

' Get screen image.
Dim lngBlockSize As Long
lngBlockSize = DoQueryIEEEBlock_Bytes(":DISPlay:DATA? PNG")
Debug.Print "Screen image bytes: " + CStr(lngBlockSize)

' Save screen image to a file:
Dim strPath As String
strPath = "c:\scope\data\screen.png"
If Len(Dir(strPath)) Then
Kill strPath ' Remove file if it exists.

End If
Dim hFile As Long
hFile = FreeFile
Open strPath For Binary Access Write Lock Write As hFile
Dim lngI As Long
For lngI = 0 To lngBlockSize - 1
Put hFile, , byteArray(lngI) ' Write data.

Next lngI
Close hFile ' Close file.
MsgBox "Screen image written to " + strPath

1340 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Download waveform data.
' ---

' Get the waveform type.
Debug.Print "Waveform type: " + _

DoQueryString(":WAVeform:TYPE?")

' Get the number of waveform points.
Debug.Print "Waveform points: " + _

DoQueryString(":WAVeform:POINts?")

' Set the waveform source.
DoCommand ":WAVeform:SOURce CHANnel1"
Debug.Print "Waveform source: " + _

DoQueryString(":WAVeform:SOURce?")

' Choose the format of the data returned:
DoCommand ":WAVeform:FORMat WORD"
Debug.Print "Waveform format: " + _

DoQueryString(":WAVeform:FORMat?")

' Display the waveform settings:
Dim dblXIncrement As Double
Dim dblXOrigin As Double
Dim dblYIncrement As Double
Dim dblYOrigin As Double

dblXIncrement = DoQueryNumber(":WAVeform:XINCrement?")
Debug.Print "Waveform X increment: " + _

Format(dblXIncrement, "Scientific")

dblXOrigin = DoQueryNumber(":WAVeform:XORigin?")
Debug.Print "Waveform X origin: " + _

Format(dblXOrigin, "Scientific")

dblYIncrement = DoQueryNumber(":WAVeform:YINCrement?")
Debug.Print "Waveform Y increment: " + _

Format(dblYIncrement, "Scientific")

dblYOrigin = DoQueryNumber(":WAVeform:YORigin?")
Debug.Print "Waveform Y origin: " + _

FormatNumber(dblYOrigin, 0)

' Get the waveform data
DoCommand ":WAVeform:STReaming OFF"
Dim lngNumWords As Long
lngNumWords = DoQueryIEEEBlock_Words(":WAVeform:DATA?")
Debug.Print "Number of data values: " + CStr(lngNumWords)

' Set up output file:
strPath = "c:\scope\data\waveform_data.csv"

' Open file for output.
Open strPath For Output Access Write Lock Write As hFile

' Output waveform data in CSV format.
For lngI = 0 To lngNumWords - 1

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1341

' Write time value, voltage value.
Print #hFile, _

FormatNumber(dblXOrigin + (lngI * dblXIncrement), 9) + _
", " + _
FormatNumber((wordArray(lngI) * dblYIncrement) + dblYOrigin)

Next lngI

' Close output file.
Close hFile ' Close file.
MsgBox "Waveform format WORD data written to " + _

"c:\scope\data\waveform_data.csv."

End Sub

Private Sub DoCommand(command As String)

err = viVPrintf(vi, command + vbLf, 0)
If (err <> VI_SUCCESS) Then HandleVISAError vi

CheckInstrumentErrors

End Sub

Private Function DoCommandIEEEBlock(command As String, _
lngBlockSize As Long)

retCount = lngBlockSize

Dim strCommandAndLength As String
strCommandAndLength = command + " %#" + _

Format(lngBlockSize) + "b"

err = viVPrintf(vi, strCommandAndLength + vbLf, paramsArray(1))
If (err <> VI_SUCCESS) Then HandleVISAError vi

DoCommandIEEEBlock = retCount

CheckInstrumentErrors

End Function

Private Function DoQueryString(query As String) As String

Dim strResult As String * 200

err = viVPrintf(vi, query + vbLf, 0)
If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viVScanf(vi, "%t", strResult)
If (err <> VI_SUCCESS) Then HandleVISAError vi

DoQueryString = strResult

CheckInstrumentErrors

1342 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

End Function

Private Function DoQueryNumber(query As String) As Variant

Dim dblResult As Double

err = viVPrintf(vi, query + vbLf, 0)
If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viVScanf(vi, "%lf" + vbLf, VarPtr(dblResult))
If (err <> VI_SUCCESS) Then HandleVISAError vi

DoQueryNumber = dblResult

CheckInstrumentErrors

End Function

Private Function DoQueryNumbers(query As String) As Long

Dim dblResult As Double

' Send query.
err = viVPrintf(vi, query + vbLf, 0)
If (err <> VI_SUCCESS) Then HandleVISAError vi

' Set up paramsArray for multiple parameter query returning array.
paramsArray(0) = VarPtr(retCount)
paramsArray(1) = VarPtr(dblArray(0))

' Set retCount to max number of elements array can hold.
retCount = DblArraySize

' Read numbers.
err = viVScanf(vi, "%,#lf" + vbLf, paramsArray(0))
If (err <> VI_SUCCESS) Then HandleVISAError vi

' retCount is now actual number of values returned by query.
DoQueryNumbers = retCount

CheckInstrumentErrors

End Function

Private Function DoQueryIEEEBlock_Bytes(query As String) As Long

' Send query.
err = viVPrintf(vi, query + vbLf, 0)
If (err <> VI_SUCCESS) Then HandleVISAError vi

' Set up paramsArray for multiple parameter query returning array.
paramsArray(0) = VarPtr(retCount)
paramsArray(1) = VarPtr(byteArray(0))

' Set retCount to max number of elements array can hold.
retCount = ByteArraySize

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1343

' Get unsigned integer bytes.
err = viVScanf(vi, "%#b" + vbLf, paramsArray(0))
If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viFlush(vi, VI_READ_BUF)
If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viFlush(vi, VI_WRITE_BUF)
If (err <> VI_SUCCESS) Then HandleVISAError vi

' retCount is now actual number of bytes returned by query.
DoQueryIEEEBlock_Bytes = retCount

CheckInstrumentErrors

End Function

Private Function DoQueryIEEEBlock_Words(query As String) As Long

' Send query.
err = viVPrintf(vi, query + vbLf, 0)
If (err <> VI_SUCCESS) Then HandleVISAError vi

' Set up paramsArray for multiple parameter query returning array.
paramsArray(0) = VarPtr(retCount)
paramsArray(1) = VarPtr(wordArray(0))

' Set retCount to max number of elements array can hold.
retCount = WordArraySize

' Get signed integer words.
err = viVScanf(vi, "%#hb" + vbLf, paramsArray(0))
If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viFlush(vi, VI_READ_BUF)
If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viFlush(vi, VI_WRITE_BUF)
If (err <> VI_SUCCESS) Then HandleVISAError vi

' retCount is now actual number of bytes returned by query.
DoQueryIEEEBlock_Words = retCount

CheckInstrumentErrors

End Function

Private Sub CheckInstrumentErrors()

On Error GoTo ErrorHandler

Dim strErrVal As String * 200
Dim strOut As String

err = viVPrintf(vi, ":SYSTem:ERRor? STRing" + vbLf, 0) ' Query any err
ors.

If (err <> VI_SUCCESS) Then HandleVISAError vi

1344 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

err = viVScanf(vi, "%t", strErrVal) ' Read: Errnum,"Error String".
If (err <> VI_SUCCESS) Then HandleVISAError vi

While Val(strErrVal) <> 0 ' End if find: 0,"No Error".
strOut = strOut + "INST Error: " + strErrVal

err = viVPrintf(vi, ":SYSTem:ERRor? STRing" + vbLf, 0) ' Request err
or.

If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viVScanf(vi, "%t", strErrVal) ' Read error message.
If (err <> VI_SUCCESS) Then HandleVISAError vi

Wend

If Not strOut = "" Then
MsgBox strOut, vbExclamation, "INST Error Messages"

err = viFlush(vi, VI_READ_BUF)
If (err <> VI_SUCCESS) Then HandleVISAError vi

err = viFlush(vi, VI_WRITE_BUF)
If (err <> VI_SUCCESS) Then HandleVISAError vi

End If

Exit Sub

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Sub

Private Sub HandleVISAError(session As Long)

Dim strVisaErr As String * 200
Call viStatusDesc(session, err, strVisaErr)
MsgBox "*** VISA Error : " + strVisaErr, vbExclamation

' If the error is not a warning, close the session.
If err < VI_SUCCESS Then
If session <> 0 Then Call viClose(session)
End

End If

End Sub

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1345

VISA Example in C#

To compile and run this example in Microsoft Visual Studio 2008:

1 Open Visual Studio.

2 Create a new Visual C#, Windows, Console Application project.

3 Cut-and-paste the code that follows into the C# source file.

4 Edit the program to use the VISA address of your oscilloscope.

5 Add Keysight's VISA header file to your project:

a Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment.

b Click Add and then click Add Existing Item...

c Navigate to the header file, visa32.cs (installed with Keysight IO Libraries
Suite and found in the Program Files\IVI Foundation\VISA\WinNT\include
directory), select it, but do not click the Open button.

d Click the down arrow to the right of the Add button, and choose Add as Link.

You should now see the file underneath your project in the Solution Explorer.
It will have a little arrow icon in its lower left corner, indicating that it is a
link.

6 Build and run the program.

For more information, see the tutorial on using VISA in Microsoft .NET in the VISA
Help that comes with Keysight IO Libraries Suite 15.

/*
* Keysight VISA Example in C#
* ---
* This program illustrates a few commonly used programming
* features of your Keysight Infiniium Series oscilloscope.
* ---
*/

using System;
using System.IO;
using System.Text;
using System.Collections.Generic;

namespace Infiniium
{

class VisaInstrumentApp
{
private static VisaInstrument myScope;

public static void Main(string[] args)
{

try
{

myScope = new
VisaInstrument("TCPIP0::130.29.71.191::inst0::INSTR");

1346 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

myScope.SetTimeoutSeconds(10);

// Initialize - start from a known state.
Initialize();

// Capture data.
Capture();

// Analyze the captured waveform.
Analyze();

}
catch (System.ApplicationException err)
{

Console.WriteLine("*** VISA Error Message : " + err.Message);
}
catch (System.SystemException err)
{

Console.WriteLine("*** System Error Message : " + err.Message);
}
catch (System.Exception err)
{

System.Diagnostics.Debug.Fail("Unexpected Error");
Console.WriteLine("*** Unexpected Error : " + err.Message);

}
finally
{

myScope.Close();
}

}

/*
* Initialize the oscilloscope to a known state.
* --
*/
private static void Initialize()
{

StringBuilder strResults;

// Clear status.
myScope.DoCommand("*CLS");

// Get and display the device's *IDN? string.
strResults = myScope.DoQueryString("*IDN?");
Console.WriteLine("*IDN? result is: {0}", strResults);

// Load the default setup.
myScope.DoCommand("*RST");

}

/*
* Capture the waveform.
* --
*/
private static void Capture()
{

// Set probe attenuation factor.

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1347

myScope.DoCommand(":CHANnel1:PROBe 1.0");
Console.WriteLine("Channel 1 probe attenuation factor: {0}",

myScope.DoQueryString(":CHANnel1:PROBe?"));

// Use auto-scale to automatically set up oscilloscope.
myScope.DoCommand(":AUToscale");

// Set trigger mode.
myScope.DoCommand(":TRIGger:MODE EDGE");
Console.WriteLine("Trigger mode: {0}",

myScope.DoQueryString(":TRIGger:MODE?"));

// Set EDGE trigger parameters.
myScope.DoCommand(":TRIGger:EDGE:SOURCe CHANnel1");
Console.WriteLine("Trigger edge source: {0}",

myScope.DoQueryString(":TRIGger:EDGE:SOURce?"));

myScope.DoCommand(":TRIGger:LEVel CHANnel1,-2E-3");
Console.WriteLine("Trigger level, channel 1: {0}",

myScope.DoQueryString(":TRIGger:LEVel? CHANnel1"));

myScope.DoCommand(":TRIGger:EDGE:SLOPe POSitive");
Console.WriteLine("Trigger edge slope: {0}",

myScope.DoQueryString(":TRIGger:EDGE:SLOPe?"));

// Save oscilloscope configuration.
byte[] ResultsArray; // Results array.
int nLength; // Number of bytes returned from instrument.
string strPath;

// Query and read setup string.
nLength = myScope.DoQueryIEEEBlock_Bytes(":SYSTem:SETup?",

out ResultsArray);

// Write setup string to file.
strPath = "c:\\scope\\config\\setup.stp";
FileStream fStream = File.Open(strPath, FileMode.Create);
fStream.Write(ResultsArray, 0, nLength);
fStream.Close();
Console.WriteLine("Setup bytes saved: {0}", nLength);

// Change settings with individual commands:

// Set vertical scale and offset.
myScope.DoCommand(":CHANnel1:SCALe 0.1");
Console.WriteLine("Channel 1 vertical scale: {0}",

myScope.DoQueryString(":CHANnel1:SCALe?"));

myScope.DoCommand(":CHANnel1:OFFSet 0.0");
Console.WriteLine("Channel 1 vertical offset: {0}",

myScope.DoQueryString(":CHANnel1:OFFSet?"));

// Set horizontal scale and position.
myScope.DoCommand(":TIMebase:SCALe 0.0002");
Console.WriteLine("Timebase scale: {0}",

myScope.DoQueryString(":TIMebase:SCALe?"));

1348 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

myScope.DoCommand(":TIMebase:POSition 0.0");
Console.WriteLine("Timebase position: {0}",

myScope.DoQueryString(":TIMebase:POSition?"));

// Set the acquisition mode.
myScope.DoCommand(":ACQuire:MODE RTIMe");
Console.WriteLine("Acquire mode: {0}",

myScope.DoQueryString(":ACQuire:MODE?"));

// Or, set up by loading a previously saved setup.
byte[] DataArray;
int nBytesWritten;

// Read setup string from file.
strPath = "c:\\scope\\config\\setup.stp";
DataArray = File.ReadAllBytes(strPath);

// Restore setup string.
nBytesWritten = myScope.DoCommandIEEEBlock(":SYSTem:SETup",

DataArray);
Console.WriteLine("Setup bytes restored: {0}", nBytesWritten);

// Set the desired number of waveform points,
// and capture an acquisition.
myScope.DoCommand(":ACQuire:POINts 32000");
myScope.DoCommand(":DIGitize");

}

/*
* Analyze the captured waveform.
* --
*/
private static void Analyze()
{

byte[] ResultsArray; // Results array.
short[] WordResultsArray; // Results array for WORD data.
int nLength; // Number of bytes returned from instrument.
string strPath;

// Make measurements.
// ---
myScope.DoCommand(":MEASure:SOURce CHANnel1");
Console.WriteLine("Measure source: {0}",

myScope.DoQueryString(":MEASure:SOURce?"));

double fResult;
myScope.DoCommand(":MEASure:FREQuency");
fResult = myScope.DoQueryNumber(":MEASure:FREQuency?");
Console.WriteLine("Frequency: {0:F4} kHz", fResult / 1000);

myScope.DoCommand(":MEASure:VAMPlitude");
fResult = myScope.DoQueryNumber(":MEASure:VAMPlitude?");
Console.WriteLine("Vertical amplitude: {0:F2} V", fResult);

// Download the screen image.
// ---

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1349

// Get the screen data.
nLength = myScope.DoQueryIEEEBlock_Bytes(":DISPlay:DATA? PNG",

out ResultsArray);

// Store the screen data to a file.
strPath = "c:\\scope\\data\\screen.png";
FileStream fStream = File.Open(strPath, FileMode.Create);
fStream.Write(ResultsArray, 0, nLength);
fStream.Close();
Console.WriteLine("Screen image ({0} bytes) written to {1}",

nLength, strPath);

// Download waveform data.
// ---

// Get the waveform type.
Console.WriteLine("Waveform type: {0}",

myScope.DoQueryString(":WAVeform:TYPE?"));

// Get the number of waveform points.
Console.WriteLine("Waveform points: {0}",

myScope.DoQueryString(":WAVeform:POINts?"));

// Set the waveform source.
myScope.DoCommand(":WAVeform:SOURce CHANnel1");
Console.WriteLine("Waveform source: {0}",

myScope.DoQueryString(":WAVeform:SOURce?"));

// Choose the format of the data returned:
myScope.DoCommand(":WAVeform:FORMat WORD");
Console.WriteLine("Waveform format: {0}",

myScope.DoQueryString(":WAVeform:FORMat?"));

// Display the waveform settings from preamble:
Dictionary<string, string> dctWavFormat =

new Dictionary<string, string>()
{

{"0", "ASCii"},
{"1", "BYTE"},
{"2", "WORD"},
{"3", "LONG"},
{"4", "LONGLONG"},

};
Dictionary<string, string> dctAcqType =

new Dictionary<string, string>()
{

{"1", "RAW"},
{"2", "AVERage"},
{"3", "VHIStogram"},
{"4", "HHIStogram"},
{"6", "INTerpolate"},
{"10", "PDETect"},

};
Dictionary<string, string> dctAcqMode =

new Dictionary<string, string>()
{

{"0", "RTIMe"},

1350 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

{"1", "ETIMe"},
{"3", "PDETect"},

};
Dictionary<string, string> dctCoupling =

new Dictionary<string, string>()
{

{"0", "AC"},
{"1", "DC"},
{"2", "DCFIFTY"},
{"3", "LFREJECT"},

};
Dictionary<string, string> dctUnits =

new Dictionary<string, string>()
{

{"0", "UNKNOWN"},
{"1", "VOLT"},
{"2", "SECOND"},
{"3", "CONSTANT"},
{"4", "AMP"},
{"5", "DECIBEL"},

};
string strPreamble;
string[] strsPreamble;

strPreamble =
myScope.DoQueryString(":WAVeform:PREamble?").ToString();

strsPreamble = strPreamble.Split(',');

Console.WriteLine("Waveform format: {0}",
dctWavFormat[strsPreamble[0]]);

Console.WriteLine("Acquire type: {0}",
dctAcqType[strsPreamble[1]]);

Console.WriteLine("Waveform points: {0}", strsPreamble[2]);
Console.WriteLine("Waveform average count: {0}", strsPreamble[3]);
Console.WriteLine("Waveform X increment: {0}", strsPreamble[4]);
Console.WriteLine("Waveform X origin: {0}", strsPreamble[5]);
Console.WriteLine("Waveform X reference: {0}", strsPreamble[6]);
Console.WriteLine("Waveform Y increment: {0}", strsPreamble[7]);
Console.WriteLine("Waveform Y origin: {0}", strsPreamble[8]);
Console.WriteLine("Waveform Y reference: {0}", strsPreamble[9]);
Console.WriteLine("Coupling: {0}", dctCoupling[strsPreamble[10]]);
Console.WriteLine("Waveform X display range: {0}",

strsPreamble[11]);
Console.WriteLine("Waveform X display origin: {0}",

strsPreamble[12]);
Console.WriteLine("Waveform Y display range: {0}",

strsPreamble[13]);
Console.WriteLine("Waveform Y display origin: {0}",

strsPreamble[14]);
Console.WriteLine("Date: {0}", strsPreamble[15]);
Console.WriteLine("Time: {0}", strsPreamble[16]);
Console.WriteLine("Frame model: {0}", strsPreamble[17]);
Console.WriteLine("Acquire mode: {0}",

dctAcqMode[strsPreamble[18]]);
Console.WriteLine("Completion pct: {0}", strsPreamble[19]);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1351

Console.WriteLine("Waveform X inits: {0}",
dctUnits[strsPreamble[20]]);

Console.WriteLine("Waveform Y units: {0}",
dctUnits[strsPreamble[21]]);

Console.WriteLine("Max BW limit: {0}", strsPreamble[22]);
Console.WriteLine("Min BW limit: {0}", strsPreamble[23]);

// Get numeric values for later calculations.
double fXincrement;
fXincrement = myScope.DoQueryNumber(":WAVeform:XINCrement?");
double fXorigin;
fXorigin = myScope.DoQueryNumber(":WAVeform:XORigin?");
double fYincrement;
fYincrement = myScope.DoQueryNumber(":WAVeform:YINCrement?");
double fYorigin;
fYorigin = myScope.DoQueryNumber(":WAVeform:YORigin?");

// Get the waveform data.
myScope.DoCommand(":WAVeform:STReaming OFF");
nLength = myScope.DoQueryIEEEBlock_Words(":WAVeform:DATA?",

out WordResultsArray);
Console.WriteLine("Number of data values: {0}", nLength);

// Set up output file:
strPath = "c:\\scope\\data\\waveform_data.csv";
if (File.Exists(strPath)) File.Delete(strPath);

// Open file for output.
StreamWriter writer = File.CreateText(strPath);

// Output waveform data in CSV format.
for (int i = 0; i < nLength - 1; i++)

writer.WriteLine("{0:f9}, {1:f6}",
fXorigin + ((float)i * fXincrement),
((float)WordResultsArray[i] * fYincrement) + fYorigin);

// Close output file.
writer.Close();
Console.WriteLine("Waveform format WORD data written to {0}",

strPath);
}

}

class VisaInstrument
{
private int m_nResourceManager;
private int m_nSession;
private string m_strVisaAddress;

// Constructor.
public VisaInstrument(string strVisaAddress)
{

// Save VISA address in member variable.
m_strVisaAddress = strVisaAddress;

// Open the default VISA resource manager.
OpenResourceManager();

1352 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

// Open a VISA resource session.
OpenSession();

// Clear the interface.
int nViStatus;
nViStatus = visa32.viClear(m_nSession);

}

public void DoCommand(string strCommand)
{

// Send the command.
VisaSendCommandOrQuery(strCommand);

// Check for inst errors.
CheckInstrumentErrors(strCommand);

}

public int DoCommandIEEEBlock(string strCommand,
byte[] DataArray)

{
// Send the command to the device.
string strCommandAndLength;
int nViStatus, nLength, nBytesWritten;

nLength = DataArray.Length;
strCommandAndLength = String.Format("{0} #8%08d",

strCommand);

// Write first part of command to formatted I/O write buffer.
nViStatus = visa32.viPrintf(m_nSession, strCommandAndLength,

nLength);
CheckVisaStatus(nViStatus);

// Write the data to the formatted I/O write buffer.
nViStatus = visa32.viBufWrite(m_nSession, DataArray, nLength,

out nBytesWritten);
CheckVisaStatus(nViStatus);

// Check for inst errors.
CheckInstrumentErrors(strCommand);

return nBytesWritten;
}

public StringBuilder DoQueryString(string strQuery)
{

// Send the query.
VisaSendCommandOrQuery(strQuery);

// Get the result string.
StringBuilder strResults = new StringBuilder(1000);
strResults = VisaGetResultString();

// Check for inst errors.
CheckInstrumentErrors(strQuery);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1353

// Return string results.
return strResults;

}

public double DoQueryNumber(string strQuery)
{

// Send the query.
VisaSendCommandOrQuery(strQuery);

// Get the result string.
double fResults;
fResults = VisaGetResultNumber();

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return string results.
return fResults;

}

public double[] DoQueryNumbers(string strQuery)
{

// Send the query.
VisaSendCommandOrQuery(strQuery);

// Get the result string.
double[] fResultsArray;
fResultsArray = VisaGetResultNumbers();

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return string results.
return fResultsArray;

}

public int DoQueryIEEEBlock_Bytes(string strQuery,
out byte[] ResultsArray)

{
// Send the query.
VisaSendCommandOrQuery(strQuery);

// Get the result string.
int length; // Number of bytes returned from instrument.
length = VisaGetResultIEEEBlock_Bytes(out ResultsArray);

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return string results.
return length;

}

public int DoQueryIEEEBlock_Words(string strQuery,
out short[] ResultsArray)

{
// Send the query.

1354 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

VisaSendCommandOrQuery(strQuery);

// Get the result string.
int length; // Number of bytes returned from instrument.
length = VisaGetResultIEEEBlock_Words(out ResultsArray);

// Check for inst errors.
CheckInstrumentErrors(strQuery);

// Return string results.
return length;

}

private void VisaSendCommandOrQuery(string strCommandOrQuery)
{

// Send command or query to the device.
string strWithNewline;
strWithNewline = String.Format("{0}\n", strCommandOrQuery);
int nViStatus;
nViStatus = visa32.viPrintf(m_nSession, strWithNewline);
CheckVisaStatus(nViStatus);

}

private StringBuilder VisaGetResultString()
{

StringBuilder strResults = new StringBuilder(1000);

// Read return value string from the device.
int nViStatus;
nViStatus = visa32.viScanf(m_nSession, "%1000t", strResults);
CheckVisaStatus(nViStatus);

return strResults;
}

private double VisaGetResultNumber()
{

double fResults = 0;

// Read return value string from the device.
int nViStatus;
nViStatus = visa32.viScanf(m_nSession, "%lf", out fResults);
CheckVisaStatus(nViStatus);

return fResults;
}

private double[] VisaGetResultNumbers()
{

double[] fResultsArray;
fResultsArray = new double[10];

// Read return value string from the device.
int nViStatus;
nViStatus = visa32.viScanf(m_nSession, "%,10lf\n",

fResultsArray);
CheckVisaStatus(nViStatus);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1355

return fResultsArray;
}

private int VisaGetResultIEEEBlock_Bytes(out byte[] ResultsArray)
{

// Results array, big enough to hold a PNG.
ResultsArray = new byte[5000000];
int length; // Number of bytes returned from instrument.

// Set the default number of bytes that will be contained in
// the ResultsArray to 5,000,000.
length = 5000000;

// Read return value string from the device.
int nViStatus;
nViStatus = visa32.viScanf(m_nSession, "%#b", ref length,

ResultsArray);
CheckVisaStatus(nViStatus);

// Write and read buffers need to be flushed after IEEE block?
nViStatus = visa32.viFlush(m_nSession, visa32.VI_WRITE_BUF);
CheckVisaStatus(nViStatus);

nViStatus = visa32.viFlush(m_nSession, visa32.VI_READ_BUF);
CheckVisaStatus(nViStatus);

return length;
}

private int VisaGetResultIEEEBlock_Words(out short[] ResultsArray)
{

// Results array, big enough to hold a PNG.
ResultsArray = new short[5000000];
int length; // Number of words returned from instrument.

// Set the default number of words that will be contained in
// the ResultsArray to 5,000,000.
length = 5000000;

// Read return value string from the device.
int nViStatus;
nViStatus = visa32.viScanf(m_nSession, "%#hb", ref length,

ResultsArray);
CheckVisaStatus(nViStatus);

// Write and read buffers need to be flushed after IEEE block?
nViStatus = visa32.viFlush(m_nSession, visa32.VI_WRITE_BUF);
CheckVisaStatus(nViStatus);

nViStatus = visa32.viFlush(m_nSession, visa32.VI_READ_BUF);
CheckVisaStatus(nViStatus);

return length;
}

private void CheckInstrumentErrors(string strCommand)

1356 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

{
// Check for instrument errors.
StringBuilder strInstrumentError = new StringBuilder(1000);
bool bFirstError = true;

do // While not "0,No error"
{

VisaSendCommandOrQuery(":SYSTem:ERRor? STRing");
strInstrumentError = VisaGetResultString();

if (!strInstrumentError.ToString().StartsWith("0,"))
{

if (bFirstError)
{
Console.WriteLine("ERROR(s) for command '{0}': ",

strCommand);
bFirstError = false;

}
Console.Write(strInstrumentError);

}
} while (!strInstrumentError.ToString().StartsWith("0,"));

}

private void OpenResourceManager()
{

int nViStatus;
nViStatus =

visa32.viOpenDefaultRM(out this.m_nResourceManager);
if (nViStatus < visa32.VI_SUCCESS)

throw new
ApplicationException("Failed to open Resource Manager");

}

private void OpenSession()
{

int nViStatus;
nViStatus = visa32.viOpen(this.m_nResourceManager,

this.m_strVisaAddress, visa32.VI_NO_LOCK,
visa32.VI_TMO_IMMEDIATE, out this.m_nSession);

CheckVisaStatus(nViStatus);
}

public void SetTimeoutSeconds(int nSeconds)
{

int nViStatus;
nViStatus = visa32.viSetAttribute(this.m_nSession,

visa32.VI_ATTR_TMO_VALUE, nSeconds * 1000);
CheckVisaStatus(nViStatus);

}

public void CheckVisaStatus(int nViStatus)
{

// If VISA error, throw exception.
if (nViStatus < visa32.VI_SUCCESS)
{

StringBuilder strError = new StringBuilder(256);
visa32.viStatusDesc(this.m_nResourceManager, nViStatus,

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1357

strError);
throw new ApplicationException(strError.ToString());

}
}

public void Close()
{

if (m_nSession != 0)
visa32.viClose(m_nSession);

if (m_nResourceManager != 0)
visa32.viClose(m_nResourceManager);

}
}

}

VISA Example in Visual Basic .NET

To compile and run this example in Microsoft Visual Studio 2008:

1 Open Visual Studio.

2 Create a new Visual Basic, Windows, Console Application project.

3 Cut-and-paste the code that follows into the Visual Basic .NET source file.

4 Edit the program to use the VISA address of your oscilloscope.

5 Add Keysight's VISA header file to your project:

a Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment.

b Choose Add and then choose Add Existing Item...

c Navigate to the header file, visa32.vb (installed with Keysight IO Libraries
Suite and found in the Program Files\IVI Foundation\VISA\WinNT\include
directory), select it, but do not click the Open button.

d Click the down arrow to the right of the Add button, and choose Add as Link.

You should now see the file underneath your project in the Solution Explorer.
It will have a little arrow icon in its lower left corner, indicating that it is a
link.

e Right-click the project again and choose Properties; then, select
"Infiniium.VisaInstrumentApp" as the Startup object.

6 Build and run the program.

For more information, see the tutorial on using VISA in Microsoft .NET in the VISA
Help that comes with Keysight IO Libraries Suite 15.

'
' Keysight VISA Example in Visual Basic .NET
' ---
' This program illustrates a few commonly-used programming
' features of your Keysight Infiniium Series oscilloscope.
' ---

1358 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

Imports System
Imports System.IO
Imports System.Text

Namespace Infiniium
Class VisaInstrumentApp
Private Shared myScope As VisaInstrument

Public Shared Sub Main(ByVal args As String())
Try

myScope = _
New VisaInstrument("TCPIP0::130.29.71.191::inst0::INSTR")

myScope.SetTimeoutSeconds(10)

' Initialize - start from a known state.
Initialize()

' Capture data.
Capture()

' Analyze the captured waveform.
Analyze()

Catch err As System.ApplicationException
Console.WriteLine("*** VISA Error Message : " + err.Message)

Catch err As System.SystemException
Console.WriteLine("*** System Error Message : " + err.Message)

Catch err As System.Exception
Debug.Fail("Unexpected Error")
Console.WriteLine("*** Unexpected Error : " + err.Message)

Finally
myScope.Close()

End Try
End Sub

'
' Initialize the oscilloscope to a known state.
' --

Private Shared Sub Initialize()
Dim strResults As StringBuilder

' Clear status.
myScope.DoCommand("*CLS")

' Get and display the device's *IDN? string.
strResults = myScope.DoQueryString("*IDN?")
Console.WriteLine("*IDN? result is: {0}", strResults)

' Load the default setup.
myScope.DoCommand("*RST")

End Sub

'
' Capture the waveform.
' --

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1359

Private Shared Sub Capture()

' Set probe attenuation factor.
myScope.DoCommand(":CHANnel1:PROBe 1.0")
Console.WriteLine("Channel 1 probe attenuation factor: {0}", _

myScope.DoQueryString(":CHANnel1:PROBe?"))

' Use auto-scale to automatically set up oscilloscope.
myScope.DoCommand(":AUToscale")

' Set trigger mode.
myScope.DoCommand(":TRIGger:MODE EDGE")
Console.WriteLine("Trigger mode: {0}", _

myScope.DoQueryString(":TRIGger:MODE?"))

' Set EDGE trigger parameters.
myScope.DoCommand(":TRIGger:EDGE:SOURCe CHANnel1")
Console.WriteLine("Trigger edge source: {0}", _

myScope.DoQueryString(":TRIGger:EDGE:SOURce?"))

myScope.DoCommand(":TRIGger:LEVel CHANnel1,-2E-3")
Console.WriteLine("Trigger edge level: {0}", _

myScope.DoQueryString(":TRIGger:LEVel? CHANnel1"))

myScope.DoCommand(":TRIGger:EDGE:SLOPe POSitive")
Console.WriteLine("Trigger edge slope: {0}", _

myScope.DoQueryString(":TRIGger:EDGE:SLOPe?"))

' Save oscilloscope setup.
Dim ResultsArray As Byte() ' Results array.
Dim nLength As Integer ' Number of bytes returned from inst.
Dim strPath As String
Dim fStream As FileStream

' Query and read setup string.
nLength = myScope.DoQueryIEEEBlock_Bytes(":SYSTem:SETup?", _

ResultsArray)

' Write setup string to file.
strPath = "c:\scope\config\setup.stp"
fStream = File.Open(strPath, FileMode.Create)
fStream.Write(ResultsArray, 0, nLength)
fStream.Close()
Console.WriteLine("Setup bytes saved: {0}", nLength)

' Change settings with individual commands:

' Set vertical scale and offset.
myScope.DoCommand(":CHANnel1:SCALe 0.1")
Console.WriteLine("Channel 1 vertical scale: {0}", _

myScope.DoQueryString(":CHANnel1:SCALe?"))

myScope.DoCommand(":CHANnel1:OFFSet 0.0")
Console.WriteLine("Channel 1 vertical offset: {0}", _

myScope.DoQueryString(":CHANnel1:OFFSet?"))

1360 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Set horizontal scale and position.
myScope.DoCommand(":TIMebase:SCALe 0.0002")
Console.WriteLine("Timebase scale: {0}", _

myScope.DoQueryString(":TIMebase:SCALe?"))

myScope.DoCommand(":TIMebase:POSition 0.0")
Console.WriteLine("Timebase position: {0}", _

myScope.DoQueryString(":TIMebase:POSition?"))

' Set the acquisition mode.
myScope.DoCommand(":ACQuire:MODE RTIMe")
Console.WriteLine("Acquire mode: {0}", _

myScope.DoQueryString(":ACQuire:MODE?"))

' Or, set up by loading a previously saved setup.
Dim DataArray As Byte()
Dim nBytesWritten As Integer

' Read setup string from file.
strPath = "c:\scope\config\setup.stp"
DataArray = File.ReadAllBytes(strPath)

' Restore setup string.
nBytesWritten = myScope.DoCommandIEEEBlock(":SYSTem:SETup", _

DataArray)
Console.WriteLine("Setup bytes restored: {0}", nBytesWritten)

' Set the desired number of waveform points,
' and capture an acquisition.
myScope.DoCommand(":ACQuire:POINts 32000")
myScope.DoCommand(":DIGitize")

End Sub

'
' Analyze the captured waveform.
' --

Private Shared Sub Analyze()

Dim fResult As Double
Dim ResultsArray As Byte() ' Results array.
Dim WordResultsArray As Short() ' Results array for WORD data.
Dim nLength As Integer ' Number of bytes returned from inst.
Dim strPath As String

' Make measurements.
' --
myScope.DoCommand(":MEASure:SOURce CHANnel1")
Console.WriteLine("Measure source: {0}", _

myScope.DoQueryString(":MEASure:SOURce?"))

myScope.DoCommand(":MEASure:FREQuency")
fResult = myScope.DoQueryNumber(":MEASure:FREQuency?")
Console.WriteLine("Frequency: {0:F4} kHz", fResult / 1000)

myScope.DoCommand(":MEASure:VAMPlitude")

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1361

fResult = myScope.DoQueryNumber(":MEASure:VAMPlitude?")
Console.WriteLine("Vertical amplitude: {0:F2} V", fResult)

' Download the screen image.
' --

' Get the screen data.
nLength = myScope.DoQueryIEEEBlock_Bytes(":DISPlay:DATA? PNG", _

ResultsArray)

' Store the screen data to a file.
strPath = "c:\scope\data\screen.png"
Dim fStream As FileStream
fStream = File.Open(strPath, FileMode.Create)
fStream.Write(ResultsArray, 0, nLength)
fStream.Close()
Console.WriteLine("Screen image ({0} bytes) written to {1}", _

nLength, strPath)

' Download waveform data.
' --

' Get the waveform type.
Console.WriteLine("Waveform type: {0}", _

myScope.DoQueryString(":WAVeform:TYPE?"))

' Get the number of waveform points.
Console.WriteLine("Waveform points: {0}", _

myScope.DoQueryString(":WAVeform:POINts?"))

' Set the waveform source.
myScope.DoCommand(":WAVeform:SOURce CHANnel1")
Console.WriteLine("Waveform source: {0}", _

myScope.DoQueryString(":WAVeform:SOURce?"))

' Choose the format of the data returned:
myScope.DoCommand(":WAVeform:FORMat WORD")
Console.WriteLine("Waveform format: {0}", _

myScope.DoQueryString(":WAVeform:FORMat?"))

' Display the waveform settings from preamble:
Dim dctWavFormat As New Dictionary(Of String, String)
dctWavFormat.Add("0", "ASCii")
dctWavFormat.Add("1", "BYTE")
dctWavFormat.Add("2", "WORD")
dctWavFormat.Add("3", "LONG")
dctWavFormat.Add("4", "LONGLONG")

Dim dctAcqType As New Dictionary(Of String, String)
dctAcqType.Add("1", "RAW")
dctAcqType.Add("2", "AVERage")
dctAcqType.Add("3", "VHIStogram")
dctAcqType.Add("4", "HHIStogram")
dctAcqType.Add("6", "INTerpolate")
dctAcqType.Add("10", "PDETect")

Dim dctAcqMode As New Dictionary(Of String, String)()

1362 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

dctAcqMode.Add("0", "RTIMe")
dctAcqMode.Add("1", "ETIMe")
dctAcqMode.Add("3", "PDETect")

Dim dctCoupling As New Dictionary(Of String, String)()
dctCoupling.Add("0", "AC")
dctCoupling.Add("1", "DC")
dctCoupling.Add("2", "DCFIFTY")
dctCoupling.Add("3", "LFREJECT")

Dim dctUnits As New Dictionary(Of String, String)()
dctUnits.Add("0", "UNKNOWN")
dctUnits.Add("1", "VOLT")
dctUnits.Add("2", "SECOND")
dctUnits.Add("3", "CONSTANT")
dctUnits.Add("4", "AMP")
dctUnits.Add("5", "DECIBEL")

Dim strPreamble As String
Dim strsPreamble As String()

strPreamble = _
myScope.DoQueryString(":WAVeform:PREamble?").ToString()

strsPreamble = strPreamble.Split(","c)

Console.WriteLine("Waveform format: {0}", _
dctWavFormat(strsPreamble(0)))

Console.WriteLine("Acquire type: {0}", _
dctAcqType(strsPreamble(1)))

Console.WriteLine("Waveform points: {0}", strsPreamble(2))
Console.WriteLine("Waveform average count: {0}", strsPreamble(3))
Console.WriteLine("Waveform X increment: {0}", strsPreamble(4))
Console.WriteLine("Waveform X origin: {0}", strsPreamble(5))
Console.WriteLine("Waveform X reference: {0}", strsPreamble(6))
Console.WriteLine("Waveform Y increment: {0}", strsPreamble(7))
Console.WriteLine("Waveform Y origin: {0}", strsPreamble(8))
Console.WriteLine("Waveform Y reference: {0}", strsPreamble(9))
Console.WriteLine("Coupling: {0}", dctCoupling(strsPreamble(10)))
Console.WriteLine("Waveform X display range: {0}", _

strsPreamble(11))
Console.WriteLine("Waveform X display origin: {0}", _

strsPreamble(12))
Console.WriteLine("Waveform Y display range: {0}", _

strsPreamble(13))
Console.WriteLine("Waveform Y display origin: {0}", _

strsPreamble(14))
Console.WriteLine("Date: {0}", strsPreamble(15))
Console.WriteLine("Time: {0}", strsPreamble(16))
Console.WriteLine("Frame model: {0}", strsPreamble(17))
Console.WriteLine("Acquire mode: {0}", _

dctAcqMode(strsPreamble(18)))
Console.WriteLine("Completion pct: {0}", strsPreamble(19))
Console.WriteLine("Waveform X inits: {0}", _

dctUnits(strsPreamble(20)))
Console.WriteLine("Waveform Y units: {0}", _

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1363

dctUnits(strsPreamble(21)))
Console.WriteLine("Max BW limit: {0}", strsPreamble(22))
Console.WriteLine("Min BW limit: {0}", strsPreamble(23))

' Get numeric values for later calculations.
Dim fXincrement As Double
fXincrement = myScope.DoQueryNumber(":WAVeform:XINCrement?")
Dim fXorigin As Double
fXorigin = myScope.DoQueryNumber(":WAVeform:XORigin?")
Dim fYincrement As Double
fYincrement = myScope.DoQueryNumber(":WAVeform:YINCrement?")
Dim fYorigin As Double
fYorigin = myScope.DoQueryNumber(":WAVeform:YORigin?")

' Get the waveform data.
myScope.DoCommand(":WAVeform:STReaming OFF")
nLength = myScope.DoQueryIEEEBlock_Words(":WAVeform:DATA?", _

WordResultsArray)
Console.WriteLine("Number of data values: {0}", nLength)

' Set up output file:
strPath = "c:\scope\data\waveform_data.csv"
If File.Exists(strPath) Then

File.Delete(strPath)
End If

' Open file for output.
Dim writer As StreamWriter = File.CreateText(strPath)

' Output waveform data in CSV format.
For index As Integer = 0 To nLength - 1

' Write time value, voltage value.
writer.WriteLine("{0:f9}, {1:f6}", _

fXorigin + (CSng(index) * fXincrement), _
(CSng(WordResultsArray(index)) * fYincrement) + _
fYorigin)

Next

' Close output file.
writer.Close()
Console.WriteLine("Waveform format WORD data written to {0}", _

strPath)

End Sub

End Class

Class VisaInstrument
Private m_nResourceManager As Integer
Private m_nSession As Integer
Private m_strVisaAddress As String

' Constructor.
Public Sub New(ByVal strVisaAddress As String)

' Save VISA address in member variable.
m_strVisaAddress = strVisaAddress

1364 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Open the default VISA resource manager.
OpenResourceManager()

' Open a VISA resource session.
OpenSession()

' Clear the interface.
Dim nViStatus As Integer
nViStatus = visa32.viClear(m_nSession)

End Sub

Public Sub DoCommand(ByVal strCommand As String)
' Send the command.
VisaSendCommandOrQuery(strCommand)

' Check for inst errors.
CheckInstrumentErrors(strCommand)

End Sub

Public Function DoCommandIEEEBlock(ByVal strCommand As String, _
ByVal DataArray As Byte()) As Integer

' Send the command to the device.
Dim strCommandAndLength As String
Dim nViStatus As Integer
Dim nLength As Integer
Dim nBytesWritten As Integer

nLength = DataArray.Length
strCommandAndLength = [String].Format("{0} #8{1:D8}", _

strCommand, nLength)

' Write first part of command to formatted I/O write buffer.
nViStatus = visa32.viPrintf(m_nSession, strCommandAndLength)
CheckVisaStatus(nViStatus)

' Write the data to the formatted I/O write buffer.
nViStatus = visa32.viBufWrite(m_nSession, DataArray, nLength, _

nBytesWritten)
CheckVisaStatus(nViStatus)

' Check for inst errors.
CheckInstrumentErrors(strCommand)

Return nBytesWritten
End Function

Public Function DoQueryString(ByVal strQuery As String) _
As StringBuilder
' Send the query.
VisaSendCommandOrQuery(strQuery)

' Get the result string.
Dim strResults As New StringBuilder(1000)
strResults = VisaGetResultString()

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1365

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return string results.
Return strResults

End Function

Public Function DoQueryNumber(ByVal strQuery As String) As Double
' Send the query.
VisaSendCommandOrQuery(strQuery)

' Get the result string.
Dim fResults As Double
fResults = VisaGetResultNumber()

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return string results.
Return fResults

End Function

Public Function DoQueryNumbers(ByVal strQuery As String) _
As Double()

' Send the query.
VisaSendCommandOrQuery(strQuery)

' Get the result string.
Dim fResultsArray As Double()
fResultsArray = VisaGetResultNumbers()

' Check for instrument errors (another command and result).
CheckInstrumentErrors(strQuery)

' Return string results.
Return fResultsArray

End Function

Public Function DoQueryIEEEBlock_Bytes(ByVal strQuery As String, _
ByRef ResultsArray As Byte()) As Integer

' Send the query.
VisaSendCommandOrQuery(strQuery)

' Get the result string.
Dim length As Integer
' Number of bytes returned from instrument.
length = VisaGetResultIEEEBlock_Bytes(ResultsArray)

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return string results.
Return length

End Function

Public Function DoQueryIEEEBlock_Words(ByVal strQuery As String, _

1366 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

ByRef ResultsArray As Short()) As Integer
' Send the query.
VisaSendCommandOrQuery(strQuery)

' Get the result string.
Dim length As Integer
' Number of bytes returned from instrument.
length = VisaGetResultIEEEBlock_Words(ResultsArray)

' Check for inst errors.
CheckInstrumentErrors(strQuery)

' Return string results.
Return length

End Function

Private Sub VisaSendCommandOrQuery(ByVal strCommandOrQuery _
As String)

' Send command or query to the device.
Dim strWithNewline As String
strWithNewline = [String].Format("{0}" & Chr(10) & "", _

strCommandOrQuery)
Dim nViStatus As Integer
nViStatus = visa32.viPrintf(m_nSession, strWithNewline)
CheckVisaStatus(nViStatus)

End Sub

Private Function VisaGetResultString() As StringBuilder
Dim strResults As New StringBuilder(1000)

' Read return value string from the device.
Dim nViStatus As Integer
nViStatus = visa32.viScanf(m_nSession, "%1000t", strResults)
CheckVisaStatus(nViStatus)

Return strResults
End Function

Private Function VisaGetResultNumber() As Double
Dim fResults As Double = 0

' Read return value string from the device.
Dim nViStatus As Integer
nViStatus = visa32.viScanf(m_nSession, "%lf", fResults)
CheckVisaStatus(nViStatus)

Return fResults
End Function

Private Function VisaGetResultNumbers() As Double()
Dim fResultsArray As Double()
fResultsArray = New Double(9) {}

' Read return value string from the device.
Dim nViStatus As Integer
nViStatus = visa32.viScanf(m_nSession, _

"%,10lf" & Chr(10) & "", fResultsArray)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1367

CheckVisaStatus(nViStatus)

Return fResultsArray
End Function

Private Function VisaGetResultIEEEBlock_Bytes(ByRef ResultsArray _
As Byte()) As Integer

' Results array, big enough to hold a PNG.
ResultsArray = New Byte(4999999) {}
Dim length As Integer
' Number of bytes returned from instrument.
' Set the default number of bytes that will be contained in
' the ResultsArray to 5,000,000.
length = 5000000

' Read return value string from the device.
Dim nViStatus As Integer
nViStatus = visa32.viScanf(m_nSession, "%#b", length, _

ResultsArray)
CheckVisaStatus(nViStatus)

' Write and read buffers need to be flushed after IEEE block?
nViStatus = visa32.viFlush(m_nSession, visa32.VI_WRITE_BUF)
CheckVisaStatus(nViStatus)

nViStatus = visa32.viFlush(m_nSession, visa32.VI_READ_BUF)
CheckVisaStatus(nViStatus)

Return length
End Function

Private Function VisaGetResultIEEEBlock_Words(ByRef ResultsArray _
As Short()) As Integer

' Results array, big enough to hold a PNG.
ResultsArray = New Short(4999999) {}
Dim length As Integer
' Number of bytes returned from instrument.
' Set the default number of bytes that will be contained in
' the ResultsArray to 5,000,000.
length = 5000000

' Read return value string from the device.
Dim nViStatus As Integer
nViStatus = visa32.viScanf(m_nSession, "%#hb", length, _

ResultsArray)
CheckVisaStatus(nViStatus)

' Write and read buffers need to be flushed after IEEE block?
nViStatus = visa32.viFlush(m_nSession, visa32.VI_WRITE_BUF)
CheckVisaStatus(nViStatus)

nViStatus = visa32.viFlush(m_nSession, visa32.VI_READ_BUF)
CheckVisaStatus(nViStatus)

Return length
End Function

1368 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

Private Sub CheckInstrumentErrors(ByVal strCommand As String)
' Check for instrument errors.
Dim strInstrumentError As New StringBuilder(1000)
Dim bFirstError As Boolean = True
Do ' While not "0,No error"

VisaSendCommandOrQuery(":SYSTem:ERRor? STRing")
strInstrumentError = VisaGetResultString()

If Not strInstrumentError.ToString().StartsWith("0,") Then
If bFirstError Then
Console.WriteLine("ERROR(s) for command '{0}': ", _

strCommand)
bFirstError = False

End If
Console.Write(strInstrumentError)

End If
Loop While Not strInstrumentError.ToString().StartsWith("0,")

End Sub

Private Sub OpenResourceManager()
Dim nViStatus As Integer
nViStatus = visa32.viOpenDefaultRM(Me.m_nResourceManager)
If nViStatus < visa32.VI_SUCCESS Then

Throw New _
ApplicationException("Failed to open Resource Manager")

End If
End Sub

Private Sub OpenSession()
Dim nViStatus As Integer
nViStatus = visa32.viOpen(Me.m_nResourceManager, _

Me.m_strVisaAddress, visa32.VI_NO_LOCK, _
visa32.VI_TMO_IMMEDIATE, Me.m_nSession)

CheckVisaStatus(nViStatus)
End Sub

Public Sub SetTimeoutSeconds(ByVal nSeconds As Integer)
Dim nViStatus As Integer
nViStatus = visa32.viSetAttribute(Me.m_nSession, _

visa32.VI_ATTR_TMO_VALUE, nSeconds * 1000)
CheckVisaStatus(nViStatus)

End Sub

Public Sub CheckVisaStatus(ByVal nViStatus As Integer)
' If VISA error, throw exception.
If nViStatus < visa32.VI_SUCCESS Then

Dim strError As New StringBuilder(256)
visa32.viStatusDesc(Me.m_nResourceManager, nViStatus, strError)
Throw New ApplicationException(strError.ToString())

End If
End Sub

Public Sub Close()
If m_nSession <> 0 Then

visa32.viClose(m_nSession)
End If
If m_nResourceManager <> 0 Then

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1369

visa32.viClose(m_nResourceManager)
End If

End Sub
End Class

End Namespace

VISA Example in Python

You can use the Python programming language with the PyVISA package to
control Keysight Infiniium Series oscilloscopes.

The Python language and PyVISA package can be downloaded from the web at
"http://www.python.org/" and "http://pyvisa.sourceforge.net/", respectively.

To run this example with Python and PyVISA:

1 Cut-and-paste the code that follows into a file named "example.py".

2 Edit the program to use the VISA address of your oscilloscope.

3 If "python.exe" can be found via your PATH environment variable, open a
Command Prompt window; then, change to the folder that contains the
"example.py" file, and enter:

python example.py

This program illustrates a few commonly-used programming
features of your Keysight Infiniium Series oscilloscope.

Import modules.

import visa
import string
import struct
import sys

Global variables (booleans: 0 = False, 1 = True).

debug = 0

===
Initialize:
===
def initialize():

Clear status.
do_command("*CLS")

Get and display the device's *IDN? string.
idn_string = do_query_string("*IDN?")
print "Identification string: '%s'" % idn_string

Load the default setup.
do_command("*RST")

http://www.python.org/
http://pyvisa.sourceforge.net/

1370 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

===
Capture:
===
def capture():

Set probe attenuation factor.
do_command(":CHANnel1:PROBe 1.0")
qresult = do_query_string(":CHANnel1:PROBe?")
print "Channel 1 probe attenuation factor: %s" % qresult

Use auto-scale to automatically set up oscilloscope.
print "Autoscale."
do_command(":AUToscale")

Set trigger mode.
do_command(":TRIGger:MODE EDGE")
qresult = do_query_string(":TRIGger:MODE?")
print "Trigger mode: %s" % qresult

Set EDGE trigger parameters.
do_command(":TRIGger:EDGE:SOURCe CHANnel1")
qresult = do_query_string(":TRIGger:EDGE:SOURce?")
print "Trigger edge source: %s" % qresult

do_command(":TRIGger:LEVel CHANnel1,-2E-3")
qresult = do_query_string(":TRIGger:LEVel? CHANnel1")
print "Trigger level, channel 1: %s" % qresult

do_command(":TRIGger:EDGE:SLOPe POSitive")
qresult = do_query_string(":TRIGger:EDGE:SLOPe?")
print "Trigger edge slope: %s" % qresult

Save oscilloscope setup.
sSetup = do_query_string(":SYSTem:SETup?")
sSetup = get_definite_length_block_data(sSetup)

f = open("setup.stp", "wb")
f.write(sSetup)
f.close()
print "Setup bytes saved: %d" % len(sSetup)

Change oscilloscope settings with individual commands:

Set vertical scale and offset.
do_command(":CHANnel1:SCALe 0.1")
qresult = do_query_values(":CHANnel1:SCALe?")[0]
print "Channel 1 vertical scale: %f" % qresult

do_command(":CHANnel1:OFFSet 0.0")
qresult = do_query_values(":CHANnel1:OFFSet?")[0]
print "Channel 1 offset: %f" % qresult

Set horizontal scale and offset.
do_command(":TIMebase:SCALe 200e-6")
qresult = do_query_string(":TIMebase:SCALe?")

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1371

print "Timebase scale: %s" % qresult

do_command(":TIMebase:POSition 0.0")
qresult = do_query_string(":TIMebase:POSition?")
print "Timebase position: %s" % qresult

Set the acquisition mode.
do_command(":ACQuire:MODE RTIMe")
qresult = do_query_string(":ACQuire:MODE?")
print "Acquire mode: %s" % qresult

Or, set up oscilloscope by loading a previously saved setup.
sSetup = ""
f = open("setup.stp", "rb")
sSetup = f.read()
f.close()
do_command(":SYSTem:SETup #8%08d%s" % (len(sSetup), sSetup), hide_param
s=True)
print "Setup bytes restored: %d" % len(sSetup)

Set the desired number of waveform points,
and capture an acquisition.
do_command(":ACQuire:POINts 32000")
do_command(":DIGitize")

===
Analyze:
===
def analyze():

Make measurements.
--
do_command(":MEASure:SOURce CHANnel1")
qresult = do_query_string(":MEASure:SOURce?")
print "Measure source: %s" % qresult

do_command(":MEASure:FREQuency")
qresult = do_query_string(":MEASure:FREQuency?")
print "Measured frequency on channel 1: %s" % qresult

do_command(":MEASure:VAMPlitude")
qresult = do_query_string(":MEASure:VAMPlitude?")
print "Measured vertical amplitude on channel 1: %s" % qresult

Download the screen image.
--
sDisplay = do_query_string(":DISPlay:DATA? PNG")
sDisplay = get_definite_length_block_data(sDisplay)

Save display data values to file.
f = open("screen_image.png", "wb")
f.write(sDisplay)
f.close()
print "Screen image written to screen_image.png."

Download waveform data.

1372 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

--

Get the waveform type.
qresult = do_query_string(":WAVeform:TYPE?")
print "Waveform type: %s" % qresult

Get the number of waveform points.
qresult = do_query_string(":WAVeform:POINts?")
print "Waveform points: %s" % qresult

Set the waveform source.
do_command(":WAVeform:SOURce CHANnel1")
qresult = do_query_string(":WAVeform:SOURce?")
print "Waveform source: %s" % qresult

Choose the format of the data returned:
do_command(":WAVeform:FORMat BYTE")
print "Waveform format: %s" % do_query_string(":WAVeform:FORMat?")

Display the waveform settings from preamble:
wav_form_dict = {
0 : "ASCii",
1 : "BYTE",
2 : "WORD",
3 : "LONG",
4 : "LONGLONG",
}
acq_type_dict = {
1 : "RAW",
2 : "AVERage",
3 : "VHIStogram",
4 : "HHIStogram",
6 : "INTerpolate",
10 : "PDETect",
}
acq_mode_dict = {
0 : "RTIMe",
1 : "ETIMe",
3 : "PDETect",
}
coupling_dict = {
0 : "AC",
1 : "DC",
2 : "DCFIFTY",
3 : "LFREJECT",
}
units_dict = {
0 : "UNKNOWN",
1 : "VOLT",
2 : "SECOND",
3 : "CONSTANT",
4 : "AMP",
5 : "DECIBEL",
}

preamble_string = do_query_string(":WAVeform:PREamble?")
(

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1373

wav_form, acq_type, wfmpts, avgcnt, x_increment, x_origin,
x_reference, y_increment, y_origin, y_reference, coupling,
x_display_range, x_display_origin, y_display_range,
y_display_origin, date, time, frame_model, acq_mode,
completion, x_units, y_units, max_bw_limit, min_bw_limit
) = string.split(preamble_string, ",")

print "Waveform format: %s" % wav_form_dict[int(wav_form)]
print "Acquire type: %s" % acq_type_dict[int(acq_type)]
print "Waveform points desired: %s" % wfmpts
print "Waveform average count: %s" % avgcnt
print "Waveform X increment: %s" % x_increment
print "Waveform X origin: %s" % x_origin
print "Waveform X reference: %s" % x_reference # Always 0.
print "Waveform Y increment: %s" % y_increment
print "Waveform Y origin: %s" % y_origin
print "Waveform Y reference: %s" % y_reference # Always 0.
print "Coupling: %s" % coupling_dict[int(coupling)]
print "Waveform X display range: %s" % x_display_range
print "Waveform X display origin: %s" % x_display_origin
print "Waveform Y display range: %s" % y_display_range
print "Waveform Y display origin: %s" % y_display_origin
print "Date: %s" % date
print "Time: %s" % time
print "Frame model #: %s" % frame_model
print "Acquire mode: %s" % acq_mode_dict[int(acq_mode)]
print "Completion pct: %s" % completion
print "Waveform X units: %s" % units_dict[int(x_units)]
print "Waveform Y units: %s" % units_dict[int(y_units)]
print "Max BW limit: %s" % max_bw_limit
print "Min BW limit: %s" % min_bw_limit

Get numeric values for later calculations.
x_increment = do_query_values(":WAVeform:XINCrement?")[0]
x_origin = do_query_values(":WAVeform:XORigin?")[0]
y_increment = do_query_values(":WAVeform:YINCrement?")[0]
y_origin = do_query_values(":WAVeform:YORigin?")[0]

Get the waveform data.
do_command(":WAVeform:STReaming OFF")
sData = do_query_string(":WAVeform:DATA?")
sData = get_definite_length_block_data(sData)

Unpack signed byte data.
values = struct.unpack("%db" % len(sData), sData)
print "Number of data values: %d" % len(values)

Save waveform data values to CSV file.
f = open("waveform_data.csv", "w")

for i in xrange(0, len(values) - 1):
time_val = x_origin + (i * x_increment)
voltage = (values[i] * y_increment) + y_origin
f.write("%E, %f\n" % (time_val, voltage))

f.close()
print "Waveform format BYTE data written to waveform_data.csv."

1374 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

===
Send a command and check for errors:
===
def do_command(command, hide_params=False):

if hide_params:
(header, data) = string.split(command, " ", 1)
if debug:
print "\nCmd = '%s'" % header

else:
if debug:
print "\nCmd = '%s'" % command

Infiniium.write("%s\n" % command)

if hide_params:
check_instrument_errors(header)
else:
check_instrument_errors(command)

===
Send a query, check for errors, return string:
===
def do_query_string(query):
if debug:
print "Qys = '%s'" % query
result = Infiniium.ask("%s\n" % query)
check_instrument_errors(query)
return result

===
Send a query, check for errors, return values:
===
def do_query_values(query):
if debug:
print "Qyv = '%s'" % query
results = Infiniium.ask_for_values("%s\n" % query)
check_instrument_errors(query)
return results

===
Check for instrument errors:
===
def check_instrument_errors(command):

while True:
error_string = Infiniium.ask(":SYSTem:ERRor? STRing\n")
if error_string: # If there is an error string value.

if error_string.find("0,", 0, 2) == -1: # Not "No error".

print "ERROR: %s, command: '%s'" % (error_string, command)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1375

print "Exited because of error."
sys.exit(1)

else: # "No error"
break

else: # :SYSTem:ERRor? STRing should always return string.
print "ERROR: :SYSTem:ERRor? STRing returned nothing, command: '%s'"

% command
print "Exited because of error."
sys.exit(1)

===
Returns data from definite-length block.
===
def get_definite_length_block_data(sBlock):

First character should be "#".
pound = sBlock[0:1]
if pound != "#":
print "PROBLEM: Invalid binary block format, pound char is '%s'." % po

und
print "Exited because of problem."
sys.exit(1)

Second character is number of following digits for length value.
digits = sBlock[1:2]

Get the data out of the block and return it.
sData = sBlock[int(digits) + 2:]

return sData

===
Main program:
===

Infiniium = visa.instrument("TCPIP0::130.29.71.191::inst0::INSTR")
Infiniium.timeout = 20
Infiniium.term_chars = ""
Infiniium.clear()

Initialize the oscilloscope, capture data, and analyze.
initialize()
capture()
analyze()

print "End of program."

1376 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

SICL Examples

• "SICL Example in C" on page 1376

• "SICL Example in Visual Basic" on page 1385

SICL Example in C

To compile and run this example in Microsoft Visual Studio 2008:

1 Open Visual Studio.

2 Create a new Visual C++, Win32, Win32 Console Application project.

3 In the Win32 Application Wizard, click Next >. Then, check Empty project, and
click Finish.

4 Cut-and-paste the code that follows into a file named "example.c" in the
project directory.

5 In Visual Studio 2008, right-click the Source Files folder, choose Add > Add
Existing Item..., select the example.c file, and click Add.

6 Edit the program to use the SICL address of your oscilloscope.

7 Choose Project > Properties.... In the Property Pages dialog, update these project
settings:

a Under Configuration Properties, Linker, Input, add "sicl32.lib" to the
Additional Dependencies field.

b Under Configuration Properties, C/C++, Code Generation, select
Multi-threaded DLL for the Runtime Library field.

c Click OK to close the Property Pages dialog.

8 Add the include files and library files search paths:

a Choose Tools > Options....

b In the Options dialog, select VC++ Directories under Projects and Solutions.

c Show directories for Include files, and add the include directory (for example,
Program Files\Keysight\ IO Libraries Suite\include).

d Show directories for Library files, and add the library files directory (for
example, Program Files\Keysight\IO Libraries Suite\lib).

e Click OK to close the Options dialog.

9 Build and run the program.

/*
* Keysight SICL Example in C
* --
* This program illustrates a few commonly-used programming
* features of your Keysight Infiniium Series oscilloscope.
*/

#include <stdio.h> /* For printf(). */

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1377

#include <string.h> /* For strcpy(), strcat(). */
#include <time.h> /* For clock(). */
#include <sicl.h> /* Keysight SICL routines. */

#define SICL_ADDRESS "lan[130.29.71.191]:inst0"
#define TIMEOUT 15000
#define IEEEBLOCK_SPACE 500000

/* Function prototypes */
void initialize(void); /* Initialize to known state. */
void capture(void); /* Capture the waveform. */
void analyze(void); /* Analyze the captured waveform. */

void do_command(char *command); /* Send command. */
int do_command_ieeeblock(char *command); /* Command w/IEEE block. */
void do_query_string(char *query); /* Query for string. */
void do_query_number(char *query); /* Query for number. */
void do_query_numbers(char *query); /* Query for numbers. */
int do_query_ieeeblock(char *query); /* Query for IEEE block. */
int do_query_ieeeblock_words(char *query); /* Query for word data. */
void check_instrument_errors(); /* Check for inst errors. */

/* Global variables */
INST id; /* Device session ID. */
char str_result[256] = {0}; /* Result from do_query_string(). */
double num_result; /* Result from do_query_number(). */
unsigned char ieeeblock_data[IEEEBLOCK_SPACE]; /* Result from

do_query_ieeeblock(). */
signed short ieeeblock_data_words[IEEEBLOCK_SPACE]; /* Result from

do_query_ieeeblock_words(). */
double dbl_results[10]; /* Result from do_query_numbers(). */

/* Main Program
* --- */
void main(void)
{

/* Install a default SICL error handler that logs an error message
* and exits. On Windows 98SE or Windows Me, view messages with
* the SICL Message Viewer. For Windows 2000 or XP, use the Event
* Viewer.
*/
ionerror(I_ERROR_EXIT);

/* Open a device session using the SICL_ADDRESS */
id = iopen(SICL_ADDRESS);

if (id == 0)
{
printf ("Oscilloscope iopen failed!\n");

}
else
{
printf ("Oscilloscope session opened!\n");

}

/* Set the I/O timeout value for this session to 5 seconds. */
itimeout(id, TIMEOUT);

1378 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

/* Clear the interface. */
iclear(id);

/* Initialize - start from a known state. */
initialize();

/* Capture data. */
capture();

/* Analyze the captured waveform. */
analyze();

/* Close the device session to the instrument. */
iclose(id);
printf ("Program execution is complete...\n");

/* For WIN16 programs, call _siclcleanup before exiting to release
* resources allocated by SICL for this application. This call is
* a no-op for WIN32 programs.
*/
_siclcleanup();

}

/* Initialize the oscilloscope to a known state.
* --- */
void initialize (void)
{

/* Clear status. */
do_command("*CLS");

/* Get and display the device's *IDN? string. */
do_query_string("*IDN?");
printf("Oscilloscope *IDN? string: %s\n", str_result);

/* Load the default setup. */
do_command("*CLS");
do_command("*RST");

}

/* Capture the waveform.
* --- */
void capture (void)
{

int num_values;
FILE *fp;

/* Set probe attenuation factor. */
do_command(":CHANnel1:PROBe 1.0");
do_query_string(":CHANnel1:PROBe?");
printf("Channel 1 probe attenuation factor: %s\n", str_result);

/* Use auto-scale to automatically configure oscilloscope.
* --- */
do_command(":AUToscale");

/* Set trigger mode. */

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1379

do_command(":TRIGger:MODE EDGE");
do_query_string(":TRIGger:MODE?");
printf("Trigger mode: %s\n", str_result);

/* Set EDGE trigger parameters. */
do_command(":TRIGger:EDGE:SOURCe CHANnel1");
do_query_string(":TRIGger:EDGE:SOURce?");
printf("Trigger edge source: %s\n", str_result);

do_command(":TRIGger:LEVel CHANnel1,-2E-3");
do_query_string(":TRIGger:LEVel? CHANnel1");
printf("Trigger level, channel 1: %s\n", str_result);

do_command(":TRIGger:EDGE:SLOPe POSitive");
do_query_string(":TRIGger:EDGE:SLOPe?");
printf("Trigger edge slope: %s\n", str_result);

/* Save oscilloscope configuration.
* --- */

/* Read system setup. */
num_values = do_query_ieeeblock(":SYSTem:SETup?");
printf("Read setup string query (%d bytes).\n", num_values);

/* Write setup string to file. */
fp = fopen ("c:\\scope\\config\\setup.stp", "wb");
num_values = fwrite(ieeeblock_data, sizeof(unsigned char), num_values,
fp);

fclose (fp);
printf("Wrote setup string (%d bytes) to ", num_values);
printf("c:\\scope\\config\\setup.stp.\n");

/* Change settings with individual commands:
* --- */

/* Set vertical scale and offset. */
do_command(":CHANnel1:SCALe 0.1");
do_query_string(":CHANnel1:SCALe?");
printf("Channel 1 vertical scale: %s\n", str_result);

do_command(":CHANnel1:OFFSet 0.0");
do_query_string(":CHANnel1:OFFSet?");
printf("Channel 1 offset: %s\n", str_result);

/* Set horizontal scale and position. */
do_command(":TIMebase:SCALe 0.0002");
do_query_string(":TIMebase:SCALe?");
printf("Timebase scale: %s\n", str_result);

do_command(":TIMebase:POSition 0.0");
do_query_string(":TIMebase:POSition?");
printf("Timebase position: %s\n", str_result);

/* Set the acquisition mode. */
do_command(":ACQuire:MODE RTIMe");
do_query_string(":ACQuire:MODE?");
printf("Acquire mode: %s\n", str_result);

1380 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

/* Or, configure by loading a previously saved setup.
* --- */

/* Read setup string from file. */
fp = fopen ("c:\\scope\\config\\setup.stp", "rb");
num_values = fread (ieeeblock_data, sizeof(unsigned char),
IEEEBLOCK_SPACE, fp);

fclose (fp);
printf("Read setup string (%d bytes) from file ", num_values);
printf("c:\\scope\\config\\setup.stp.\n");

/* Restore setup string. */
num_values = do_command_ieeeblock(":SYSTem:SETup", num_values);
printf("Restored setup string (%d bytes).\n", num_values);

/* Set the desired number of waveform points,
* and capture an acquisition. */
do_command(":ACQuire:POINts 32000");
do_command(":DIGitize");

}

/* Analyze the captured waveform.
* --- */
void analyze (void)
{

double wav_format;
double acq_type;
double wav_points;
double avg_count;
double x_increment;
double x_origin;
double y_increment;
double y_origin;

FILE *fp;
int num_values; /* Number of bytes returned from instrument. */
int i;

/* Make measurements.
* --- */
do_command(":MEASure:SOURce CHANnel1");
do_query_string(":MEASure:SOURce?");
printf("Measure source: %s\n", str_result);

do_command(":MEASure:FREQuency");
do_query_number(":MEASure:FREQuency?");
printf("Frequency: %.4f kHz\n", num_result / 1000);

do_command(":MEASure:VAMPlitude");
do_query_number(":MEASure:VAMPlitude?");
printf("Vertical amplitude: %.2f V\n", num_result);

/* Download the screen image.
* --- */

/* Read screen image. */

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1381

num_values = do_query_ieeeblock(":DISPlay:DATA? PNG");
printf("Screen image bytes: %d\n", num_values);

/* Write screen image bytes to file. */
fp = fopen ("c:\\scope\\data\\screen.png", "wb");
num_values = fwrite(ieeeblock_data, sizeof(unsigned char), num_values,
fp);

fclose (fp);
printf("Wrote screen image (%d bytes) to ", num_values);
printf("c:\\scope\\data\\screen.png.\n");

/* Download waveform data.
* --- */

/* Get the waveform type. */
do_query_string(":WAVeform:TYPE?");
printf("Waveform type: %s\n", str_result);

/* Get the number of waveform points. */
do_query_string(":WAVeform:POINts?");
printf("Waveform points: %s\n", str_result);

/* Set the waveform source. */
do_command(":WAVeform:SOURce CHANnel1");
do_query_string(":WAVeform:SOURce?");
printf("Waveform source: %s\n", str_result);

/* Choose the format of the data returned: */
do_command(":WAVeform:FORMat WORD");
do_query_string(":WAVeform:FORMat?");
printf("Waveform format: %s\n", str_result);

/* Display the waveform settings: */
do_query_number(":WAVeform:XINCrement?");
x_increment = num_result;
printf("Waveform X increment: %e\n", x_increment);

do_query_number(":WAVeform:XORigin?");
x_origin = num_result;
printf("Waveform X origin: %e\n", x_origin);

do_query_number(":WAVeform:YINCrement?");
y_increment = num_result;
printf("Waveform Y increment: %e\n", y_increment);

do_query_number(":WAVeform:YORigin?");
y_origin = num_result;
printf("Waveform Y origin: %e\n", y_origin);

/* Read waveform data. */
num_values = do_query_ieeeblock_words(":WAVeform:DATA?");
printf("Number of data values: %d\n", num_values);

/* Open file for output. */
fp = fopen("c:\\scope\\data\\waveform_data.csv", "wb");

/* Output waveform data in CSV format. */

1382 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

for (i = 0; i < num_values - 1; i++)
{
/* Write time value, voltage value. */
fprintf(fp, "%9f, %6f\n",

x_origin + ((float)i * x_increment),
((float)ieeeblock_data_words[i] * y_increment) + y_origin);

}

/* Close output file. */
fclose(fp);
printf("Waveform format WORD data written to ");
printf("c:\\scope\\data\\waveform_data.csv.\n");

}

/* Send a command to the instrument.
* --- */
void do_command(command)
char *command;
{

char message[80];

strcpy(message, command);
strcat(message, "\n");
iprintf(id, message);

check_instrument_errors();
}

/* Command with IEEE definite-length block.
* --- */
int do_command_ieeeblock(command, num_bytes)
char *command;
int num_bytes;
{

char message[80];
int data_length;

strcpy(message, command);
strcat(message, " #8%08d");
iprintf(id, message, num_bytes);
ifwrite(id, ieeeblock_data, num_bytes, 1, &data_length);

check_instrument_errors();

return(data_length);
}

/* Query for a string result.
* --- */
void do_query_string(query)
char *query;
{

char message[80];

strcpy(message, query);
strcat(message, "\n");
iprintf(id, message);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1383

iscanf(id, "%t\n", str_result);

check_instrument_errors();
}

/* Query for a number result.
* --- */
void do_query_number(query)
char *query;
{

char message[80];

strcpy(message, query);
strcat(message, "\n");
iprintf(id, message);

iscanf(id, "%lf", &num_result);

check_instrument_errors();
}

/* Query for numbers result.
* --- */
void do_query_numbers(query)
char *query;
{

char message[80];

strcpy(message, query);
strcat(message, "\n");
iprintf(id, message);

iscanf(id, "%,10lf\n", dbl_results);

check_instrument_errors();
}

/* Query for an IEEE definite-length block result.
* --- */
int do_query_ieeeblock(query)
char *query;
{

char message[80];
int data_length;

strcpy(message, query);
strcat(message, "\n");
iprintf(id, message);

data_length = IEEEBLOCK_SPACE;
iscanf(id, "%#b", &data_length, ieeeblock_data);

if (data_length == IEEEBLOCK_SPACE)
{
printf("IEEE block buffer full: ");
printf("May not have received all data.\n");

1384 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

}

check_instrument_errors();

return(data_length);
}

/* Query for an IEEE definite-length block word data result.
* --- */
int do_query_ieeeblock_words(query)
char *query;
{

char message[80];
int data_length;

strcpy(message, query);
strcat(message, "\n");
iprintf(id, message);

data_length = IEEEBLOCK_SPACE;
iscanf(id, "%#wb", &data_length, ieeeblock_data_words);

if (data_length == IEEEBLOCK_SPACE)
{
printf("IEEE block buffer full: ");
printf("May not have received all data.\n");

}

check_instrument_errors();

return(data_length);
}

/* Check for instrument errors.
* --- */
void check_instrument_errors()
{

char str_err_val[256] = {0};
char str_out[800] = "";

ipromptf(id, ":SYSTem:ERRor? STRing\n", "%t", str_err_val);
while(strncmp(str_err_val, "0,", 2) != 0)
{
strcat(str_out, ", ");
strcat(str_out, str_err_val);
ipromptf(id, ":SYSTem:ERRor? STRing\n", "%t", str_err_val);

}

if (strcmp(str_out, "") != 0)
{
printf("INST Error%s\n", str_out);
iflush(id, I_BUF_READ | I_BUF_WRITE);

}
}

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1385

SICL Example in Visual Basic

To run this example in Visual Basic for Applications:

1 Start the application that provides Visual Basic for Applications (for example,
Microsoft Excel).

2 Press ALT+F11 to launch the Visual Basic editor.

3 Add the sicl32.bas file to your project:

a Choose File>Import File....

b Navigate to the header file, sicl32.bas (installed with Keysight IO Libraries
Suite and found in the Program Files\Keysight\IO Libraries Suite\include
directory), select it, and click Open.

4 Choose Insert>Module.

5 Cut-and-paste the code that follows into the editor.

6 Edit the program to use the SICL address of your oscilloscope, and save the
changes.

7 Run the program.

'
' Keysight SICL Example in Visual Basic
' ---
' This program illustrates a few commonly-used programming
' features of your Keysight Infiniium Series oscilloscope.
' ---

Option Explicit

Public id As Integer ' Session to instrument.

' Declare variables to hold numeric values returned by
' ivscanf/ifread.
Public dblQueryResult As Double
Public Const ByteArraySize = 5000000
Public retCount As Long
Public byteArray(ByteArraySize) As Byte

' Declare fixed length string variable to hold string value returned
' by ivscanf.
Public strQueryResult As String * 200

' For Sleep subroutine.
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

'
' Main Program
' ---

Sub Main()

On Error GoTo ErrorHandler

1386 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Open a device session using the SICL_ADDRESS.
id = iopen("lan[130.29.71.191]:inst0")
Call itimeout(id, 15000)

' Clear the interface.
Call iclear(id)

' Initialize - start from a known state.
Initialize

' Capture data.
Capture

' Analyze the captured waveform.
Analyze

' Close the vi session and the resource manager session.
Call iclose(id)

Exit Sub

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Sub

'
' Initialize the oscilloscope to a known state.
' ---

Private Sub Initialize()

On Error GoTo ErrorHandler

' Clear status.
DoCommand "*CLS"

' Get and display the device's *IDN? string.
strQueryResult = DoQueryString("*IDN?")
MsgBox "Result is: " + RTrim(strQueryResult), vbOKOnly, "*IDN? Result"

' Load the default setup.
DoCommand "*RST"

Exit Sub

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Sub

'
' Capture the waveform.

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1387

' ---

Private Sub Capture()

On Error GoTo ErrorHandler

' Set probe attenuation factor.
DoCommand ":CHANnel1:PROBe 1.0"
Debug.Print "Channel 1 probe attenuation factor: " + _

DoQueryString(":CHANnel1:PROBe?")

' Use auto-scale to automatically configure oscilloscope.
' ---
DoCommand ":AUToscale"

' Set trigger mode.
DoCommand ":TRIGger:MODE EDGE"
Debug.Print "Trigger mode: " + _

DoQueryString(":TRIGger:MODE?")

' Set EDGE trigger parameters.
DoCommand ":TRIGger:EDGE:SOURCe CHANnel1"
Debug.Print "Trigger edge source: " + _

DoQueryString(":TRIGger:EDGE:SOURce?")

DoCommand ":TRIGger:LEVel CHANnel1,-2E-3"
Debug.Print "Trigger level, channel 1: " + _

DoQueryString(":TRIGger:LEVel? CHANnel1")

DoCommand ":TRIGger:EDGE:SLOPe POSitive"
Debug.Print "Trigger edge slope: " + _

DoQueryString(":TRIGger:EDGE:SLOPe?")

' Save oscilloscope configuration.
' ---
Dim lngSetupStringSize As Long
lngSetupStringSize = DoQueryIEEEBlock_Bytes(":SYSTem:SETup?")
Debug.Print "Setup bytes saved: " + CStr(lngSetupStringSize)

' Output setup string to a file:
Dim strPath As String
strPath = "c:\scope\config\setup.dat"
If Len(Dir(strPath)) Then
Kill strPath ' Remove file if it exists.

End If

' Open file for output.
Dim hFile As Long
hFile = FreeFile
Open strPath For Binary Access Write Lock Write As hFile
Dim lngI As Long
For lngI = 0 To lngSetupStringSize - 1
Put hFile, , byteArray(lngI) ' Write data.

Next lngI
Close hFile ' Close file.

' Change settings with individual commands:

1388 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' ---

' Set vertical scale and offset.
DoCommand ":CHANnel1:SCALe 0.1"
Debug.Print "Channel 1 vertical scale: " + _

DoQueryString(":CHANnel1:SCALe?")

DoCommand ":CHANnel1:OFFSet 0.0"
Debug.Print "Channel 1 vertical offset: " + _

DoQueryString(":CHANnel1:OFFSet?")

' Set horizontal scale and position.
DoCommand ":TIMebase:SCALe 0.0002"
Debug.Print "Timebase scale: " + _

DoQueryString(":TIMebase:SCALe?")

DoCommand ":TIMebase:POSition 0.0"
Debug.Print "Timebase position: " + _

DoQueryString(":TIMebase:POSition?")

' Set the acquisition mode.
DoCommand ":ACQuire:MODE RTIMe"
Debug.Print "Acquire mode: " + _

DoQueryString(":ACQuire:MODE?")

' Or, configure by loading a previously saved setup.
' ---
strPath = "c:\scope\config\setup.dat"
Open strPath For Binary Access Read As hFile ' Open file for input.
Dim lngSetupFileSize As Long
lngSetupFileSize = LOF(hFile) ' Length of file.
Get hFile, , byteArray ' Read data.
Close hFile ' Close file.
' Write setup string back to oscilloscope using ":SYSTem:SETup"
' command:
Dim lngRestored As Long
lngRestored = DoCommandIEEEBlock(":SYSTem:SETup", lngSetupFileSize)
Debug.Print "Setup bytes restored: " + CStr(lngRestored)

' Set the desired number of waveform points,
' and capture an acquisition.
' ---
DoCommand ":ACQuire:POINts 32000"
DoCommand ":DIGitize"

Exit Sub

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Sub

'
' Analyze the captured waveform.
' ---

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1389

Private Sub Analyze()

On Error GoTo ErrorHandler

' Make measurements.
' ---
DoCommand ":MEASure:SOURce CHANnel1"
Debug.Print "Measure source: " + _

DoQueryString(":MEASure:SOURce?")

DoCommand ":MEASure:FREQuency"
dblQueryResult = DoQueryNumber(":MEASure:FREQuency?")
MsgBox "Frequency:" + vbCrLf + _

FormatNumber(dblQueryResult / 1000, 4) + " kHz"

DoCommand ":MEASure:VAMPlitude"
dblQueryResult = DoQueryNumber(":MEASure:VAMPlitude?")
MsgBox "Vertical amplitude:" + vbCrLf + _

FormatNumber(dblQueryResult, 4) + " V"

' Download the screen image.
' ---

' Get screen image.
Dim lngBlockSize As Long
lngBlockSize = DoQueryIEEEBlock_Bytes(":DISPlay:DATA? PNG")
Debug.Print "Screen image bytes: " + CStr(lngBlockSize)

' Save screen image to a file:
Dim strPath As String
strPath = "c:\scope\data\screen.png"
If Len(Dir(strPath)) Then
Kill strPath ' Remove file if it exists.

End If
Dim hFile As Long
hFile = FreeFile
Open strPath For Binary Access Write Lock Write As hFile
Dim lngI As Long
' Skip past header.
For lngI = CInt(Chr(byteArray(1))) + 2 To lngBlockSize - 1
Put hFile, , byteArray(lngI) ' Write data.

Next lngI
Close hFile ' Close file.
MsgBox "Screen image written to " + strPath

' Download waveform data.
' ---

' Get the waveform type.
Debug.Print "Waveform type: " + _

DoQueryString(":WAVeform:TYPE?")

' Get the number of waveform points.
Debug.Print "Waveform points: " + _

DoQueryString(":WAVeform:POINts?")

1390 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Set the waveform source.
DoCommand ":WAVeform:SOURce CHANnel1"
Debug.Print "Waveform source: " + _

DoQueryString(":WAVeform:SOURce?")

' Choose the format of the data returned:
DoCommand ":WAVeform:FORMat BYTE"
Debug.Print "Waveform format: " + _

DoQueryString(":WAVeform:FORMat?")

' Display the waveform settings:
Dim dblXIncrement As Double
Dim dblXOrigin As Double
Dim dblYIncrement As Double
Dim dblYOrigin As Double

dblXIncrement = DoQueryNumber(":WAVeform:XINCrement?")
Debug.Print "Waveform X increment: " + _

Format(dblXIncrement, "Scientific")

dblXOrigin = DoQueryNumber(":WAVeform:XORigin?")
Debug.Print "Waveform X origin: " + _

Format(dblXOrigin, "Scientific")

dblYIncrement = DoQueryNumber(":WAVeform:YINCrement?")
Debug.Print "Waveform Y increment: " + _

Format(dblYIncrement, "Scientific")

dblYOrigin = DoQueryNumber(":WAVeform:YORigin?")
Debug.Print "Waveform Y origin: " + _

FormatNumber(dblYOrigin, 0)

' Get the waveform data
DoCommand ":WAVeform:STReaming OFF"
Dim lngNumBytes As Long
lngNumBytes = DoQueryIEEEBlock_Bytes(":WAVeform:DATA?")
Debug.Print "Number of data values: " + _

CStr(lngNumBytes - CInt(Chr(byteArray(1))) - 2)

' Set up output file:
strPath = "c:\scope\data\waveform_data.csv"

' Open file for output.
Open strPath For Output Access Write Lock Write As hFile

' Output waveform data in CSV format.
Dim lngDataValue As Long
Dim byteUnsigned As Byte

' Skip past header.
For lngI = CInt(Chr(byteArray(1))) + 2 To lngNumBytes - 2
byteUnsigned = byteArray(lngI)
' Oscilloscope BYTE format sends signed bytes. VBA Byte is
' interpreted as unsigned, so convert the bits to signed value.
lngDataValue = byteUnsigned - ((byteUnsigned And &H80) * 2)

' Write time value, voltage value.

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1391

Print #hFile, _
FormatNumber(dblXOrigin + (lngI * dblXIncrement), 9) + _
", " + _
FormatNumber((lngDataValue * dblYIncrement) + dblYOrigin)

Next lngI

' Close output file.
Close hFile ' Close file.
MsgBox "Waveform format BYTE data written to " + _

"c:\scope\data\waveform_data.csv."

Exit Sub

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Sub

Private Sub DoCommand(command As String)

On Error GoTo ErrorHandler

Call ivprintf(id, command + vbLf)

CheckInstrumentErrors

Exit Sub

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Sub

Private Function DoCommandIEEEBlock(command As String, _
lngBlockSize As Long)

On Error GoTo ErrorHandler

' Send command part.
Call ivprintf(id, command + " ")

' Write definite-length block bytes.
Call ifwrite(id, byteArray(), lngBlockSize, vbNull, retCount)

' retCount is now actual number of bytes written.
DoCommandIEEEBlock = retCount

CheckInstrumentErrors

Exit Function

ErrorHandler:

1392 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

MsgBox "*** Error : " + Error, vbExclamation
End

End Function

Private Function DoQueryString(query As String) As String

Dim actual As Long

On Error GoTo ErrorHandler

Dim strResult As String * 200

Call ivprintf(id, query + vbLf)
Call ivscanf(id, "%200t", strResult)
DoQueryString = strResult

CheckInstrumentErrors

Exit Function

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Function

Private Function DoQueryNumber(query As String) As Double

On Error GoTo ErrorHandler

Dim dblResult As Double

Call ivprintf(id, query + vbLf)
Call ivscanf(id, "%lf" + vbLf, dblResult)
DoQueryNumber = dblResult

CheckInstrumentErrors

Exit Function

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Function

Private Function DoQueryNumbers(query As String) As Double()

On Error GoTo ErrorHandler

Dim dblResults(10) As Double

Call ivprintf(id, query + vbLf)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1393

Call ivscanf(id, "%,10lf" + vbLf, dblResults)
DoQueryNumbers = dblResults

CheckInstrumentErrors

Exit Function

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Function

Private Function DoQueryIEEEBlock_Bytes(query As String) As Long

On Error GoTo ErrorHandler

' Send query.
Call ivprintf(id, query + vbLf)

' Read definite-length block bytes.
Call ifread(id, byteArray(), ByteArraySize, vbNull, retCount)

' Get number of block length digits.
Dim intLengthDigits As Integer
intLengthDigits = CInt(Chr(byteArray(1)))

' Get block length from those digits.
Dim strBlockLength As String
strBlockLength = ""
Dim i As Integer
For i = 2 To intLengthDigits + 1
strBlockLength = strBlockLength + Chr(byteArray(i))

Next

' Return number of bytes in block plus header.
DoQueryIEEEBlock_Bytes = CLng(strBlockLength) + intLengthDigits + 2

CheckInstrumentErrors

Exit Function

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Function

Private Sub CheckInstrumentErrors()

On Error GoTo ErrorHandler

Dim strErrVal As String * 200
Dim strOut As String

1394 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

Call ivprintf(id, ":SYSTem:ERRor? STRing" + vbLf) ' Query any errors d
ata.

Call ivscanf(id, "%200t", strErrVal) ' Read: Errnum,"Error String".
While Val(strErrVal) <> 0 ' End if find: 0,"No Error".
strOut = strOut + "INST Error: " + strErrVal
Call ivprintf(id, ":SYSTem:ERRor? STRing" + vbLf) ' Request error me

ssage.
Call ivscanf(id, "%200t", strErrVal) ' Read error message.

Wend

If Not strOut = "" Then
MsgBox strOut, vbExclamation, "INST Error Messages"
Call iflush(id, I_BUF_READ Or I_BUF_WRITE)

End If

Exit Sub

ErrorHandler:

MsgBox "*** Error : " + Error, vbExclamation
End

End Sub

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1395

SCPI.NET Examples

These programming examples show how to use the SCPI.NET drivers that come
with Keysight's free Command Expert software.

While you can write code manually using SCPI.NET drivers (as described in this
section), you can also use the Command Expert software to:

• Connect to instruments and control them interactively using SCPI command
sets.

• Quickly prototype and test command sequences.

• Generate C#, VB.NET, or C/C++ code for command sequences.

• Find, download, and install SCPI command sets.

• Browse command trees, search for commands, and view command
descriptions.

The Command Expert suite also comes with Add-ons for easy instrument control
and measurement data retrieval in NI LabVIEW, Microsoft Excel, Keysight VEE, and
Keysight SystemVue.

For more information on Keysight Command Expert, and to download the
software, see: "http://www.keysight.com/find/commandexpert"

• "SCPI.NET Example in C#" on page 1395

• "SCPI.NET Example in Visual Basic .NET" on page 1402

• "SCPI.NET Example in IronPython" on page 1409

SCPI.NET Example in C#

To compile and run this example in Microsoft Visual Studio 2008:

1 Install the Keysight Command Expert software and the command set for the
oscilloscope.

2 Open Visual Studio.

3 Create a new Visual C#, Windows, Console Application project.

4 Cut-and-paste the code that follows into the C# source file.

5 Edit the program to use the address of your oscilloscope.

6 Add a reference to the SCPI.NET driver:

a Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment.

b Choose Add Reference....

c In the Add Reference dialog, select the Browse tab, and navigate to the
ScpiNetDrivers folder.

http://www.keysight.com/find/commandexpert

1396 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

• Windows XP: C:\Documents and Settings\All Users\Keysight\Command
Expert\ScpiNetDrivers

• Windows 7: C:\ProgramData\Keysight\Command Expert\ScpiNetDrivers

d Select the .dll file for your oscilloscope, for example Ag9000A_3_10.dll; then,
click OK.

7 Build and run the program.

For more information, see the SCPI.NET driver help that comes with Keysight
Command Expert.

/*
* Keysight SCPI.NET Example in C#
* ---
* This program illustrates a few commonly used programming
* features of your Keysight oscilloscope.
* ---
*/

using System;
using System.IO;
using System.Text;
using System.Collections.Generic;
using Keysight.CommandExpert.ScpiNet.Ag9000A_3_10;

namespace Infiniium
{

class ScpiNetInstrumentApp
{
private static Ag9000A myScope;

static void Main(string[] args)
{

try
{

string strScopeAddress;
//strScopeAddress = "keysight-d9c8a49.cos.is.keysight.com";
strScopeAddress =

"TCPIP0::keysight-d9c8a49.cos.is.keysight.com::inst0::INSTR";
Console.WriteLine("Connecting to oscilloscope...");
Console.WriteLine();
myScope = new Ag9000A(strScopeAddress);
myScope.Transport.DefaultTimeout.Set(10000);

// Initialize - start from a known state.
Initialize();

// Capture data.
Capture();

// Analyze the captured waveform.
Analyze();

Console.WriteLine("Press any key to exit");
Console.ReadKey();

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1397

}
catch (System.ApplicationException err)
{

Console.WriteLine("*** SCPI.NET Error : " + err.Message);
}
catch (System.SystemException err)
{

Console.WriteLine("*** System Error Message : " + err.Message);
}
catch (System.Exception err)
{

System.Diagnostics.Debug.Fail("Unexpected Error");
Console.WriteLine("*** Unexpected Error : " + err.Message);

}
finally
{

//myScope.Dispose();
}

}

/*
* Initialize the oscilloscope to a known state.
* --
*/
private static void Initialize()
{

string strResults;

// Get and display the device's *IDN? string.
myScope.SCPI.IDN.Query(out strResults);
Console.WriteLine("*IDN? result is: {0}", strResults);

// Clear status and load the default setup.
myScope.SCPI.CLS.Command();
myScope.SCPI.RST.Command();

}

/*
* Capture the waveform.
* --
*/
private static void Capture()
{

string strResults;
double fResult;

// Use auto-scale to automatically configure oscilloscope.
myScope.SCPI.AUToscale.Command();

// Set trigger mode.
myScope.SCPI.TRIGger.MODE.Command("EDGE");
myScope.SCPI.TRIGger.MODE.Query(out strResults);
Console.WriteLine("Trigger mode: {0}", strResults);

// Set EDGE trigger parameters.
myScope.SCPI.TRIGger.EDGE.SOURce.Command("CHANnel1");

1398 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

myScope.SCPI.TRIGger.EDGE.SOURce.Query(out strResults);
Console.WriteLine("Trigger edge source: {0}", strResults);

myScope.SCPI.TRIGger.LEVel.Command("CHANnel1", -0.002);
myScope.SCPI.TRIGger.LEVel.Query("CHANnel1", out fResult);
Console.WriteLine("Trigger edge level: {0:F2}", fResult);

myScope.SCPI.TRIGger.EDGE.SLOPe.Command("POSitive");
myScope.SCPI.TRIGger.EDGE.SLOPe.Query(out strResults);
Console.WriteLine("Trigger edge slope: {0}", strResults);

// Save oscilloscope setup.
string[] strResultsArray; // Results array.
int nLength; // Number of bytes returned from instrument.
string strPath;

// Query and read setup string.
myScope.SCPI.SYSTem.SETup.Query(out strResultsArray);
nLength = strResultsArray.Length;

// Write setup string to file.
strPath = "c:\\scope\\config\\setup.stp";
File.WriteAllLines(strPath, strResultsArray);
Console.WriteLine("Setup bytes saved: {0}", nLength);

// Change settings with individual commands:

// Set vertical scale and offset.
myScope.SCPI.CHANnel.SCALe.Command(1, 0.1);
myScope.SCPI.CHANnel.SCALe.Query(1, out fResult);
Console.WriteLine("Channel 1 vertical scale: {0:F4}", fResult);

myScope.SCPI.CHANnel.OFFSet.Command(1, 0.0);
myScope.SCPI.CHANnel.OFFSet.Query(1, out fResult);
Console.WriteLine("Channel 1 vertical offset: {0:F4}", fResult);

// Set horizontal scale and offset.
myScope.SCPI.TIMebase.SCALe.Command(0.0002);
myScope.SCPI.TIMebase.SCALe.Query(out fResult);
Console.WriteLine("Timebase scale: {0:F4}", fResult);

myScope.SCPI.TIMebase.POSition.Command(0.0);
myScope.SCPI.TIMebase.POSition.Query(out fResult);
Console.WriteLine("Timebase position: {0:F2}", fResult);

// Set the acquisition mode.
myScope.SCPI.ACQuire.MODE.Command("RTIMe");
myScope.SCPI.ACQuire.MODE.Query(out strResults);
Console.WriteLine("Acquire mode: {0}", strResults);

// Or, configure by loading a previously saved setup.
string[] DataArray;
int nBytesWritten;

// Read setup string from file.
strPath = "c:\\scope\\config\\setup.stp";
DataArray = File.ReadAllLines(strPath);

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1399

nBytesWritten = strResultsArray.Length;

// Restore setup string.
myScope.SCPI.SYSTem.SETup.Command(DataArray);
Console.WriteLine("Setup bytes restored: {0}", nBytesWritten);

// Set the desired number of waveform points,
// and capture an acquisition.
myScope.SCPI.ACQuire.POINts.ANALog.Command(32000);
myScope.SCPI.DIGitize.Command(null);

}

/*
* Analyze the captured waveform.
* --
*/
private static void Analyze()
{

string[] strResultsArray; // Results array.
string strResults;
double fResult;

// Make measurements.
// ---
myScope.SCPI.MEASure.SOURce.Command("CHANnel1", null);
myScope.SCPI.MEASure.SOURce.Query(out strResultsArray);
Console.WriteLine("Measure source: {0}", strResultsArray[0]);

myScope.SCPI.MEASure.FREQuency.Command("CHANnel1", null);
myScope.SCPI.MEASure.FREQuency.QuerySendValidOff("CHANnel1",

null, out fResult);
Console.WriteLine("Frequency: {0:F4} kHz", fResult / 1000);

// Use direct command/query when commands not in command set.
myScope.Transport.Command.Invoke(":MEASure:VAMPlitude CHANnel1");
myScope.Transport.Query.Invoke(":MEASure:VAMPlitude? CHANnel1",

out strResults);
Console.WriteLine("Vertical amplitude: {0} V", strResults);

// Download the screen image.
// ---

// Get the screen data.
byte[] byteResultsArray; // Results array.
myScope.SCPI.DISPlay.DATA.Query("PNG", null, null, null,

out byteResultsArray);
int nLength; // Number of bytes returned from instrument.
nLength = byteResultsArray.Length;

// Store the screen data to a file.
string strPath;
strPath = "c:\\scope\\data\\screen.png";
FileStream fStream = File.Open(strPath, FileMode.Create);
fStream.Write(byteResultsArray, 0, nLength);
fStream.Close();
Console.WriteLine("Screen image ({0} bytes) written to {1}",

nLength, strPath);

1400 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

// Download waveform data.
// ---

// Get the waveform points mode.
myScope.SCPI.WAVeform.TYPE.Query(out strResults);
Console.WriteLine("Waveform points mode: {0}", strResults);

// Get the number of waveform points.
int nPointsAvail;
myScope.SCPI.WAVeform.POINts.Query(out nPointsAvail);
Console.WriteLine("Waveform points: {0}", nPointsAvail);

// Set the waveform source.
myScope.SCPI.WAVeform.SOURce.Command("CHANnel1");
myScope.SCPI.WAVeform.SOURce.Query(out strResults);
Console.WriteLine("Waveform source: {0}", strResults);

// Choose the format of the data returned:
myScope.SCPI.WAVeform.FORMat.Command("WORD");
myScope.SCPI.WAVeform.FORMat.Query(out strResults);
Console.WriteLine("Waveform format: {0}", strResults);

myScope.SCPI.WAVeform.BYTeorder.Command("LSBFirst");
myScope.SCPI.WAVeform.BYTeorder.Query(out strResults);
Console.WriteLine("Waveform byte order: {0}", strResults);

// Display the waveform settings from preamble:
Dictionary<string, string> dctWavFormat =

new Dictionary<string, string>()
{

{"0", "ASCii"},
{"1", "BYTE"},
{"2", "WORD"},
{"3", "LONG"},
{"4", "LONGLONG"},

};
Dictionary<string, string> dctAcqType =

new Dictionary<string, string>()
{

{"1", "RAW"},
{"2", "AVERage"},
{"3", "VHIStogram"},
{"4", "HHIStogram"},
{"6", "INTerpolate"},
{"10", "PDETect"},

};
Dictionary<string, string> dctAcqMode =

new Dictionary<string, string>()
{

{"0", "RTIMe"},
{"1", "ETIMe"},
{"3", "PDETect"},

};
Dictionary<string, string> dctCoupling =

new Dictionary<string, string>()
{

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1401

{"0", "AC"},
{"1", "DC"},
{"2", "DCFIFTY"},
{"3", "LFREJECT"},

};
Dictionary<string, string> dctUnits =

new Dictionary<string, string>()
{

{"0", "UNKNOWN"},
{"1", "VOLT"},
{"2", "SECOND"},
{"3", "CONSTANT"},
{"4", "AMP"},
{"5", "DECIBEL"},

};
string strPreamble;
string[] strsPreamble;

myScope.SCPI.WAVeform.PREamble.Query(out strPreamble);
strsPreamble = strPreamble.Split(',');

Console.WriteLine("Waveform format: {0}",
dctWavFormat[strsPreamble[0]]);

Console.WriteLine("Acquire type: {0}",
dctAcqType[strsPreamble[1]]);

Console.WriteLine("Waveform points: {0}", strsPreamble[2]);
Console.WriteLine("Waveform average count: {0}", strsPreamble[3]);
Console.WriteLine("Waveform X increment: {0}", strsPreamble[4]);
Console.WriteLine("Waveform X origin: {0}", strsPreamble[5]);
Console.WriteLine("Waveform X reference: {0}", strsPreamble[6]);
Console.WriteLine("Waveform Y increment: {0}", strsPreamble[7]);
Console.WriteLine("Waveform Y origin: {0}", strsPreamble[8]);
Console.WriteLine("Waveform Y reference: {0}", strsPreamble[9]);
Console.WriteLine("Coupling: {0}", dctCoupling[strsPreamble[10]]);
Console.WriteLine("Waveform X display range: {0}",

strsPreamble[11]);
Console.WriteLine("Waveform X display origin: {0}",

strsPreamble[12]);
Console.WriteLine("Waveform Y display range: {0}",

strsPreamble[13]);
Console.WriteLine("Waveform Y display origin: {0}",

strsPreamble[14]);
Console.WriteLine("Date: {0}", strsPreamble[15]);
Console.WriteLine("Time: {0}", strsPreamble[16]);
Console.WriteLine("Frame model: {0}", strsPreamble[17]);
Console.WriteLine("Acquire mode: {0}",

dctAcqMode[strsPreamble[18]]);
Console.WriteLine("Completion pct: {0}", strsPreamble[19]);
Console.WriteLine("Waveform X inits: {0}",

dctUnits[strsPreamble[20]]);
Console.WriteLine("Waveform Y units: {0}",

dctUnits[strsPreamble[21]]);
Console.WriteLine("Max BW limit: {0}", strsPreamble[22]);
Console.WriteLine("Min BW limit: {0}", strsPreamble[23]);

1402 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

// Get numeric values for later calculations.
double fXincrement;
myScope.SCPI.WAVeform.XINCrement.Query(out fXincrement);
double fXorigin;
myScope.SCPI.WAVeform.XORigin.Query(out fXorigin);
double fYincrement;
myScope.SCPI.WAVeform.YINCrement.Query(out fYincrement);
double fYorigin;
myScope.SCPI.WAVeform.YORigin.Query(out fYorigin);

// Get the waveform data.
myScope.SCPI.WAVeform.STReaming.Command(false);
short[] WordDataArray; // Results array.
myScope.SCPI.WAVeform.DATA.QueryWord(null, null, out WordDataArray

);
nLength = WordDataArray.Length;
Console.WriteLine("Number of data values: {0}", nLength);

// Set up output file:
strPath = "c:\\scope\\data\\waveform_data.csv";
if (File.Exists(strPath)) File.Delete(strPath);

// Open file for output.
StreamWriter writer = File.CreateText(strPath);

// Output waveform data in CSV format.
for (int i = 0; i < nLength - 1; i++)

writer.WriteLine("{0:f9}, {1:f6}",
fXorigin + ((float)i * fXincrement),
(((float)WordDataArray[i])
* fYincrement) + fYorigin);

// Close output file.
writer.Close();
Console.WriteLine("Waveform format WORD data written to {0}",

strPath);
}

}
}

SCPI.NET Example in Visual Basic .NET

To compile and run this example in Microsoft Visual Studio 2008:

1 Install the Keysight Command Expert software and the command set for the
oscilloscope.

2 Open Visual Studio.

3 Create a new Visual Basic, Windows, Console Application project.

4 Cut-and-paste the code that follows into the Visual Basic .NET source file.

5 Edit the program to use the VISA address of your oscilloscope.

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1403

6 Add a reference to the SCPI.NET 3.0 driver:

a Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment.

b Choose Add Reference....

c In the Add Reference dialog, select the Browse tab, and navigate to the
ScpiNetDrivers folder.

• Windows XP: C:\Documents and Settings\All Users\Keysight\Command
Expert\ScpiNetDrivers

• Windows 7: C:\ProgramData\Keysight\Command Expert\ScpiNetDrivers

d Select the .dll file for your oscilloscope, for example Ag9000A_3_10.dll; then,
click OK.

e Right-click the project you wish to modify (not the solution) in the Solution
Explorer window of the Microsoft Visual Studio environment and choose
Properties; then, select "Infiniium.ScpiNetInstrumentApp" as the Startup
object.

7 Build and run the program.

For more information, see the SCPI.NET driver help that comes with Keysight
Command Expert.

'
' Keysight SCPI.NET Example in Visual Basic .NET
' ---
' This program illustrates a few commonly used programming
' features of your Keysight oscilloscope.
' ---

Imports System
Imports System.IO
Imports System.Text
Imports System.Collections.Generic
Imports Keysight.CommandExpert.ScpiNet.Ag9000A_3_10

Namespace Infiniium
Class ScpiNetInstrumentApp
Private Shared myScope As Ag9000A

Public Shared Sub Main(ByVal args As String())
Try

Dim strScopeAddress As String
'strScopeAddress = "keysight-d9c8a49.cos.is.keysight.com";
strScopeAddress = _

"TCPIP0::keysight-d9c8a49.cos.is.keysight.com::inst0::INSTR"
Console.WriteLine("Connecting to oscilloscope...")
Console.WriteLine()
myScope = New Ag9000A(strScopeAddress)
myScope.Transport.DefaultTimeout.[Set](10000)

' Initialize - start from a known state.
Initialize()

1404 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Capture data.
Capture()

' Analyze the captured waveform.
Analyze()

Console.WriteLine("Press any key to exit")
Console.ReadKey()

Catch err As System.ApplicationException
Console.WriteLine("*** SCPI.NET Error : " & err.Message)

Catch err As System.SystemException
Console.WriteLine("*** System Error Message : " & err.Message)

Catch err As System.Exception
System.Diagnostics.Debug.Fail("Unexpected Error")
Console.WriteLine("*** Unexpected Error : " & err.Message)
'myScope.Dispose();

Finally
End Try

End Sub

' Initialize the oscilloscope to a known state.
' --

Private Shared Sub Initialize()
Dim strResults As String

' Get and display the device's *IDN? string.
myScope.SCPI.IDN.Query(strResults)
Console.WriteLine("*IDN? result is: {0}", strResults)

' Clear status and load the default setup.
myScope.SCPI.CLS.Command()
myScope.SCPI.RST.Command()

End Sub

' Capture the waveform.
' --

Private Shared Sub Capture()
Dim strResults As String
Dim fResult As Double

' Use auto-scale to automatically configure oscilloscope.
myScope.SCPI.AUToscale.Command()

' Set trigger mode.
myScope.SCPI.TRIGger.MODE.Command("EDGE")
myScope.SCPI.TRIGger.MODE.Query(strResults)
Console.WriteLine("Trigger mode: {0}", strResults)

' Set EDGE trigger parameters.
myScope.SCPI.TRIGger.EDGE.SOURce.Command("CHANnel1")
myScope.SCPI.TRIGger.EDGE.SOURce.Query(strResults)
Console.WriteLine("Trigger edge source: {0}", strResults)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1405

myScope.SCPI.TRIGger.LEVel.Command("CHANnel1", -0.002)
myScope.SCPI.TRIGger.LEVel.Query("CHANnel1", fResult)
Console.WriteLine("Trigger edge level: {0:F2}", fResult)

myScope.SCPI.TRIGger.EDGE.SLOPe.Command("POSitive")
myScope.SCPI.TRIGger.EDGE.SLOPe.Query(strResults)
Console.WriteLine("Trigger edge slope: {0}", strResults)

' Save oscilloscope setup.
Dim strResultsArray As String()
' Results array.
Dim nLength As Integer
' Number of bytes returned from instrument.
Dim strPath As String

' Query and read setup string.
myScope.SCPI.SYSTem.SETup.Query(strResultsArray)
nLength = strResultsArray.Length

' Write setup string to file.
strPath = "c:\scope\config\setup.stp"
File.WriteAllLines(strPath, strResultsArray)
Console.WriteLine("Setup bytes saved: {0}", nLength)

' Change settings with individual commands:

' Set vertical scale and offset.
myScope.SCPI.CHANnel.SCALe.Command(1, 0.1)
myScope.SCPI.CHANnel.SCALe.Query(1, fResult)
Console.WriteLine("Channel 1 vertical scale: {0:F4}", fResult)

myScope.SCPI.CHANnel.OFFSet.Command(1, 0.0)
myScope.SCPI.CHANnel.OFFSet.Query(1, fResult)
Console.WriteLine("Channel 1 vertical offset: {0:F4}", fResult)

' Set horizontal scale and offset.
myScope.SCPI.TIMebase.SCALe.Command(0.0002)
myScope.SCPI.TIMebase.SCALe.Query(fResult)
Console.WriteLine("Timebase scale: {0:F4}", fResult)

myScope.SCPI.TIMebase.POSition.Command(0.0)
myScope.SCPI.TIMebase.POSition.Query(fResult)
Console.WriteLine("Timebase position: {0:F2}", fResult)

' Set the acquisition mode.
myScope.SCPI.ACQuire.MODE.Command("RTIMe")
myScope.SCPI.ACQuire.MODE.Query(strResults)
Console.WriteLine("Acquire mode: {0}", strResults)

' Or, configure by loading a previously saved setup.
Dim DataArray As String()
Dim nBytesWritten As Integer

' Read setup string from file.
strPath = "c:\scope\config\setup.stp"
DataArray = File.ReadAllLines(strPath)
nBytesWritten = DataArray.Length

1406 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

' Restore setup string.
myScope.SCPI.SYSTem.SETup.Command(DataArray)
Console.WriteLine("Setup bytes restored: {0}", nBytesWritten)

' Set the desired number of waveform points,
' and capture an acquisition.
myScope.SCPI.ACQuire.POINts.ANALog.Command(32000)
myScope.SCPI.DIGitize.Command(DBNull.Value)

End Sub

' Analyze the captured waveform.
' --

Private Shared Sub Analyze()
Dim strResultsArray As String()
' Results array.
Dim strResults As String
Dim fResult As Double

' Make measurements.
' ---
myScope.SCPI.MEASure.SOURce.Command("CHANnel1", DBNull.Value)
myScope.SCPI.MEASure.SOURce.Query(strResultsArray)
Console.WriteLine("Measure source: {0}", strResultsArray(0))

myScope.SCPI.MEASure.FREQuency.Command("CHANnel1", DBNull.Value)
myScope.SCPI.MEASure.FREQuency.QuerySendValidOff("CHANnel1", _

DBNull.Value, fResult)
Console.WriteLine("Frequency: {0:F4} kHz", fResult / 1000)

' Use direct command/query when commands not in command set.
myScope.Transport.Command.Invoke(":MEASure:VAMPlitude CHANnel1")
myScope.Transport.Query.Invoke(":MEASure:VAMPlitude? CHANnel1", _

strResults)
Console.WriteLine("Vertical amplitude: {0} V", strResults)

' Download the screen image.
' ---

' Get the screen data.
Dim byteResultsArray As Byte()
' Results array.
myScope.SCPI.DISPlay.DATA.Query("PNG", DBNull.Value, _

DBNull.Value, DBNull.Value, byteResultsArray)
Dim nLength As Integer
' Number of bytes returned from instrument.
nLength = byteResultsArray.Length

' Store the screen data to a file.
Dim strPath As String
strPath = "c:\scope\data\screen.png"
Dim fStream As FileStream = File.Open(strPath, FileMode.Create)
fStream.Write(byteResultsArray, 0, nLength)
fStream.Close()
Console.WriteLine("Screen image ({0} bytes) written to {1}", _

nLength, strPath)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1407

' Download waveform data.
' ---

' Get the waveform points mode.
myScope.SCPI.WAVeform.TYPE.Query(strResults)
Console.WriteLine("Waveform points mode: {0}", strResults)

' Get the number of waveform points.
Dim nPointsAvail As Integer
myScope.SCPI.WAVeform.POINts.Query(nPointsAvail)
Console.WriteLine("Waveform points: {0}", nPointsAvail)

' Set the waveform source.
myScope.SCPI.WAVeform.SOURce.Command("CHANnel1")
myScope.SCPI.WAVeform.SOURce.Query(strResults)
Console.WriteLine("Waveform source: {0}", strResults)

' Choose the format of the data returned:
myScope.SCPI.WAVeform.FORMat.Command("WORD")
myScope.SCPI.WAVeform.FORMat.Query(strResults)
Console.WriteLine("Waveform format: {0}", strResults)

myScope.SCPI.WAVeform.BYTeorder.Command("LSBFirst")
myScope.SCPI.WAVeform.BYTeorder.Query(strResults)
Console.WriteLine("Waveform byte order: {0}", strResults)

' Display the waveform settings from preamble:
Dim dctWavFormat As New Dictionary(Of String, String)
dctWavFormat.Add("0", "ASCii")
dctWavFormat.Add("1", "BYTE")
dctWavFormat.Add("2", "WORD")
dctWavFormat.Add("3", "LONG")
dctWavFormat.Add("4", "LONGLONG")

Dim dctAcqType As New Dictionary(Of String, String)
dctAcqType.Add("1", "RAW")
dctAcqType.Add("2", "AVERage")
dctAcqType.Add("3", "VHIStogram")
dctAcqType.Add("4", "HHIStogram")
dctAcqType.Add("6", "INTerpolate")
dctAcqType.Add("10", "PDETect")

Dim dctAcqMode As New Dictionary(Of String, String)()
dctAcqMode.Add("0", "RTIMe")
dctAcqMode.Add("1", "ETIMe")
dctAcqMode.Add("3", "PDETect")

Dim dctCoupling As New Dictionary(Of String, String)()
dctCoupling.Add("0", "AC")
dctCoupling.Add("1", "DC")
dctCoupling.Add("2", "DCFIFTY")
dctCoupling.Add("3", "LFREJECT")

Dim dctUnits As New Dictionary(Of String, String)()
dctUnits.Add("0", "UNKNOWN")
dctUnits.Add("1", "VOLT")

1408 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

dctUnits.Add("2", "SECOND")
dctUnits.Add("3", "CONSTANT")
dctUnits.Add("4", "AMP")
dctUnits.Add("5", "DECIBEL")

Dim strPreamble As String
Dim strsPreamble As String()

myScope.SCPI.WAVeform.PREamble.Query(strPreamble)
strsPreamble = strPreamble.Split(","c)

Console.WriteLine("Waveform format: {0}", _
dctWavFormat(strsPreamble(0)))

Console.WriteLine("Acquire type: {0}", _
dctAcqType(strsPreamble(1)))

Console.WriteLine("Waveform points: {0}", strsPreamble(2))
Console.WriteLine("Waveform average count: {0}", strsPreamble(3))
Console.WriteLine("Waveform X increment: {0}", strsPreamble(4))
Console.WriteLine("Waveform X origin: {0}", strsPreamble(5))
Console.WriteLine("Waveform X reference: {0}", strsPreamble(6))
Console.WriteLine("Waveform Y increment: {0}", strsPreamble(7))
Console.WriteLine("Waveform Y origin: {0}", strsPreamble(8))
Console.WriteLine("Waveform Y reference: {0}", strsPreamble(9))
Console.WriteLine("Coupling: {0}", dctCoupling(strsPreamble(10)))
Console.WriteLine("Waveform X display range: {0}", _

strsPreamble(11))
Console.WriteLine("Waveform X display origin: {0}", _

strsPreamble(12))
Console.WriteLine("Waveform Y display range: {0}", _

strsPreamble(13))
Console.WriteLine("Waveform Y display origin: {0}", _

strsPreamble(14))
Console.WriteLine("Date: {0}", strsPreamble(15))
Console.WriteLine("Time: {0}", strsPreamble(16))
Console.WriteLine("Frame model: {0}", strsPreamble(17))
Console.WriteLine("Acquire mode: {0}", _

dctAcqMode(strsPreamble(18)))
Console.WriteLine("Completion pct: {0}", strsPreamble(19))
Console.WriteLine("Waveform X inits: {0}", _

dctUnits(strsPreamble(20)))
Console.WriteLine("Waveform Y units: {0}", _

dctUnits(strsPreamble(21)))
Console.WriteLine("Max BW limit: {0}", strsPreamble(22))
Console.WriteLine("Min BW limit: {0}", strsPreamble(23))

' Get numeric values for later calculations.
Dim fXincrement As Double
myScope.SCPI.WAVeform.XINCrement.Query(fXincrement)
Dim fXorigin As Double
myScope.SCPI.WAVeform.XORigin.Query(fXorigin)
Dim fYincrement As Double
myScope.SCPI.WAVeform.YINCrement.Query(fYincrement)
Dim fYorigin As Double
myScope.SCPI.WAVeform.YORigin.Query(fYorigin)

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1409

' Get the waveform data.
myScope.SCPI.WAVeform.STReaming.Command(False)
Dim WordDataArray As Short()
' Results array.
myScope.SCPI.WAVeform.DATA.QueryWord(DBNull.Value, _

DBNull.Value, WordDataArray)
nLength = WordDataArray.Length
Console.WriteLine("Number of data values: {0}", nLength)

' Set up output file:
strPath = "c:\scope\data\waveform_data.csv"
If File.Exists(strPath) Then

File.Delete(strPath)
End If

' Open file for output.
Dim writer As StreamWriter = File.CreateText(strPath)

' Output waveform data in CSV format.
For i As Integer = 0 To nLength - 2

writer.WriteLine("{0:f9}, {1:f6}", _
fXorigin + (CSng(i) * fXincrement), _
(CSng(WordDataArray(i)) * fYincrement) + fYorigin)

Next

' Close output file.
writer.Close()
Console.WriteLine("Waveform format WORD data written to {0}", _

strPath)
End Sub

End Class
End Namespace

SCPI.NET Example in IronPython

You can also control Keysight oscilloscopes using the SCPI.NET library and Python
programming language on the .NET platform using:

• IronPython ("http://ironpython.codeplex.com/") which is an implementation of
the Python programming language running under .NET.

To run this example with IronPython:

1 Install the Keysight Command Expert software and the command set for the
oscilloscope.

2 Cut-and-paste the code that follows into a file named "example.py".

3 Edit the program to use the address of your oscilloscope.

4 If the IronPython "ipy.exe" can be found via your PATH environment variable,
open a Command Prompt window; then, change to the folder that contains the
"example.py" file, and enter:

ipy example.py

http://ironpython.codeplex.com/

1410 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

#
Keysight SCPI.NET Example in IronPython

This program illustrates a few commonly used programming
features of your Keysight oscilloscope.

Import Python modules.

import sys
sys.path.append("C:\Python26\Lib") # Python Standard Library.
sys.path.append("C:\ProgramData\Keysight\Command Expert\ScpiNetDrivers")
import string

Import .NET modules.

from System import *
from System.IO import *
from System.Text import *
from System.Runtime.InteropServices import *
import clr
clr.AddReference("Ag9000A_3_10")
from Keysight.CommandExpert.ScpiNet.Ag9000A_3_10 import *

===
Initialize:
===
def initialize():

Get and display the device's *IDN? string.
idn_string = scope.SCPI.IDN.Query()
print "Identification string '%s'" % idn_string

Clear status and load the default setup.
scope.SCPI.CLS.Command()
scope.SCPI.RST.Command()

===
Capture:
===
def capture():

Use auto-scale to automatically set up oscilloscope.
print "Autoscale."
scope.SCPI.AUToscale.Command()

Set trigger mode.
scope.SCPI.TRIGger.MODE.Command("EDGE")
qresult = scope.SCPI.TRIGger.MODE.Query()
print "Trigger mode: %s" % qresult

Set EDGE trigger parameters.
scope.SCPI.TRIGger.EDGE.SOURce.Command("CHANnel1")
qresult = scope.SCPI.TRIGger.EDGE.SOURce.Query()
print "Trigger edge source: %s" % qresult

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1411

scope.SCPI.TRIGger.LEVel.Command("CHANnel1", -0.002)
qresult = scope.SCPI.TRIGger.LEVel.Query("CHANnel1")
print "Trigger edge level: %s" % qresult

scope.SCPI.TRIGger.EDGE.SLOPe.Command("POSitive")
qresult = scope.SCPI.TRIGger.EDGE.SLOPe.Query()
print "Trigger edge slope: %s" % qresult

Save oscilloscope setup.
setup_lines = scope.SCPI.SYSTem.SETup.Query()
nLength = len(setup_lines)
File.WriteAllLines("setup.stp", setup_lines)
print "Setup lines saved: %d" % nLength

Change oscilloscope settings with individual commands:

Set vertical scale and offset.
scope.SCPI.CHANnel.SCALe.Command(1, 0.05)
qresult = scope.SCPI.CHANnel.SCALe.Query(1)
print "Channel 1 vertical scale: %f" % qresult

scope.SCPI.CHANnel.OFFSet.Command(1, -1.5)
qresult = scope.SCPI.CHANnel.OFFSet.Query(1)
print "Channel 1 offset: %f" % qresult

Set horizontal scale and offset.
scope.SCPI.TIMebase.SCALe.Command(0.0002)
qresult = scope.SCPI.TIMebase.SCALe.Query()
print "Timebase scale: %f" % qresult

scope.SCPI.TIMebase.POSition.Command(0.0)
qresult = scope.SCPI.TIMebase.POSition.Query()
print "Timebase position: %f" % qresult

Set the acquisition mode.
scope.SCPI.ACQuire.MODE.Command("RTIMe")
qresult = scope.SCPI.ACQuire.MODE.Query()
print "Acquire mode: %s" % qresult

Or, set up oscilloscope by loading a previously saved setup.
setup_lines = File.ReadAllLines("setup.stp")
scope.SCPI.SYSTem.SETup.Command(setup_lines)
print "Setup lines restored: %d" % len(setup_lines)

Set the desired number of waveform points,
and capture an acquisition.
scope.SCPI.ACQuire.POINts.ANALog.Command(32000)
scope.SCPI.DIGitize.Command(None)

===
Analyze:
===
def analyze():

Make measurements.

1412 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

--
scope.SCPI.MEASure.SOURce.Command("CHANnel1", None)
source_list = scope.SCPI.MEASure.SOURce.Query()
print "Measure source: %s" % source_list[0]

scope.SCPI.MEASure.FREQuency.Command("CHANnel1", None)
qresult = scope.SCPI.MEASure.FREQuency.QuerySendValidOff("CHANnel1", No
ne)
print "Measured frequency on channel 1: %f" % qresult

Use direct command/query when commands not in command set.
scope.Transport.Command.Invoke(":MEASure:VAMPlitude CHANnel1")
qresult = scope.Transport.Query.Invoke(":MEASure:VAMPlitude? CHANnel1")
print "Measured vertical amplitude on channel 1: %s" % qresult

Download the screen image.
--
image_bytes = scope.SCPI.DISPlay.DATA.Query("PNG", None, None, None)
nLength = len(image_bytes)
fStream = File.Open("screen_image.png", FileMode.Create)
fStream.Write(image_bytes, 0, nLength)
fStream.Close()
print "Screen image written to screen_image.png."

Download waveform data.
--

Get the waveform points mode.
qresult = scope.SCPI.WAVeform.TYPE.Query()
print "Waveform points mode: %s" % qresult

Get the number of waveform points.
qresult = scope.SCPI.WAVeform.POINts.Query()
print "Waveform points: %s" % qresult

Set the waveform source.
scope.SCPI.WAVeform.SOURce.Command("CHANnel1")
qresult = scope.SCPI.WAVeform.SOURce.Query()
print "Waveform source: %s" % qresult

Choose the format of the data returned:
scope.SCPI.WAVeform.FORMat.Command("WORD")
qresult = scope.SCPI.WAVeform.FORMat.Query()
print "Waveform format: %s" % qresult

scope.SCPI.WAVeform.BYTeorder.Command("LSBFirst")
qresult = scope.SCPI.WAVeform.BYTeorder.Query()
print "Waveform byte order: %s" % qresult

Display the waveform settings from preamble:
wav_form_dict = {
0 : "ASCii",
1 : "BYTE",
2 : "WORD",
3 : "LONG",
4 : "LONGLONG",
}

Sample Programs 38

Keysight Infiniium Oscilloscopes Programmer's Guide 1413

acq_type_dict = {
1 : "RAW",
2 : "AVERage",
3 : "VHIStogram",
4 : "HHIStogram",
6 : "INTerpolate",
10 : "PDETect",
}
acq_mode_dict = {
0 : "RTIMe",
1 : "ETIMe",
3 : "PDETect",
}
coupling_dict = {
0 : "AC",
1 : "DC",
2 : "DCFIFTY",
3 : "LFREJECT",
}
units_dict = {
0 : "UNKNOWN",
1 : "VOLT",
2 : "SECOND",
3 : "CONSTANT",
4 : "AMP",
5 : "DECIBEL",
}

preamble_string = scope.SCPI.WAVeform.PREamble.Query()
(
wav_form, acq_type, wfmpts, avgcnt, x_increment, x_origin,
x_reference, y_increment, y_origin, y_reference, coupling,
x_display_range, x_display_origin, y_display_range,
y_display_origin, date, time, frame_model, acq_mode,
completion, x_units, y_units, max_bw_limit, min_bw_limit
) = string.split(preamble_string, ",")

print "Waveform format: %s" % wav_form_dict[int(wav_form)]
print "Acquire type: %s" % acq_type_dict[int(acq_type)]
print "Waveform points desired: %s" % wfmpts
print "Waveform average count: %s" % avgcnt
print "Waveform X increment: %s" % x_increment
print "Waveform X origin: %s" % x_origin
print "Waveform X reference: %s" % x_reference # Always 0.
print "Waveform Y increment: %s" % y_increment
print "Waveform Y origin: %s" % y_origin
print "Waveform Y reference: %s" % y_reference # Always 0.
print "Coupling: %s" % coupling_dict[int(coupling)]
print "Waveform X display range: %s" % x_display_range
print "Waveform X display origin: %s" % x_display_origin
print "Waveform Y display range: %s" % y_display_range
print "Waveform Y display origin: %s" % y_display_origin
print "Date: %s" % date
print "Time: %s" % time
print "Frame model #: %s" % frame_model
print "Acquire mode: %s" % acq_mode_dict[int(acq_mode)]
print "Completion pct: %s" % completion

1414 Keysight Infiniium Oscilloscopes Programmer's Guide

38 Sample Programs

print "Waveform X units: %s" % units_dict[int(x_units)]
print "Waveform Y units: %s" % units_dict[int(y_units)]
print "Max BW limit: %s" % max_bw_limit
print "Min BW limit: %s" % min_bw_limit

Get numeric values for later calculations.
x_increment = scope.SCPI.WAVeform.XINCrement.Query()
x_origin = scope.SCPI.WAVeform.XORigin.Query()
y_increment = scope.SCPI.WAVeform.YINCrement.Query()
y_origin = scope.SCPI.WAVeform.YORigin.Query()

Get the waveform data.
scope.SCPI.WAVeform.STReaming.Command(False)
data_words = scope.SCPI.WAVeform.DATA.QueryWord(None, None)
nLength = len(data_words)
print "Number of data values: %d" % nLength

Open file for output.
strPath = "waveform_data.csv"
writer = File.CreateText(strPath)

Output waveform data in CSV format.
for i in xrange(0, nLength - 1):
time_val = x_origin + i * x_increment
voltage = data_words[i] * y_increment + y_origin
writer.WriteLine("%E, %f" % (time_val, voltage))

Close output file.
writer.Close()
print "Waveform format WORD data written to %s." % strPath

===
Main program:
===
#addr = "keysight-d9c8a49.cos.is.keysight.com"
addr = "TCPIP0::keysight-d9c8a49.cos.is.keysight.com::inst0::INSTR"
scope = Ag9000A(addr)
scope.Transport.DefaultTimeout.Set(10000)

Initialize the oscilloscope, capture data, and analyze.
initialize()
capture()
analyze()

print "End of program."

Wait for a key press before exiting.
print "Press any key to exit..."
Console.ReadKey(True)

1415

Keysight Infiniium Oscilloscopes
Programmer's Guide

39 Reference

HDF5 Example / 1416
CSV and TSV Header Format / 1417
BIN Header Format / 1419

1416 Keysight Infiniium Oscilloscopes Programmer's Guide

39 Reference

HDF5 Example

Here is an example of a captured HDF5 file.

Channel 1(6576)
Group Size = 1
Number of Attributes = 17
Waveform Type = 1
Start = 1
NumPoints = 1000000
NumSegments = 0
Count = 1
XDispRange = 1.0E-6
XDispOrigin = -5.0E-7
XInc = 5.0E-11
XOrg = -2.4999999E-5
XUnits = Second
YDispRange = 8.0
YDispOrigin = 0.0
YInc = 1.327218738E-4
YOrg = 0.11645629362732
YUnits = Volt
MinBandwidth = 0.0
MaxBandwidth = 6.0E9

Reference 39

Keysight Infiniium Oscilloscopes Programmer's Guide 1417

CSV and TSV Header Format

Revision Always 0 (zero).

Type How the waveform was acquired: normal, raw, interpolate, average, or versus.
When this field is read back into the scope, all modes, except versus, are
converted to raw. The default value is raw.

Start Starting point in the waveform of the first data point in the file. This is usually zero.

Points The number of points in the waveform record. The number of points is set by the
Memory Depth control. The default value is 1.

Count or
Segments

For count, it is the number of hits at each time bucket in the waveform record
when the waveform was created using an acquisition mode like averaging. For
example, when averaging, a count of four would mean every waveform data point
in the waveform record has been averaged at least four times. Count is ignored
when it is read back into the scope. The default value is 0.

Segments is used instead of Count when the data is acquired using the
Segmented acquisition mode. This number is the total number of segments that
were acquired.

XDispRange The number of X display range columns (n) depends on the number of sources
being stored. The X display range is the X-axis duration of the waveform that is
displayed. For time domain waveforms, it is the duration of time across the display.
If the value is zero then no data has been acquired.

XDispOrg The number of X display origin columns (n) depends on the number of sources
being stored. The X display origin is the X-axis value at the left edge of the display.
For time domain waveforms, it is the time at the start of the display. This value is
treated as a double precision 64-bit floating point number. If the value is zero then
no data has been acquired.

XInc The number of X increment columns (n) depends on the number of sources being
store. The X increment is the duration between data points on the X axis. For time
domain waveforms, this is the time between points. If the value is zero then no
data has been acquired.

XOrg The number of X origin columns (n) depends on the number of sources being store.
The X origin is the X-axis value of the first data point in the data record. For time
domain waveforms, it is the time of the first point. This value is treated as a double
precision 64-bit floating point number. If the value is zero then no data has been
acquired.

XUnits The number of X units columns (n) depends on the number of sources being store.
The X units is the unit of measure for each time value of the acquired data.

1418 Keysight Infiniium Oscilloscopes Programmer's Guide

39 Reference

YDispRange The number of Y display range columns (n) depends on the number of sources
being store. The Y display range is the Y-axis duration of the waveform which is
displayed. For voltage waveforms, it is the amount of voltage across the display. If
the value is zero then no data has been acquired.

YDispOrg The number of Y display origin columns (n) depends on the number of sources
being store. The Y-display origin is the Y-axis value at the center of the display. For
voltage waveforms, it is the voltage at the center of the display. If the value is zero
then no data has been acquired.

YInc The number of Y increment columns (n) depends on the number of sources being
store. The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level. If the value is zero then no
data has been acquired.

YOrg The number of Y origin columns (n) depends on the number of sources being store.
The Y origin is the Y-axis value at level zero. For voltage waveforms, it is the
voltage at level zero. If the value is zero then no data has been acquired.

YUnits The number of Y units columns (n) depends on the number of sources being
stored. The Y units is the unit of measure of each voltage value of the acquired
waveform.

Frame A string containing the model number and serial number of the scope in the
format of MODEL#:SERIAL#.

Date The date when the waveform was acquired. The default value is 27 DEC 1996.

Time The time when the waveform was acquired. The default value is 01:00:00:00.

Max bandwidth An estimation of the maximum bandwidth of the waveform. The default value is 0.

Min bandwidth An estimation of the minimum bandwidth of the waveform. The default value is 0.

Time Tags The Time Tags only occur when the data was acquired using the Segmented
acquisition mode with time tags enabled and the file format is YValues. The
number of columns depends on the number of Segments being saved.

Data The data values follow this header entry.

Reference 39

Keysight Infiniium Oscilloscopes Programmer's Guide 1419

BIN Header Format

• "File Header" on page 1419

• "Waveform Header" on page 1419

• "Waveform Data Header" on page 1421

• "Example Program for Reading Binary Data" on page 1421

File Header

There is only one file header in a binary file. The file header consists of the
following information.

Cookie Two byte characters, AG, which indicates that the file is in the Keysight Binary
Data file format.

Version Two bytes which represent the file version.

File Size An integer (4 byte signed) which is the number of bytes that are in the file.

Number of
Waveforms

An integer (4 byte signed) which is the number of waveforms that are stored in the
file.

Waveform Header

The waveform header contains information about the type of waveform data that is
stored following the waveform data header which is located after each waveform
header. Because it is possible to store more than one waveform in the file, there
will be a waveform header and a waveform data header for each waveform.

Header Size An integer (4 byte signed) which is the number of bytes in the header.

Waveform Type An integer (4 byte signed) which is the type of waveform that is stored in the file.
The follow shows what each value means.

0 = Unknown

1 = Normal

2 = Peak Detect

3 = Average

4 = Horizontal Histogram

5 = Vertical Histogram

6 = Logic

Number of
Waveform Buffers

An integer (4 byte signed) which is the number of waveform buffers required to
read the data. This value is one except for peak detect data and digital data.

1420 Keysight Infiniium Oscilloscopes Programmer's Guide

39 Reference

Count An integer (4 byte signed) which is the number of hits at each time bucket in the
waveform record when the waveform was created using an acquisition mode like
averaging. For example, when averaging, a count of four would mean every
waveform data point in the waveform record has been averaged at least four
times. The default value is 0.

X Display Range A float (4 bytes) which is the X-axis duration of the waveform that is displayed. For
time domain waveforms, it is the duration of time across the display. If the value is
zero then no data has been acquired.

X Display Origin A double (8 bytes) which is the X-axis value at the left edge of the display. For time
domain waveforms, it is the time at the start of the display. This value is treated as
a double precision 64-bit floating point number. If the value is zero then no data
has been acquired.

X Increment A double (8 bytes) which is the duration between data points on the X axis. For
time domain waveforms, this is the time between points. If the value is zero then
no data has been acquired.

X Origin A double (8 bytes) which is the X-axis value of the first data point in the data
record. For time domain waveforms, it is the time of the first point. This value is
treated as a double precision 64-bit floating point number. If the value is zero then
no data has been acquired.

X Units An integer (4 byte signed) which is the number of X units columns (n) depends on
the number of sources being stored. The X units is the unit of measure for each
time value of the acquired data. X unit definitions are:

0 = Unkown

1 = Volt

2 = Second

3 = Constant

4 = Amp

5 = Decibel

Y Units An integer (4 byte signed) which is the number of Y units columns (n) depends on
the number of sources being stored. The Y units is the unit of measure of each
voltage value of the acquired waveform. Y units definitions are:

0 = Unkown

1 = Volt

2 = Second

3 = Constant

4 = Amp

5 = Decibel

Reference 39

Keysight Infiniium Oscilloscopes Programmer's Guide 1421

Date A 16 character array which is the date when the waveform was acquired. The
default value is 27 DEC 1996.

Time A 16 character array which is the time when the waveform was acquired. The
default value is 01:00:00:00.

Frame A 24 character array which is the model number and serial number of the scope in
the format of MODEL#:SERIAL#.

Waveform Label A 16 character array which is the waveform label.

Time Tags A double (8 bytes) which is the time tag value of the segment being saved.

Segment Index An unsigned integer (4 byte signed) which is the segment index of the data that
follows the waveform data header.

Waveform Data Header

The waveform data header consists of information about the waveform data points
that are stored immediately after the waveform data header.

Waveform Data
Header Size

An integer (4 byte signed) which is the size of the waveform data header.

Buffer Type A short (2 byte signed) which is the type of waveform data that is stored in the file.
The following shows what each value means.

0 = Unknown data

1 = Normal 32 bit float data

2 = Maximum float data

3 = Minimum float data

4 = Time float data

5 = Counts 32 bit float data

6 = Digital unsigned 8 bit char data

Bytes Per Point A short (2 byte signed) which is the number of bytes per data point.

Buffer Size An integer (4 byte signed) which is the size of the buffer required to hold the data
bytes.

Example Program for Reading Binary Data

The following is a programming example of reading a Binary Data (.bin) file and
converting it to a CSV (.csv) file without a file header.

/* bintoascii.c */

/* Reads the binary file format.
This program demonstrates how to import the Infiniium

1422 Keysight Infiniium Oscilloscopes Programmer's Guide

39 Reference

oscilloscope binary file format and how to export it to an
ascii comma separated file format.

*/
#pragma pack(4)

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include "sicl.h"

/* Defines */
#define MAX_LENGTH 10000000
#define INTERFACE "lan[130.29.70.247]:inst0" /* Change the IP address

* to the one found in
* the Remote Setup
* dialog box.
*/

#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

/* Type definitions */
typedef unsigned _int64 UINT64; /* This defines a 64-bit unsigned

* integer for Microsoft platforms.
*/

/* Structure and Union definitions */
union DATATYPE
{

char buffer[MAX_LENGTH]; /* Buffer for reading word format data */
char byte[MAX_LENGTH];
unsigned short word[MAX_LENGTH/2];
UINT64 longlong[MAX_LENGTH/4];

};

typedef struct
{

char Cookie[2];
char Version[2];
int FileSize;
int NumberOfWaveforms;

} FileHeader;

const char COOKIE[2] = {'A', 'G'};
const char VERSION[2] = {'1', '0'};

#define DATE_TIME_STRING_LENGTH 16
#define FRAME_STRING_LENGTH 24
#define SIGNAL_STRING_LENGTH 16

typedef struct
{

int HeaderSize;
int WaveformType;
int NWaveformBuffers;
int Points;

Reference 39

Keysight Infiniium Oscilloscopes Programmer's Guide 1423

int Count;
float XDisplayRange;
double XDisplayOrigin;
double XIncrement;
double XOrigin;
int XUnits;
int YUnits;
char Date[DATE_TIME_STRING_LENGTH];
char Time[DATE_TIME_STRING_LENGTH];
char Frame[FRAME_STRING_LENGTH];
char WaveformLabel[SIGNAL_STRING_LENGTH];
double TimeTag;
unsigned int SegmentIndex;

} WaveformHeader;

typedef struct
{

int HeaderSize;
short BufferType;
short BytesPerPoint;
int BufferSize;

} WaveformDataHeader;

typedef enum
{

PB_UNKNOWN,
PB_NORMAL,
PB_PEAK_DETECT,
PB_AVERAGE,
PB_HORZ_HISTOGRAM,
PB_VERT_HISTOGRAM,
PB_LOGIC

} WaveformType;

typedef enum
{

PB_DATA_UNKNOWN,
PB_DATA_NORMAL,
PB_DATA_MAX,
PB_DATA_MIN,
PB_DATA_TIME,
PB_DATA_COUNTS,
PB_DATA_LOGIC

} DataType;

/* Prototypes */
void GetTimeConversionFactors(WaveformHeader waveformHeader,

double *xInc, double *xOrg);
void OutputNormalWaveform(WaveformHeader waveformHeader);
void OutputPeakDetectWaveform(WaveformHeader waveformHeader);
void OutputHistogramWaveform(WaveformHeader waveformHeader);
void OutputData(FILE *PeakFile,

WaveformDataHeader waveformDataHeader);

/* Globals */
double xOrg=0L, xInc=0L; /* Values necessary to create time data */
union DATATYPE WaveFormData; /* Used to input and output data */

1424 Keysight Infiniium Oscilloscopes Programmer's Guide

39 Reference

FILE *InputFile = NULL;
FILE *OutputFile;
errno_t err;
char *buffer;
float Volts[MAX_LENGTH];
float MaxVolts[MAX_LENGTH];
float MinVolts[MAX_LENGTH];
UINT64 HistogramData[MAX_LENGTH];

int main(int argc, char **argv)
{

FileHeader fileHeader;
WaveformHeader waveformHeader;

if(argc > 1)
{

InputFile = fopen(argv[1], "rb");

if(InputFile)
{

OutputFile = fopen(argv[2], "wb");

if(OutputFile)
{

/* Read the File Header */
fread(&fileHeader, 1, sizeof(FileHeader), InputFile);

/* Make sure that this is a Keysight Binary File */
if((fileHeader.Cookie[0] == COOKIE[0]) &&

(fileHeader.Cookie[1] == COOKIE[1]))
{

fread(&waveformHeader, 1,
sizeof(WaveformHeader), InputFile);

switch(waveformHeader.WaveformType)
{

case PB_NORMAL:
case PB_AVERAGE:

OutputNormalWaveform(waveformHeader);
break;

case PB_PEAK_DETECT:
OutputPeakDetectWaveform(waveformHeader);
break;

case PB_HORZ_HISTOGRAM:
case PB_VERT_HISTOGRAM:

OutputHistogramWaveform(waveformHeader);
break;

default:
case PB_UNKNOWN:

printf("Unknown waveform type: %d\n");
break;

}
}

}
else
{

printf("Unable to open output file %s\n", OutputFile);

Reference 39

Keysight Infiniium Oscilloscopes Programmer's Guide 1425

}
}
else
{

printf("Unable to open input file %s\n", argv[1]);
}

fclose(InputFile);
fclose(OutputFile);

}
else
{

printf("Usage: bintoascii inputfile outputfile\n");
}

}

/***
* Function name: GetTimeConversionFactors
* Parameters: double xInc which is the time between consecutive
* sample points.
* double xOrg which is the time value of the first
* data point.
* Return value: none
* Description: This routine transfers the waveform conversion
* factors for the time values.
***/
void GetTimeConversionFactors(WaveformHeader waveformHeader,

double *xInc, double *xOrg)
{

/* Read values which are used to create time values */

*xInc = waveformHeader.XIncrement;
*xOrg = waveformHeader.XOrigin;

}

/***
* Function name: OutputNormalWaveform
* Parameters: WaveformHeader *waveformHeader which is a structure
* that contains the waveform header information.
* Return value: none
* Description: This routine stores the time and voltage information
* about the waveform as time and voltage separated by
* commas to a file.
**/
void OutputNormalWaveform(WaveformHeader waveformHeader)
{

WaveformDataHeader waveformDataHeader;
int done = FALSE;
unsigned long i;
unsigned long j = 0;
size_t BytesRead = 0L;
double Time;

BytesRead = fread(&waveformDataHeader, 1,

1426 Keysight Infiniium Oscilloscopes Programmer's Guide

39 Reference

sizeof(WaveformDataHeader), InputFile);
GetTimeConversionFactors(waveformHeader, &xInc, &xOrg);
while(!done)
{

BytesRead = fread((char *) Volts, 1, MAX_LENGTH, InputFile);
for(i = 0; i < (BytesRead/waveformDataHeader.BytesPerPoint); i++)
{

Time = (j * xInc) + xOrg; /* calculate time */
j = j + 1;
fprintf(OutputFile, "%e,%f\n", Time, Volts[i]);

}
if(BytesRead < MAX_LENGTH)
{

done = TRUE;
}

}
}

/***
* Function name: OutputHistogramWaveform
* Parameters: WaveformHeader *waveformHeader which is a structure
* that contains the waveform header information.
* Return value: none
* Description: This routine stores the time and hits information
* as time and hits separated by commas to a file.
**/
void OutputHistogramWaveform(WaveformHeader waveformHeader)
{

WaveformDataHeader waveformDataHeader;
int done = FALSE;
unsigned long i;
unsigned long j = 0;
size_t BytesRead = 0L;

fread(&waveformDataHeader, 1,
sizeof(WaveformDataHeader), InputFile);

GetTimeConversionFactors(waveformHeader, &xInc, &xOrg);
while(!done)
{

BytesRead = fread((char *) HistogramData, 1, MAX_LENGTH,
InputFile);

for(i = 0; i < (BytesRead/waveformDataHeader.BytesPerPoint); i++)
{

fprintf(OutputFile, "%d,%u64l\n", j, HistogramData[i]);
j = j + 1;

}
if(BytesRead < MAX_LENGTH)
{

done = TRUE;
}

}
}

/***
* Function name: OutputData
* Parameters: FILE *PeakFile which is the pointer to the file

Reference 39

Keysight Infiniium Oscilloscopes Programmer's Guide 1427

* to be written.
* WaveformDataHeader waveformDataHeader
* which is a structure that contains the waveform
* header information.
* Return value: none
* Description: This routine stores the time, minimum voltage, and
* maximum voltage for the peak detect waveform as comma
* separated values to a file.
**/
void OutputData(FILE *PeakFile, WaveformDataHeader waveformDataHeader)
{

int done = FALSE;
size_t BytesRead = 0L;
int NumberToRead;

NumberToRead = waveformDataHeader.BufferSize;

while(!done)
{

BytesRead = fread((char *) Volts, 1, NumberToRead, InputFile) +
BytesRead;

fwrite(Volts, 1, BytesRead, PeakFile);

if(BytesRead <= NumberToRead)
{

done = TRUE;
}

}
}

/***
* Function name: OutputPeakDetectWaveform
* Parameters: WaveformHeader waveformHeader which is a
* structure that contains the waveform header
* information.
* Return value: none
* Description: This routine stores the time, minimum voltage, and
* maximum voltage for the peak detect waveform as comma
* separated values to a file.
**/
void OutputPeakDetectWaveform(WaveformHeader waveformHeader)
{

WaveformDataHeader waveformDataHeader;
int done = FALSE;
unsigned long i;
unsigned long j = 0;
size_t BytesRead = 0L;
double Time;
FILE *MaxFile;
FILE *MinFile;

fread(&waveformDataHeader, 1,
sizeof(WaveformDataHeader), InputFile);

GetTimeConversionFactors(waveformHeader, &xInc, &xOrg);

MaxFile = fopen("maxdata.bin", "wb");

1428 Keysight Infiniium Oscilloscopes Programmer's Guide

39 Reference

MinFile = fopen("mindata.bin", "wb");

if(MaxFile && MinFile)
{

if(waveformDataHeader.BufferType == PB_DATA_MAX)
{

OutputData(MaxFile, waveformDataHeader);
OutputData(MinFile, waveformDataHeader);

}
else
{

OutputData(MinFile, waveformDataHeader);
OutputData(MaxFile, waveformDataHeader);

}

fclose(MaxFile);
fclose(MinFile);

MaxFile = fopen("maxdata.bin", "rb");
MinFile = fopen("mindata.bin", "rb");

while(!done)
{

BytesRead = fread((char *) MaxVolts, 1, MAX_LENGTH, MaxFile);
fread((char *) MinVolts, 1, MAX_LENGTH, MinFile);

for(i = 0; i < BytesRead/4; i++)
{

Time = (j * xInc) + xOrg; /* calculate time */
j = j + 1;
fprintf(OutputFile, "%9.5e,%f,%f\n", Time, MinVolts[i],

MaxVolts[i]);
}

if(BytesRead < MAX_LENGTH)
{

done = TRUE;
}

}

fclose(MaxFile);
fclose(MinFile);

}
}

Keysight Infiniium Oscilloscopes Programmer's Guide 1429

Index

Symbols

:ACQuire:AVERage command/query, 162
:ACQuire:AVERage:COUNt

command/query, 163
:ACQuire:BANDwidth,

command/query, 165
:ACQuire:BANDwidth:FRAMe? query, 167
:ACQuire:COMPlete command/query, 168
:ACQuire:COMPlete:STATe

command/query, 170
:ACQuire:HRESolution

command/query, 171
:ACQuire:INTerpolate command/query, 172
:ACQuire:MODE command/query, 173
:ACQuire:POINts:ANALog

command/query, 175
:ACQuire:POINts:AUTO

command/query, 177
:ACQuire:POINts:DIGital? query, 178
:ACQuire:REDGe command/query, 180
:ACQuire:RESPonse command/query, 182
:ACQuire:SEGMented:COUNt

command/query, 183
:ACQuire:SEGMented:INDex

command/query, 184
:ACQuire:SEGMented:TTAGs

command/query, 185
:ACQuire:SRATe:ANALog

command/query, 186
:ACQuire:SRATe:ANALog:AUTO

command/query, 187
:ACQuire:SRATe:DIGital

command/query, 188
:ACQuire:SRATe:DIGital:AUTO

command/query, 189
:ADER? query, 807
:AER? query, 808
:ASTate? query, 809
:ATER? query, 810
:AUToscale command, 811
:AUToscale:CHANnels command, 812
:AUToscale:PLACement

command/query, 813
:AUToscale:VERTical command, 814
:BEEP command, 815
:BLANk command, 816
:BUS:B<N>:TYPE command/query, 192
:BUS<N>:BIT<M> command/query, 193
:BUS<N>:BITS command/query, 194
:BUS<N>:CLEar command/query, 195
:BUS<N>:CLOCk command/query, 196

:BUS<N>:CLOCk:SLOPe
command/query, 197

:BUS<N>:DISPlay command/query, 198
:BUS<N>:LABel command/query, 199
:BUS<N>:READout command/query, 200
:CALibrate:DATE? query, 203
:CALibrate:OUTPut command/query, 204
:CALibrate:SKEW command/query, 205
:CALibrate:STATus? query, 206
:CALibrate:TEMP? query, 207
:CDISplay command, 817
:CHANnel<N>:BWLimit

command/query, 212
:CHANnel<N>:COMMonmode

command/query, 213
:CHANnel<N>:DIFFerential

command/query, 214
:CHANnel<N>:DIFFerential:SKEW

command/query, 215
:CHANnel<N>:DISPlay

command/query, 216
:CHANnel<N>:DISPlay:AUTO

command/query, 217
:CHANnel<N>:DISPlay:OFFSet

command/query, 218
:CHANnel<N>:DISPlay:RANGe

command/query, 219
:CHANnel<N>:DISPlay:SCALe

command/query, 220
:CHANnel<N>:INPut command/query, 221
:CHANnel<N>:ISIM:APPLy

command/query, 222
:CHANnel<N>:ISIM:BANDwidth

command/query, 223
:CHANnel<N>:ISIM:BWLimit

command/query, 224
:CHANnel<N>:ISIM:CONVolve

command/query, 225
:CHANnel<N>:ISIM:CORRection

command/query, 226
:CHANnel<N>:ISIM:DEConvolve

command/query, 228
:CHANnel<N>:ISIM:DELay

command/query, 229
:CHANnel<N>:ISIM:NORMalize

command/query, 230
:CHANnel<N>:ISIM:PEXTraction

command/query, 231
:CHANnel<N>:ISIM:SPAN

command/query, 233
:CHANnel<N>:ISIM:STATe

command/query, 234
:CHANnel<N>:LABel command/query, 235

:CHANnel<N>:OFFSet
command/query, 236

:CHANnel<N>:PROBe
command/query, 237

:CHANnel<N>:PROBe:ACCAL
command/query, 238

:CHANnel<N>:PROBe:ATTenuation
command/query, 239

:CHANnel<N>:PROBe:AUTozero
command/query, 240

:CHANnel<N>:PROBe:COUPling
command/query, 241

:CHANnel<N>:PROBe:EADapter
command/query, 242

:CHANnel<N>:PROBe:ECOupling
command/query, 244

:CHANnel<N>:PROBe:EXTernal
command/query, 245

:CHANnel<N>:PROBe:EXTernal:GAIN
command/query, 246

:CHANnel<N>:PROBe:EXTernal:OFFSet
command/query, 247

:CHANnel<N>:PROBe:EXTernal:UNITs
command/query, 248

:CHANnel<N>:PROBe:GAIN
command/query, 249

:CHANnel<N>:PROBe:HEAD:ADD
command, 250

:CHANnel<N>:PROBe:HEAD:DELete
command, 251

:CHANnel<N>:PROBe:HEAD:SELect
command/query, 252

:CHANnel<N>:PROBe:HEAD:VTERm
command/query, 254

:CHANnel<N>:PROBe:ID? query, 255
:CHANnel<N>:PROBe:MODE

command/query, 256
:CHANnel<N>:PROBe:PRECprobe:BANDwidt

h command, 257
:CHANnel<N>:PROBe:PRECprobe:CALibratio

n command, 258
:CHANnel<N>:PROBe:PRECprobe:DELay

command, 259
:CHANnel<N>:PROBe:PRECprobe:MODE

command, 260
:CHANnel<N>:PROBe:PRECprobe:ZSRC

command, 261
:CHANnel<N>:PROBe:SKEW

command/query, 263
:CHANnel<N>:PROBe:STYPe

command/query, 264
:CHANnel<N>:RANGe

command/query, 265

1430 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

:CHANnel<N>:SCALe command/query, 266
:CHANnel<N>:UNITs command/query, 267
:DIGital<N>:DISPlay command/query, 294
:DIGital<N>:LABel command/query, 295
:DIGital<N>:SIZE command/query, 296
:DIGital<N>:THReshold

command/query, 297
:DIGitize command, 818
:DISable DIGital command, 820
:DISK:CDIRectory command, 300
:DISK:COPY command, 301
:DISK:DELete command, 302
:DISK:DIRectory? query, 303
:DISK:LOAD command, 304
:DISK:MDIRectory command, 305
:DISK:PWD? query, 306
:DISK:SAVE:COMPosite command, 307
:DISK:SAVE:IMAGe command, 308
:DISK:SAVE:JITTer command, 309
:DISK:SAVE:LISTing command, 310
:DISK:SAVE:MEASurements command, 311
:DISK:SAVE:PRECprobe command, 312
:DISK:SAVE:SETup command, 313
:DISK:SAVE:WAVeform command, 314
:DISK:SEGMented command/query, 316
:DISK:STORe command, 1264
:DISPlay: ROW command query, 1267
:DISPlay:BOOKmark<N>:DELete

command, 318
:DISPlay:BOOKmark<N>:SET

command, 319
:DISPlay:BOOKmark<N>:VERTical?

query, 321
:DISPlay:BOOKmark<N>:XPOSition

command/query, 322
:DISPlay:BOOKmark<N>:YPOSition

command/query, 323
:DISPlay:CGRade command/query, 324
:DISPlay:CGRade:LEVels? query, 326
:DISPlay:CGRade:SCHeme

command/query, 328
:DISPlay:COLumn command/query, 1265
:DISPlay:CONNect command/query, 330
:DISPlay:DATA? query, 331
:DISPlay:GRATicule command/query, 332
:DISPlay:GRATicule:AREA<N>:STATe

command/query, 333
:DISPlay:GRATicule:INTensity

command/query, 334
:DISPlay:GRATicule:NUMBer

command/query, 335
:DISPlay:GRATicule:SETGrat

command, 336
:DISPlay:GRATicule:SIZE command, 42,

1264
:DISPlay:LABel command/query, 337
:DISPlay:LAYout command/query, 338
:DISPlay:LINE command, 1266
:DISPlay:MAIN command/query, 339
:DISPlay:PERSistence

command/query, 340
:DISPlay:PROPortion command/query, 341

:DISPlay:SCOLor command/query, 342
:DISPlay:STATus:COL command query, 344
:DISPlay:STATus:ROW command

query, 345
:DISPlay:STRing command, 1268
:DISPlay:TAB command/query, 346
:DISPlay:TEXT command, 1269
:ENABle DIGital command, 821
:FUNCtion<F>:ABSolute command, 351
:FUNCtion<F>:ADD command, 352
:FUNCtion<F>:ADEMod command, 353
:FUNCtion<F>:AVERage command, 354
:FUNCtion<F>:COMMonmode

command, 355
:FUNCtion<F>:DELay command, 356
:FUNCtion<F>:DIFF command, 357
:FUNCtion<F>:DISPlay

command/query, 358
:FUNCtion<F>:DIVide command, 359
:FUNCtion<F>:FFT:FREQuency

command/query, 360
:FUNCtion<F>:FFT:REFerence

command/query, 361
:FUNCtion<F>:FFT:RESolution? query, 362
:FUNCtion<F>:FFT:TDELay

command/query, 363
:FUNCtion<F>:FFT:WINDow

command/query, 364
:FUNCtion<F>:FFTMagnitude

command, 366
:FUNCtion<F>:FFTPhase command, 367
:FUNCtion<F>:GATing command, 368
:FUNCtion<F>:HIGHpass command, 369
:FUNCtion<F>:HORizontal

command/query, 370
:FUNCtion<F>:HORizontal:POSition

command/query, 371
:FUNCtion<F>:HORizontal:RANGe

command/query, 372
:FUNCtion<F>:INTegrate command, 373
:FUNCtion<F>:INVert command, 374
:FUNCtion<F>:LOWPass command, 375
:FUNCtion<F>:MAGNify command, 376
:FUNCtion<F>:MATLab command, 377
:FUNCtion<F>:MATLab:CONTrol1

command/query, 378
:FUNCtion<F>:MATLab:CONTrol2

command/query, 379
:FUNCtion<F>:MATLab:CONTrol3

command/query, 380
:FUNCtion<F>:MATLab:OPERator

command/query, 381
:FUNCtion<F>:MAXimum command, 382
:FUNCtion<F>:MHIStogram command, 383
:FUNCtion<F>:MINimum command, 384
:FUNCtion<F>:MTRend command, 385
:FUNCtion<F>:MULTiply command, 386
:FUNCtion<F>:OFFSet

command/query, 387
:FUNCtion<F>:RANGe

command/query, 388
:FUNCtion<F>:SMOoth command, 389

:FUNCtion<F>:SQRT command, 390
:FUNCtion<F>:SQUare command, 391
:FUNCtion<F>:SUBTract command, 392
:FUNCtion<F>:VERSus command, 393
:FUNCtion<F>:VERTical

command/query, 394
:FUNCtion<F>:VERTical:OFFSet

command/query, 395
:FUNCtion<F>:VERTical:RANGe

command/query, 396
:FUNCtion<F>? query, 350
:HARDcopy:AREA command/query, 398
:HARDcopy:DPRinter command/query, 399
:HARDcopy:FACTors command/query, 400
:HARDcopy:IMAGe command/query, 401
:HARDcopy:PRINters? query, 402
:HISTogram:AXIS command/query, 405
:HISTogram:HORizontal:BINS

command/query, 406
:HISTogram:MEASurement:BINS

command/query, 407
:HISTogram:MODE command/query, 408
:HISTogram:SCALe:SIZE

command/query, 409
:HISTogram:VERTical:BINS

command/query, 410
:HISTogram:WINDow:BLIMit

command/query, 415
:HISTogram:WINDow:DEFault

command, 411
:HISTogram:WINDow:LLIMit

command/query, 413
:HISTogram:WINDow:RLIMit

command/query, 414
:HISTogram:WINDow:SOURce

command/query, 412
:HISTogram:WINDow:TLIMit

command/query, 416
:ISCan:DELay command/query, 418
:ISCan:MEASurement

command/query, 421
:ISCan:MEASurement:FAIL

command/query, 419
:ISCan:MEASurement:LLIMit

command/query, 420
:ISCan:MEASurement:ULIMit

command/query, 422
:ISCan:MODE command/query, 423
:ISCan:NONMonotonic:EDGE

command/query, 424
:ISCan:NONMonotonic:HYSTeresis

command/query, 425
:ISCan:NONMonotonic:SOURce

command/query, 426
:ISCan:RUNT:HYSTeresis

command/query, 427
:ISCan:RUNT:LLEVel command/query, 428
:ISCan:RUNT:SOURce

command/query, 429
:ISCan:RUNT:ULEVel command/query, 430
:ISCan:SERial:PATTern

command/query, 431

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1431

:ISCan:SERial:SOURce
command/query, 432

:ISCan:ZONE:HIDE command/query, 433
:ISCan:ZONE:SOURce

command/query, 434
:ISCan:ZONE<N>:MODE

command/query, 435
:ISCan:ZONE<N>:PLACement

command/query, 436
:ISCan:ZONE<N>:STATe

command/query, 437
:LISTer:DATA? query, 448
:LISTer:DISPlay command/query, 449
:LTESt:FAIL command/query, 440
:LTESt:LLIMit command/query, 441
:LTESt:MEASurement command/query, 442
:LTESt:RESults? query, 443
:LTESt:TEST command/query, 444
:LTESt:ULIMit command/query, 445
:MARKer:CURSor? query, 452
:MARKer:MEASurement:MEASurement

command, 453
:MARKer:MODE command/query, 454
:MARKer:TSTArt command/query, 455
:MARKer:TSTOp command/query, 456
:MARKer:VSTArt command/query, 457
:MARKer:VSTOp command/query, 458
:MARKer:X1Position command/query, 459
:MARKer:X1Y1source command/query, 461
:MARKer:X2Position command/query, 460
:MARKer:X2Y2source command/query, 463
:MARKer:XDELta? query, 465
:MARKer:Y1Position command/query, 466
:MARKer:Y2Position command/query, 467
:MARKer:YDELta? query, 468
:MEASure:AREA command/query, 536
:MEASure:BINTerval command/query, 537
:MEASure:BPERiod command/query, 538
:MEASure:BWIDth command/query, 539
:MEASure:CDRRATE command, 540
:MEASure:CGRade:CROSsing

command/query, 541
:MEASure:CGRade:DCDistortion

command/query, 543
:MEASure:CGRade:EHEight

command/query, 545
:MEASure:CGRade:EWIDth

command/query, 547
:MEASure:CGRade:EWINdow

command/query, 549
:MEASure:CGRade:JITTer

command/query, 551
:MEASure:CGRade:QFACtor

command/query, 553
:MEASure:CHARge command/query, 556
:MEASure:CLEar command, 557
:MEASure:CLOCk command/query, 558
:MEASure:CLOCk:METHod

command/query, 559, 1271
:MEASure:CLOCk:METHod:ALIGn

command/query, 561

:MEASure:CLOCk:METHod:DEEMphasis
command/query, 563

:MEASure:CLOCk:METHod:EDGE
command/query, 564

:MEASure:CLOCk:METHod:JTF
command/query, 566

:MEASure:CLOCk:METHod:OJTF
command/query, 568

:MEASure:CLOCk:METHod:PLLTrack
command/query, 570

:MEASure:CLOCk:METHod:SOURce
command/query, 571

:MEASure:CLOCk:VERTical
command/query, 572

:MEASure:CLOCk:VERTical:OFFSet
command/query, 573

:MEASure:CLOCk:VERTical:RANGe
command/query, 574

:MEASure:CROSsing command/query, 575
:MEASure:CTCDutycycle

command/query, 576
:MEASure:CTCJitter command/query, 578
:MEASure:CTCNwidth

command/query, 580
:MEASure:CTCPwidth

command/query, 582
:MEASure:DATarate command/query, 584
:MEASure:DDPWS command/query, 46,

1273
:MEASure:DEEMphasis

command/query, 586
:MEASure:DELTatime command/query, 588
:MEASure:DELTatime:DEFine

command/query, 590
:MEASure:DUTYcycle command/query, 592
:MEASure:EDGE command/query, 594
:MEASure:ETOedge command, 596
:MEASure:FALLtime command/query, 597
:MEASure:FFT:DFRequency

command/query, 599
:MEASure:FFT:DMAGnitude

command/query, 601
:MEASure:FFT:FREQuency

command/query, 603
:MEASure:FFT:MAGNitude

command/query, 604
:MEASure:FFT:PEAK1 command/query, 605
:MEASure:FFT:PEAK2 command/query, 606
:MEASure:FFT:THReshold

command/query, 607
:MEASure:FREQuency

command/query, 608
:MEASure:HISTogram:HITS

command/query, 610
:MEASure:HISTogram:M1S

command/query, 611
:MEASure:HISTogram:M2S

command/query, 612
:MEASure:HISTogram:M3S

command/query, 613
:MEASure:HISTogram:MAX

command/query, 614

:MEASure:HISTogram:MEAN
command/query, 615

:MEASure:HISTogram:MEDian
command/query, 616

:MEASure:HISTogram:MIN
command/query, 617

:MEASure:HISTogram:MODE
command/query, 618

:MEASure:HISTogram:PEAK
command/query, 619

:MEASure:HISTogram:PP
command/query, 620

:MEASure:HISTogram:RESolution
command/query, 621

:MEASure:HISTogram:STDDev
command/query, 622

:MEASure:HOLDtime command/query, 623
:MEASure:JITTer:HISTogram

command/query, 625
:MEASure:JITTer:MEASurement

command/query, 626
:MEASure:JITTer:SPECtrum

command/query, 627
:MEASure:JITTer:SPECtrum:HORizontal

command/query, 628
:MEASure:JITTer:SPECtrum:HORizontal:POS

ition command/query, 629
:MEASure:JITTer:SPECtrum:HORizontal:RAN

Ge command/query, 630
:MEASure:JITTer:SPECtrum:VERTical

command/query, 631
:MEASure:JITTer:SPECtrum:VERTical:OFFSe

t command/query, 632
:MEASure:JITTer:SPECtrum:VERTical:RANGe

command/query, 633
:MEASure:JITTer:SPECtrum:VERTical:TYPE

command/query, 634
:MEASure:JITTer:SPECtrum:WINDow

command/query, 635
:MEASure:JITTer:STATistics

command/query, 636
:MEASure:JITTer:TRENd

command/query, 637
:MEASure:JITTer:TRENd:SMOoth

command/query, 638
:MEASure:JITTer:TRENd:SMOoth:POINts

command/query, 639
:MEASure:JITTer:TRENd:VERTical

command/query, 640
:MEASure:JITTer:TRENd:VERTical:OFFSet

command/query, 641
:MEASure:JITTer:TRENd:VERTical:RANGe

command/query, 642
:MEASure:NAME command/query, 643
:MEASure:NCJitter command/query, 644
:MEASure:NOISe command/query, 646
:MEASure:NOISe:ALL? query, 647
:MEASure:NOISe:BANDwidth

command/query, 649
:MEASure:NOISe:LOCation

command/query, 650

1432 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

:MEASure:NOISe:METHod
command/query, 651

:MEASure:NOISe:REPort
command/query, 652

:MEASure:NOISe:RN command/query, 653
:MEASure:NOISe:SCOPe:RN

command/query, 654
:MEASure:NOISe:STATe

command/query, 655
:MEASure:NOISe:UNITs

command/query, 656
:MEASure:NPERiod command/query, 657
:MEASure:NPULses command/query, 658
:MEASure:NUI command/query, 659
:MEASure:NWIDth command/query, 660
:MEASure:OVERshoot

command/query, 662
:MEASure:PAMPlitude

command/query, 664
:MEASure:PBASe command/query, 665
:MEASure:PERiod command/query, 666
:MEASure:PHASe command/query, 668
:MEASure:PPULses command/query, 670
:MEASure:PREShoot command/query, 671
:MEASure:PTOP command/query, 673
:MEASure:PWIDth command/query, 674
:MEASure:QUALifier<M>:CONDition

command/query, 676
:MEASure:QUALifier<M>:SOURce

command/query, 677
:MEASure:QUALifier<M>:STATe

command/query, 678
:MEASure:RESults? query, 679
:MEASure:RISetime command/query, 682
:MEASure:RJDJ:ALL? query, 684
:MEASure:RJDJ:APLength? query, 686
:MEASure:RJDJ:BANDwidth

command/query, 687
:MEASure:RJDJ:BER command/query, 688
:MEASure:RJDJ:CLOCk

command/query, 690
:MEASure:RJDJ:EDGE

command/query, 691
:MEASure:RJDJ:INTerpolate

command/query, 692
:MEASure:RJDJ:METHod

command/query, 693
:MEASure:RJDJ:MODe

command/query, 694
:MEASure:RJDJ:PLENgth

command/query, 695
:MEASure:RJDJ:REPort

command/query, 696
:MEASure:RJDJ:RJ command/query, 697
:MEASure:RJDJ:SCOPe:RJ

command/query, 698
:MEASure:RJDJ:SOURce

command/query, 699
:MEASure:RJDJ:STATe

command/query, 700
:MEASure:RJDJ:TJRJDJ? query, 701

:MEASure:RJDJ:UNITs
command/query, 702

:MEASure:SCRatch command, 703
:MEASure:SENDvalid command/query, 704
:MEASure:SETuptime command/query, 705
:MEASure:SLEWrate command/query, 707
:MEASure:SOURce command/query, 708
:MEASure:STATistics command/query, 709
:MEASure:TEDGe command/query, 710
:MEASure:THResholds:ABSolute

command/query, 712
:MEASure:THResholds:GENeral:ABSolute

command/query, 714
:MEASure:THResholds:GENeral:HYSTeresis

command/query, 716
:MEASure:THResholds:GENeral:METHod

command/query, 718
:MEASure:THResholds:GENeral:PERCent

command/query, 720
:MEASure:THResholds:GENeral:TOPBase:AB

Solute command/query, 722
:MEASure:THResholds:GENeral:TOPBase:ME

THod command/query, 724
:MEASure:THResholds:HYSTeresis

command/query, 726
:MEASure:THResholds:METHod

command/query, 728
:MEASure:THResholds:PERCent

command/query, 730
:MEASure:THResholds:RFALl:ABSolute

command/query, 732
:MEASure:THResholds:RFALl:HYSTeresis

command/query, 734
:MEASure:THResholds:RFALl:METHod

command/query, 736
:MEASure:THResholds:RFALl:PERCent

command/query, 738
:MEASure:THResholds:RFALl:TOPBase:ABSo

lute command/query, 740
:MEASure:THResholds:RFALl:TOPBase:MET

Hod command/query, 742
:MEASure:THResholds:SERial:ABSolute

command/query, 744
:MEASure:THResholds:SERial:HYSTeresis

command/query, 746
:MEASure:THResholds:SERial:METHod

command/query, 748
:MEASure:THResholds:SERial:PERCent

command/query, 750
:MEASure:THResholds:SERial:TOPBase:ABS

olute command/query, 752
:MEASure:THResholds:SERial:TOPBase:MET

Hod command/query, 754
:MEASure:THResholds:TOPBase:ABSolute

command/query, 756
:MEASure:THResholds:TOPBase:METHod

command/query, 758
:MEASure:TIEClock2 command/query, 759
:MEASure:TIEData command/query, 761
:MEASure:TIEFilter:SHAPe

command/query, 763

:MEASure:TIEFilter:STARt
command/query, 764

:MEASure:TIEFilter:STATe
command/query, 765

:MEASure:TIEFilter:STOP
command/query, 766

:MEASure:TIEFilter:TYPE
command/query, 767

:MEASure:TMAX command/query, 768
:MEASure:TMIN command/query, 769
:MEASure:TVOLt command/query, 770
:MEASure:UITouijitter

command/query, 772
:MEASure:UNITinterval

command/query, 773
:MEASure:VAMPlitude

command/query, 775
:MEASure:VAVerage command/query, 777
:MEASure:VBASe command/query, 779
:MEASure:VLOWer command/query, 780
:MEASure:VMAX command/query, 781
:MEASure:VMIDdle command/query, 783
:MEASure:VMIN command/query, 784
:MEASure:VOVershoot

command/query, 785
:MEASure:VPP command/query, 786
:MEASure:VPReshoot

command/query, 787
:MEASure:VRMS command/query, 788
:MEASure:VTIMe command/query, 790
:MEASure:VTOP command/query, 792
:MEASure:VUPPer command/query, 793
:MEASure:WINDow command/query, 795
:MEASurement<N>:NAME

command/query, 796
:MEASurement<N>:SOURce

command/query, 797
:MODel? query, 822
:MTEE command/query, 823
:MTER? query, 824
:MTESt:ALIGn command, 471
:MTESt:AlignFIT command/query, 472
:MTESt:AMASk:CREate command, 474
:MTESt:AMASk:SAVE command, 477
:MTESt:AMASk:SOURce

command/query, 475
:MTESt:AMASk:UNITs

command/query, 478
:MTESt:AMASk:XDELta

command/query, 479
:MTESt:AMASk:YDELta

command/query, 480
:MTESt:AUTO command/query, 481
:MTESt:AVERage command/query, 482
:MTESt:AVERage:COUNt

command/query, 483
:MTESt:COUNt:FAILures? query, 484
:MTESt:COUNt:FUI? query, 485
:MTESt:COUNt:FWAVeforms? query, 486
:MTESt:COUNt:UI? query, 487
:MTESt:COUNt:WAVeforms? query, 488
:MTESt:DELete command, 489

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1433

:MTESt:ENABle command/query, 490
:MTESt:FOLDing command/query, 492
:MTESt:FOLDing:BITS

command/query, 494
:MTESt:FOLDing:COUNt query, 496
:MTESt:FOLDing:FAST

command/query, 497
:MTESt:FOLDing:POSition

command/query, 499
:MTESt:FOLDing:SCALe

command/query, 501
:MTESt:FOLDing:TPOSition

command/query, 503
:MTESt:FOLDing:TSCale

command/query, 505
:MTESt:HAMPlitude command/query, 507
:MTESt:IMPedance command/query, 508
:MTESt:INVert command/query, 509
:MTESt:LAMPlitude command/query, 510
:MTESt:LOAD command, 511
:MTESt:NREGions? query, 512
:MTESt:PROBe:IMPedance? query, 513
:MTESt:RUMode command/query, 514
:MTESt:RUMode:SOFailure

command/query, 515
:MTESt:SCALe:BIND command/query, 516
:MTESt:SCALe:X1 command/query, 517
:MTESt:SCALe:XDELta

command/query, 518
:MTESt:SCALe:Y1 command/query, 519
:MTESt:SCALe:Y2 command/query, 520
:MTESt:SOURce command/query, 521
:MTESt:STARt command, 522
:MTESt:STIMe command/query, 524
:MTESt:STOP command, 523
:MTESt:TITLe? query, 525
:MTESt:TRIGger:SOURce

command/query, 526
:OPEE command/query, 825
:OPER? query, 826
:OVLRegister? query, 827
:PDER? query, 828
:POD<N>:DISPlay command/query, 800
:POD<N>:PSKew command/query, 801
:POD<N>:THReshold command/query, 802
:PRINt command, 829
:RECall:SETup command, 830
:RSTate? query, 831
:RUN command, 832
:SBUS<N>:CAN:SAMPlepoint

command/query, 848
:SBUS<N>:CAN:SIGNal:BAUDrate

command/query, 849
:SBUS<N>:CAN:SIGNal:DEFinition

command/query, 850
:SBUS<N>:CAN:SOURce

command/query, 851
:SBUS<N>:CAN:TRIGger

command/query, 853
:SBUS<N>:CAN:TRIGger:PATTern:DATA

command/query, 856

:SBUS<N>:CAN:TRIGger:PATTern:DATA:LEN
Gth command/query, 858

:SBUS<N>:CAN:TRIGger:PATTern:ID
command/query, 860

:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE
command/query, 862

:SBUS<N>:FLEXray:BAUDrate
command/query, 864

:SBUS<N>:FLEXray:CHANnel
command/query, 865

:SBUS<N>:FLEXray:SOURce
command/query, 866

:SBUS<N>:FLEXray:TRIGger
command/query, 867

:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE
command/query, 868

:SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase
command/query, 869

:SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepe
tition command/query, 870

:SBUS<N>:FLEXray:TRIGger:FRAMe:ID
command/query, 871

:SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE
command/query, 872

:SBUS<N>:HS:DESCramble
command/query, 874

:SBUS<N>:HS:FORMat
command/query, 875

:SBUS<N>:HS:IDLE command/query, 876
:SBUS<N>:HS:SOURce<S>

command/query, 877
:SBUS<N>:IIC:ASIZe command/query, 879
:SBUS<N>:IIC:SOURce:CLOCk

command/query, 880
:SBUS<N>:IIC:SOURce:DATA

command/query, 881
:SBUS<N>:IIC:TRIGger:PATTern:ADDRess

command/query, 883, 885
:SBUS<N>:IIC:TRIGger:TYPE

command, 887
:SBUS<N>:LIN:SAMPlepoint

command/query, 890
:SBUS<N>:LIN:SIGNal:BAUDrate

command/query, 891
:SBUS<N>:LIN:SOURce

command/query, 892
:SBUS<N>:LIN:STANdard

command/query, 893
:SBUS<N>:LIN:TRIGger

command/query, 894
:SBUS<N>:LIN:TRIGger:ID

command/query, 895
:SBUS<N>:LIN:TRIGger:PATTern:DATA

command/query, 896
:SBUS<N>:LIN:TRIGger:PATTern:DATA:LENG

th command/query, 897
:SBUS<N>:SPI:BITorder

command/query, 899
:SBUS<N>:SPI:CLOCk:SLOPe

command/query, 900
:SBUS<N>:SPI:CLOCk:TIMeout

command/query, 901

:SBUS<N>:SPI:FRAMe:STATe
command/query, 902

:SBUS<N>:SPI:SOURce:CLOCk
command/query, 903

:SBUS<N>:SPI:SOURce:DATA
command/query, 904

:SBUS<N>:SPI:SOURce:FRAMe
command/query, 905

:SBUS<N>:SPI:SOURce:MISO
command/query, 906

:SBUS<N>:SPI:SOURce:MOSI
command/query, 907

:SBUS<N>:SPI:TRIGger:PATTern:DATA
command/query, 909

:SBUS<N>:SPI:TRIGger:PATTern:WIDTh
command/query, 912

:SBUS<N>:SPI:TRIGger:TYPE
command/query, 914

:SBUS<N>:SPI:TYPE command/query, 915
:SBUS<N>:SPI:WIDTh

command/query, 916
:SELFtest:CANCel command, 918
:SELFtest:SCOPETEST

command/query, 919
:SERial command/query, 833
:SINGle command, 834
:SPRocessing:CTLequalizer:DCGain

command/query, 925
:SPRocessing:CTLequalizer:DISPlay

command/query, 923
:SPRocessing:CTLequalizer:NUMPoles

command/query, 926
:SPRocessing:CTLequalizer:P1

command/query, 927
:SPRocessing:CTLequalizer:P2

command/query, 928
:SPRocessing:CTLequalizer:P3

command/query, 929
:SPRocessing:CTLequalizer:RATe

command/query, 930
:SPRocessing:CTLequalizer:SOURce

command/query, 924
:SPRocessing:CTLequalizer:VERTical

command/query, 931
:SPRocessing:CTLequalizer:VERTical:OFFSet

command/query, 932
:SPRocessing:CTLequalizer:VERTical:RANGe

command/query, 933
:SPRocessing:CTLequalizer:ZERo

command/query, 934
:SPRocessing:DFEQualizer:NTAPs

command/query, 937
:SPRocessing:DFEQualizer:SOURce

command/query, 936
:SPRocessing:DFEQualizer:STATe

command/query, 935
:SPRocessing:DFEQualizer:TAP

command/query, 938
:SPRocessing:DFEQualizer:TAP:AUTomatic

command, 946
:SPRocessing:DFEQualizer:TAP:DELay

command/query, 940

1434 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

:SPRocessing:DFEQualizer:TAP:GAIN
command/query, 943

:SPRocessing:DFEQualizer:TAP:LTARget
command/query, 945

:SPRocessing:DFEQualizer:TAP:MAX
command/query, 941

:SPRocessing:DFEQualizer:TAP:MIN
command/query, 942

:SPRocessing:DFEQualizer:TAP:UTARget
command/query, 944

:SPRocessing:DFEQualizer:TAP:WIDTh
command/query, 939

:SPRocessing:FFEequalizer:RATe
command/query, 951

:SPRocessing:FFEQualizer:DISPlay
command/query, 947

:SPRocessing:FFEQualizer:NPRecursor
command/query, 949

:SPRocessing:FFEQualizer:NTAPs
command/query, 950

:SPRocessing:FFEQualizer:SOURce
command/query, 948

:SPRocessing:FFEQualizer:TAP
command/query, 952

:SPRocessing:FFEQualizer:TAP:AUTomatic
command, 956

:SPRocessing:FFEQualizer:TAP:BANDwidth
command/query, 957

:SPRocessing:FFEQualizer:TAP:BWMode
command/query, 958

:SPRocessing:FFEQualizer:TAP:DELay
command/query, 955

:SPRocessing:FFEQualizer:TAP:PLENgth
command/query, 953

:SPRocessing:FFEQualizer:TAP:TDELay
command/query, 959

:SPRocessing:FFEQualizer:TAP:TDMode
command/query, 960

:SPRocessing:FFEQualizer:TAP:WIDTh
command/query, 954

:SPRocessing:FFEQualizer:VERTical
command/query, 961

:SPRocessing:FFEQualizer:VERTical:OFFSet
command/query, 962

:SPRocessing:FFEQualizer:VERTical:RANGe
command/query, 963

:STATus? query, 835
:STOP command, 837
:STORe:JITTer command, 838
:STORe:SETup command, 839
:STORe:WAVeform command, 840
:SYSTem:DATE command/query, 966
:SYSTem:DEBug command/query, 967
:SYSTem:DSP command/query, 969
:SYSTem:ERRor? query, 970
:SYSTem:HEADer command/query, 971
:SYSTem:LOCK command/query, 972
:SYSTem:LONGform command/query, 973
:SYSTem:PERSona command/query, 974
:SYSTem:PRESet command, 975
:SYSTem:SETup command block data, 68
:SYSTem:SETup command/query, 976

:SYSTem:TIME command/query, 978
:TER? query, 841
:TIMebase:POSition command/query, 980
:TIMebase:RANGe command/query, 981
:TIMebase:REFClock command/query, 982
:TIMebase:REFerence

command/query, 983
:TIMebase:REFerence:PERCent

command/query, 984
:TIMebase:ROLL:ENABLE

command/query, 985
:TIMebase:SCALe command/query, 986
:TIMebase:VIEW command/query, 987
:TIMebase:WINDow:DELay

command/query, 988
:TIMebase:WINDow:POSition

command/query, 989
:TIMebase:WINDow:RANGe

command/query, 990
:TIMebase:WINDow:SCALe

command/query, 991
:TRIGger:ADVanced:COMM:BWIDth

command/query, 1104
:TRIGger:ADVanced:COMM:ENCode

command/query, 1105
:TRIGger:ADVanced:COMM:LEVel

command/query, 1106
:TRIGger:ADVanced:COMM:PATTern

command/query, 1107
:TRIGger:ADVanced:COMM:POLarity

command/query, 1108
:TRIGger:ADVanced:COMM:SOURce

command/query, 1109
:TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe

command/query, 1125
:TRIGger:ADVanced:DELay:EDLY:ARM:SOUR

ce command/query, 1124
:TRIGger:ADVanced:DELay:EDLY:EVENt:DELa

y command/query, 1126
:TRIGger:ADVanced:DELay:EDLY:EVENt:SLOP

e command/query, 1128
:TRIGger:ADVanced:DELay:EDLY:EVENt:SOU

Rce command/query, 1127
:TRIGger:ADVanced:DELay:EDLY:TRIGger:SL

OPe command/query, 1130
:TRIGger:ADVanced:DELay:EDLY:TRIGger:SO

URce command/query, 1129
:TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe

command/query, 1134
:TRIGger:ADVanced:DELay:TDLY:ARM:SOUR

ce command/query, 1133
:TRIGger:ADVanced:DELay:TDLY:DELay

command/query, 1135
:TRIGger:ADVanced:DELay:TDLY:TRIGger:SL

OPe command/query, 1137
:TRIGger:ADVanced:DELay:TDLY:TRIGger:SO

URce command/query, 1136
:TRIGger:ADVanced:PATTern:CONDition

command/query, 1112
:TRIGger:ADVanced:PATTern:LOGic

command/query, 1113

:TRIGger:ADVanced:PATTern:THReshold:LEV
el command/query, 1114

:TRIGger:ADVanced:PATTern:THReshold:PO
D<N> command/query, 1115

:TRIGger:ADVanced:STATe:CLOCk
command/query, 1117

:TRIGger:ADVanced:STATe:LOGic
command/query, 1118

:TRIGger:ADVanced:STATe:LTYPe
command/query, 1119

:TRIGger:ADVanced:STATe:SLOPe
command/query, 1120

:TRIGger:ADVanced:STATe:THReshold:LEVel
command/query, 1121

:TRIGger:ADVanced:TV:STV:FIELd
command/query, 1140

:TRIGger:ADVanced:TV:STV:LINE
command/query, 1141

:TRIGger:ADVanced:TV:STV:SOURce
command/query, 1142

:TRIGger:ADVanced:TV:STV:SPOLarity
command/query, 1143

:TRIGger:ADVanced:TV:UDTV:ENUMber
command/query, 1146

:TRIGger:ADVanced:TV:UDTV:PGTHan
command/query, 1147

:TRIGger:ADVanced:TV:UDTV:POLarity
command/query, 1148

:TRIGger:ADVanced:TV:UDTV:SOURce
command/query, 1149

:TRIGger:ADVanced:VIOLation:MODE
command/query, 1151

:TRIGger:ADVanced:VIOLation:PWIDth:DIRe
ction command/query, 1154

:TRIGger:ADVanced:VIOLation:PWIDth:POLa
rity command/query, 1155

:TRIGger:ADVanced:VIOLation:PWIDth:SOU
Rce command/query, 1156

:TRIGger:ADVanced:VIOLation:PWIDth:WIDT
h command/query, 1157

:TRIGger:ADVanced:VIOLation:SETup:HOLD:
CSOurce command/query, 1169

:TRIGger:ADVanced:VIOLation:SETup:HOLD:
CSOurce:EDGE command/query, 1171

:TRIGger:ADVanced:VIOLation:SETup:HOLD:
CSOurce:LEVel command/query, 1170

:TRIGger:ADVanced:VIOLation:SETup:HOLD:
DSOurce command/query, 1172

:TRIGger:ADVanced:VIOLation:SETup:HOLD:
DSOurce:HTHReshold
command/query, 1173

:TRIGger:ADVanced:VIOLation:SETup:HOLD:
DSOurce:LTHReshold
command/query, 1174

:TRIGger:ADVanced:VIOLation:SETup:HOLD:
TIME command/query, 1175

:TRIGger:ADVanced:VIOLation:SETup:MODE
command/query, 1161

:TRIGger:ADVanced:VIOLation:SETup:SETup:
CSOurce command/query, 1162

:TRIGger:ADVanced:VIOLation:SETup:SETup:
CSOurce:EDGE command/query, 1164

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1435

:TRIGger:ADVanced:VIOLation:SETup:SETup:
CSOurce:LEVel command/query, 1163

:TRIGger:ADVanced:VIOLation:SETup:SETup:
DSOurce command/query, 1165

:TRIGger:ADVanced:VIOLation:SETup:SETup:
DSOurce:HTHReshold
command/query, 1166

:TRIGger:ADVanced:VIOLation:SETup:SETup:
DSOurce:LTHReshold
command/query, 1167

:TRIGger:ADVanced:VIOLation:SETup:SETup:
TIME command/query, 1168

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:CSOurce command/query, 1176

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:CSOurce:EDGE command/query, 1178

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:CSOurce:LEVel command/query, 1177

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:DSOurce command/query, 1179

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:DSOurce:HTHReshold
command/query, 1180

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:DSOurce:LTHReshold
command/query, 1181

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:HoldTIMe (HTIMe)
command/query, 1183

:TRIGger:ADVanced:VIOLation:SETup:SHOLd
:SetupTIMe (STIMe)
command/query, 1182

:TRIGger:ADVanced:VIOLation:TRANsition
command/query, 1185

:TRIGger:ADVanced:VIOLation:TRANsition:S
OURce command/query, 1186

:TRIGger:ADVanced:VIOLation:TRANsition:S
OURce:HTHReshold
command/query, 1187

:TRIGger:ADVanced:VIOLation:TRANsition:S
OURce:LTHReshold
command/query, 1188

:TRIGger:ADVanced:VIOLation:TRANsition:TY
PE command/query, 1189

:TRIGger:AND:ENABle
command/query, 996

:TRIGger:AND:SOURce
command/query, 997

:TRIGger:COMM:BWIDth
command/query, 1011

:TRIGger:COMM:ENCode
command/query, 1012

:TRIGger:COMM:PATTern
command/query, 1013

:TRIGger:COMM:POLarity
command/query, 1014

:TRIGger:COMM:SOURce
command/query, 1015

:TRIGger:DELay:ARM:SLOPe
command/query, 1018

:TRIGger:DELay:ARM:SOURce
command/query, 1017

:TRIGger:DELay:EDELay:COUNt
command/query, 1019

:TRIGger:DELay:EDELay:SLOPe
command/query, 1021

:TRIGger:DELay:EDELay:SOURce
command/query, 1020

:TRIGger:DELay:MODE
command/query, 1022

:TRIGger:DELay:TDELay:TIME
command/query, 1023

:TRIGger:DELay:TRIGger:SLOPe
command/query, 1025

:TRIGger:DELay:TRIGger:SOURce
command/query, 1024

:TRIGger:EDGE:COUPling
command/query, 1028

:TRIGger:EDGE:SLOPe
command/query, 1029

:TRIGger:EDGE:SOURce
command/query, 1030

:TRIGger:GLITch:POLarity
command/query, 1032

:TRIGger:GLITch:SOURce
command/query, 1033

:TRIGger:GLITch:WIDTh
command/query, 1034

:TRIGger:HOLDoff command/query, 998
:TRIGger:HOLDoff:MAX

command/query, 999
:TRIGger:HOLDoff:MIN

command/query, 1000
:TRIGger:HOLDoff:MODE

command/query, 1001
:TRIGger:HTHReshold

command/query, 1002
:TRIGger:HYSTeresis

command/query, 1003
:TRIGger:LEVel command/query, 1004
:TRIGger:LEVel:FIFTy command, 1005
:TRIGger:LTHReshold

command/query, 1006
:TRIGger:MODE command/query, 1007
:TRIGger:PATTern:CONDition

command/query, 1036
:TRIGger:PATTern:LOGic

command/query, 1037
:TRIGger:PWIDth:DIRection

command/query, 1039
:TRIGger:PWIDth:POLarity

command/query, 1040
:TRIGger:PWIDth:SOURce

command/query, 1041
:TRIGger:PWIDth:TPOint

command/query, 1042
:TRIGger:PWIDth:WIDTh

command/query, 1043
:TRIGger:RUNT:POLarity

command/query, 1045
:TRIGger:RUNT:QUALified

command/query, 1046
:TRIGger:RUNT:SOURce

command/query, 1047

:TRIGger:RUNT:TIME
command/query, 1048

:TRIGger:SEQuence:RESet:ENABle
command/query, 1055

:TRIGger:SEQuence:RESet:EVENt
command, 1059

:TRIGger:SEQuence:RESet:TIME
command/query, 1061

:TRIGger:SEQuence:RESet:TYPE
command/query, 1057

:TRIGger:SEQuence:TERM1
command/query, 1051

:TRIGger:SEQuence:TERM2
command/query, 1053

:TRIGger:SEQuence:WAIT:ENABle
command/query, 1063

:TRIGger:SEQuence:WAIT:TIME
command/query, 1065

:TRIGger:SHOLd:CSOurce
command/query, 1067

:TRIGger:SHOLd:CSOurce:EDGE
command/query, 1068

:TRIGger:SHOLd:DSOurce
command/query, 1069

:TRIGger:SHOLd:HoldTIMe (HTIMe)
command/query, 1070

:TRIGger:SHOLd:MODE
command/query, 1071

:TRIGger:SHOLd:SetupTIMe
command/query, 1072

:TRIGger:STATe:CLOCk
command/query, 1074

:TRIGger:STATe:LOGic
command/query, 1075

:TRIGger:STATe:LTYPe
command/query, 1076

:TRIGger:STATe:SLOPe
command/query, 1077

:TRIGger:SWEep command/query, 1009
:TRIGger:TIMeout:CONDition

command/query, 1079
:TRIGger:TIMeout:SOURce

command/query, 1080
:TRIGger:TIMeout:TIME

command/query, 1081
:TRIGger:TRANsition:DIRection

command/query, 1083
:TRIGger:TRANsition:SOURce

command/query, 1084
:TRIGger:TRANsition:TIME

command/query, 1085
:TRIGger:TRANsition:TYPE

command/query, 1086
:TRIGger:TV:LINE command/query, 1088
:TRIGger:TV:MODE command/query, 1089
:TRIGger:TV:POLarity

command/query, 1090
:TRIGger:TV:SOURce

command/query, 1091
:TRIGger:TV:STANdard

command/query, 1092

1436 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

:TRIGger:TV:UDTV:ENUMber
command/query, 1093

:TRIGger:TV:UDTV:HSYNc
command/query, 1094

:TRIGger:TV:UDTV:HTIMe
command/query, 1095

:TRIGger:TV:UDTV:PGTHan
command/query, 1096

:TRIGger:TV:UDTV:POLarity
command/query, 1097

:TRIGger:WINDow:CONDition
command/query, 1099

:TRIGger:WINDow:SOURce
command/query, 1100

:TRIGger:WINDow:TIME
command/query, 1101

:TRIGger:WINDow:TPOint
command/query, 1102

:VIEW command, 842
:WAVeform:BANDpass? query, 1194
:WAVeform:BYTeorder

command/query, 1195
:WAVeform:COMPlete? query, 1196
:WAVeform:COUNt? query, 1197
:WAVeform:COUPling? query, 1198
:WAVeform:DATA? query, 1199
:WAVeform:FORMat

command/query, 1221
:WAVeform:POINts? query, 1224
:WAVeform:PREamble? query, 1225
:WAVeform:SEGMented:ALL

command/query, 1230
:WAVeform:SEGMented:COUNt?

query, 1231
:WAVeform:SEGMented:TTAG? query, 1232
:WAVeform:SEGMented:XLISt? query, 1233
:WAVeform:SOURce

command/query, 1234
:WAVeform:STReaming

command/query, 1236
:WAVeform:TYPE? query, 1237
:WAVeform:VIEW command/query, 1238
:WAVeform:XDISplay? query, 1240
:WAVeform:XINCrement? query, 1241
:WAVeform:XORigin? query, 1242
:WAVeform:XRANge? query, 1243
:WAVeform:XREFerence? query, 1244
:WAVeform:XUNits? query, 1245
:WAVeform:YDISplay? query, 1246
:WAVeform:YINCrement? query, 1247
:WAVeform:YORigin? query, 1248
:WAVeform:YRANge? query, 1249
:WAVeform:YREFerence? query, 1250
:WAVeform:YUNits? query, 1251
:WMEMory<N>:CLEar command, 1254
:WMEMory<N>:DISPlay

command/query, 1255
:WMEMory<N>:LOAD command, 1256
:WMEMory<N>:SAVE command, 1257
:WMEMory<N>:TIETimebase

command/query, 1258

:WMEMory<N>:XOFFset
command/query, 1259

:WMEMory<N>:XRANge
command/query, 1260

:WMEMory<N>:YOFFset
command/query, 1261

:WMEMory<N>:YRANge
command/query, 1262

..., Ellipsis, 72
(Event Status Enable (*ESE)

command/query, 272
*CLS (Clear Status) command, 271
*ESE (Event Status Enable)

command/query, 272
*ESR? (Event Status Register) query, 274
*IDN? (Identification Number) query, 275
*LRN? (Learn) query, 276
*LRN?, and SYSTem SETup?[LRN], 977
*OP?T (Option) query, 279
*OPC (Operation Complete)

command/query, 278
*PSC (Power-on Status Clear)

command/query, 282
*RCL (Recall) command, 283
*RST (Reset) command, 284
*SAV (Save) command, 285
*SRE (Service Request Enable)

command/query, 286
*STB? (Status Byte) query, 288
*TRG (Trigger) command, 290
*TST? (Test) query, 291
*WAI (Wait-to-Continue) command, 292

Numerics

82350A GPIB interface, 4
9.99999E+37, Infinity Representation, 156

A

Aborting a digitize operation, 111
aborting a digitize operation, 93
absolute voltage, and VMAX, 781
absolute voltage, and VMIN, 784
ABSolute, :FUNCtion<F>:ABSolute

command, 351
ABSolute, :MEASure:THResholds:ABSolute

command/query, 712
ABSolute,

:MEASure:THResholds:GENeral:ABSolut
e command/query, 714

ABSolute,
:MEASure:THResholds:GENeral:TOPBas
e:ABSolute command/query, 722

ABSolute,
:MEASure:THResholds:RFALl:ABSolute
command/query, 732

ABSolute,
:MEASure:THResholds:RFALl:TOPBase:A
BSolute command/query, 740

ABSolute,
:MEASure:THResholds:SERial:ABSolute
command/query, 744

ABSolute,
:MEASure:THResholds:SERial:TOPBase:
ABSolute command/query, 752

ABSolute,
:MEASure:THResholds:TOPBase:ABSolu
te command/query, 756

ACCAL, :CHANnel<N>:PROBe:ACCAL
command/query, 238

accuracy and probe calibration, 202
Acquire Commands, 161
Acquire Commands, SRATe, 188
acquisition state, 809
acquisition, ACQuire AVER and

completion, 168
acquisition, points, 175
acquisition, record length, 175
acquisition, sample rate, 186, 188
ADD, :CHANnel<N>:PROBe:HEAD:ADD

command, 250
ADD, :FUNCtion<F>:ADD command, 352
address field size, IIC serial decode, 879
ADDRess,

:SBUS<N>:IIC:TRIGger:PATTern:ADDRes
s command/query, 883

address, GPIB default, 107
ADEMod, :FUNCtion<F>:ADEMod

command, 353
advanced trigger violation modes, 1150
advanced trigger violation modes, pulse

width violation mode, 1152
advanced trigger violation modes, setup

violation mode, 1158
advanced trigger violation modes, transition

violation mode, 1184
ADVanced,

:TRIGger:ADVanced:COMM:BWIDth
command/query, 1104

ADVanced,
:TRIGger:ADVanced:COMM:ENCode
command/query, 1105

ADVanced, :TRIGger:ADVanced:COMM:LEVel
command/query, 1106

ADVanced,
:TRIGger:ADVanced:COMM:PATTern
command/query, 1107

ADVanced,
:TRIGger:ADVanced:COMM:POLarity
command/query, 1108

ADVanced,
:TRIGger:ADVanced:COMM:SOURce
command/query, 1109

ADVanced,
:TRIGger:ADVanced:DELay:EDLY:ARM:SL
OPe command/query, 1125

ADVanced,
:TRIGger:ADVanced:DELay:EDLY:ARM:S
OURce command/query, 1124

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1437

ADVanced,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
DELay command/query, 1126

ADVanced,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SLOPe command/query, 1128

ADVanced,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SOURce command/query, 1127

ADVanced,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SLOPe command/query, 1130

ADVanced,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SOURce command/query, 1129

ADVanced,
:TRIGger:ADVanced:DELay:TDLY:ARM:SL
OPe command/query, 1134

ADVanced,
:TRIGger:ADVanced:DELay:TDLY:ARM:S
OURce command/query, 1133

ADVanced,
:TRIGger:ADVanced:DELay:TDLY:DELay
command/query, 1135

ADVanced,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SLOPe command/query, 1137

ADVanced,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SOURce command/query, 1136

ADVanced,
:TRIGger:ADVanced:PATTern:CONDition
command/query, 1112

ADVanced,
:TRIGger:ADVanced:PATTern:LOGic
command/query, 1113

ADVanced,
:TRIGger:ADVanced:PATTern:THReshold
:LEVel command/query, 1114

ADVanced,
:TRIGger:ADVanced:PATTern:THReshold
:POD<N> command/query, 1115

ADVanced,
:TRIGger:ADVanced:STATe:CLOCk
command/query, 1117

ADVanced, :TRIGger:ADVanced:STATe:LOGic
command/query, 1118

ADVanced, :TRIGger:ADVanced:STATe:LTYPe
command/query, 1119

ADVanced,
:TRIGger:ADVanced:STATe:SLOPe
command/query, 1120

ADVanced,
:TRIGger:ADVanced:STATe:THReshold:L
EVel command/query, 1121

ADVanced,
:TRIGger:ADVanced:TV:STV:FIELd
command/query, 1140

ADVanced, :TRIGger:ADVanced:TV:STV:LINE
command/query, 1141

ADVanced,
:TRIGger:ADVanced:TV:STV:SOURce
command/query, 1142

ADVanced,
:TRIGger:ADVanced:TV:STV:SPOLarity
command/query, 1143

ADVanced,
:TRIGger:ADVanced:TV:UDTV:ENUMber
command/query, 1146

ADVanced,
:TRIGger:ADVanced:TV:UDTV:PGTHan
command/query, 1147

ADVanced,
:TRIGger:ADVanced:TV:UDTV:POLarity
command/query, 1148

ADVanced,
:TRIGger:ADVanced:TV:UDTV:SOURce
command/query, 1149

ADVanced,
:TRIGger:ADVanced:VIOLation:MODE
command/query, 1151

ADVanced,
:TRIGger:ADVanced:VIOLation:PWIDth:D
IRection command/query, 1154

ADVanced,
:TRIGger:ADVanced:VIOLation:PWIDth:P
OLarity command/query, 1155

ADVanced,
:TRIGger:ADVanced:VIOLation:PWIDth:S
OURce command/query, 1156

ADVanced,
:TRIGger:ADVanced:VIOLation:PWIDth:
WIDTh command/query, 1157

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce command/query, 1169

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:EDGE
command/query, 1171

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:LEVel
command/query, 1170

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce command/query, 1172

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:HTHReshold
command/query, 1173

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:LTHReshold
command/query, 1174

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:TIME command/query, 1175

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:M
ODE command/query, 1161

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce command/query, 1162

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:EDGE
command/query, 1164

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:LEVel
command/query, 1163

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce command/query, 1165

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:HTHReshold
command/query, 1166

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:LTHReshold
command/query, 1167

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:TIME command/query, 1168

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce command/query, 1176

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:EDGE
command/query, 1178

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:LEVel
command/query, 1177

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce command/query, 1179

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:HTHReshold
command/query, 1180

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:LTHReshold
command/query, 1181

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:HoldTIMe (HTIMe)
command/query, 1183

ADVanced,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:SetupTIMe (STIMe)
command/query, 1182

ADVanced,
:TRIGger:ADVanced:VIOLation:TRANsitio
n command/query, 1185

ADVanced,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce command/query, 1186

1438 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

ADVanced,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:HTHReshold
command/query, 1187

ADVanced,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:LTHReshold
command/query, 1188

ADVanced,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:TYPE command/query, 1189

advanced, COMM triggering, 1103
advanced, delay trigger modes, 1122,

1131
advanced, delay triggering, 1122, 1131
advanced, logic triggering, 1110, 1116
advanced, pattern triggering, 1110
advanced, state triggering, 1116
advanced, TV commands, 1138, 1144
advisory line, reading and writing to, 965
algebraic sum of functions, 352
ALIGn, :MEASure:CLOCk:METHod:ALIGn

command/query, 561
ALIGn, :MTESt:ALIGn command, 471
AlignFIT, :MTESt:AlignFIT

command/query, 472
all edges, measure, 592, 594, 608, 636,

666, 668
ALL, :WAVeform:SEGMented:ALL

command/query, 1230
ALL?, :MEASure:NOISe:ALL? query, 647
ALL?, :MEASure:RJDJ:ALL? query, 684
ALL?, :MEASure:RJDJ:APLength?

query, 686
alphanumeric, characters in embedded

string, 82
alphanumeric, strings, 80
AMASk, :MTESt:AMASk:CREate

command, 474
AMASk, :MTESt:AMASk:SAVE

command, 477
AMASk, :MTESt:AMASk:SOURce

command/query, 475
AMASk, :MTESt:AMASk:UNITs

command/query, 478
AMASk, :MTESt:AMASk:XDELta

command/query, 479
AMASk, :MTESt:AMASk:YDELta

command/query, 480
AMPS as vertical units, 248, 267
ANALog, :ACQuire:POINts:ANALog

command/query, 175
ANALog, :ACQuire:SRATe:ANALog

command/query, 186
ANALog, :ACQuire:SRATe:ANALog:AUTO

command/query, 187
AND, :TRIGger:AND:ENABle

command/query, 996
AND, :TRIGger:AND:SOURce

command/query, 997
APPLy, :CHANnel<N>:ISIM:APPLy

command/query, 222

AREA, :HARDcopy:AREA
command/query, 398

AREA, :MEASure:AREA
command/query, 536

AREA<N>,
:DISPlay:GRATicule:AREA<N>:STATe
command/query, 333

ARM,
:TRIGger:ADVanced:DELay:EDLY:ARM:SL
OPe command/query, 1125

ARM,
:TRIGger:ADVanced:DELay:EDLY:ARM:S
OURce command/query, 1124

ARM,
:TRIGger:ADVanced:DELay:TDLY:ARM:SL
OPe command/query, 1134

ARM,
:TRIGger:ADVanced:DELay:TDLY:ARM:S
OURce command/query, 1133

ARM, :TRIGger:DELay:ARM:SLOPe
command/query, 1018

ARM, :TRIGger:DELay:ARM:SOURce
command/query, 1017

Arming the trigger, 111
ASCII, and FORMat, 1221
ASCII, character 32, 70
ASCII, linefeed, 83
ASIZe, :SBUS<N>:IIC:ASIZe

command/query, 879
attenuation factor for probe, 202, 237
ATTenuation,

:CHANnel<N>:PROBe:ATTenuation
command/query, 239

AUTO, :ACQuire:POINts:AUTO
command/query, 177

AUTO, :ACQuire:SRATe:ANALog:AUTO
command/query, 187

AUTO, :ACQuire:SRATe:DIGital:AUTO
command/query, 189

AUTO, :CHANnel<N>:DISPlay:AUTO
command/query, 217

AUTO, :MTESt:AUTO command/query, 481
AUTomatic,

:SPRocessing:DFEQualizer:TAP:AUToma
tic command, 946

AUTomatic,
:SPRocessing:FFEQualizer:TAP:AUTomat
ic command, 956

AUToscale, during initialization, 89
AUTozero, :CHANnel<N>:PROBe:AUTozero

command/query, 240
Aux Out connector, 204
availability of measured data, 117
AVERage, :ACQuire:AVERage

command/query, 162
AVERage, :ACQuire:AVERage:COUNt

command/query, 163
AVERage, :FUNCtion<F>:AVERage

command, 354
AVERage, :MTESt:AVERage

command/query, 482

AVERage, :MTESt:AVERage:COUNt
command/query, 483

AVERage, and acquisition completion, 168
AVERage, and count, 483
AXIS, :HISTogram:AXIS

command/query, 405

B

B<N>, :BUS:B<N>:TYPE
command/query, 192

BANDpass?, :WAVeform:BANDpass?
query, 1194

bandwidth limit, 1194
BANdwidth, :ACQuire:BANDwidth,

command/query, 165
BANDwidth, :ACQuire:BANDwidth:FRAMe?

query, 167
BANDwidth, :CHANnel<N>:ISIM:BANDwidth

command/query, 223
BANDwidth,

:CHANnel<N>:PROBe:PRECprobe:BAND
width command, 257

BANDwidth, :MEASure:NOISe:BANDwidth
command/query, 649

BANDwidth, :MEASure:RJDJ:BANDwidth
command/query, 687

BANDwidth,
:SPRocessing:FFEQualizer:TAP:BANDwi
dth command/query, 957

basic command structure, 91
basic operations, 66
baud rate, 849, 891
BAUDrate, :SBUS<N>:CAN:SIGNal:BAUDrate

command/query, 849
BAUDrate, :SBUS<N>:FLEXray:BAUDrate

command/query, 864
BAUDrate, :SBUS<N>:LIN:SIGNal:BAUDrate

command/query, 891
BER, :MEASure:RJDJ:BER

command/query, 688
BIND, :MTESt:SCALe:BIND

command/query, 516
BINS, :HISTogram:HORizontal:BINS

command/query, 406
BINS, :HISTogram:MEASurement:BINS

command/query, 407
BINS, :HISTogram:VERTical:BINS

command/query, 410
BINTerval, :MEASure:BINTerval

command/query, 537
Bit Definitions in Status Reporting, 118
bit order, SPI decode, 899
BIT<M>, :BUS<N>:BIT<M>

command/query, 193
BITS, :BUS<N>:BITS command/query, 194
BITS, :MTESt:FOLDing:BITS

command/query, 494
blanking the user text area, 1269
BLIMit, :HISTogram:WINDow:BLIMit

command/query, 415

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1439

block data, 68, 97
block data, in :SYSTem:SETup

command, 68
Block Diagram, Status Reporting

Overview, 118
BOOKmark<N>,

:DISPlay:BOOKmark<N>:DELete
command, 318

BOOKmark<N>,
:DISPlay:BOOKmark<N>:SET
command, 319

BOOKmark<N>,
:DISPlay:BOOKmark<N>:VERTical?
query, 321

BOOKmark<N>,
:DISPlay:BOOKmark<N>:XPOSition
command/query, 322

BOOKmark<N>,
:DISPlay:BOOKmark<N>:YPOSition
command/query, 323

BPERiod, :MEASure:BPERiod
command/query, 538

Braces, 71
Brackets, Square, 73
brickwall filter, TIE, 763
buffer, output, 78, 94
buffered responses, 158
Bus Activity, Halting, 111
Bus Commands, 111
BWIDth, :MEASure:BWIDth

command/query, 539
BWIDth, :TRIGger:ADVanced:COMM:BWIDth

command/query, 1104
BWIDth, :TRIGger:COMM:BWIDth

command/query, 1011
BWLimit, :CHANnel<N>:BWLimit

command/query, 212
BWLimit, :CHANnel<N>:ISIM:BWLimit

command/query, 224
BWMode,

:SPRocessing:FFEQualizer:TAP:BWMode
command/query, 958

BYTE, and FORMat, 1222
BYTE, Understanding the format, 1216
BYTeorder, :WAVeform:BYTeorder

command/query, 1195
BYTeorder, and DATA, 1201

C

C Program, DATA? Analog Channels, 1201
C Program, DATA? Digital Channels, 1207
C, SICL library example, 1376
C, VISA library example, 1326
C#, SCPI.NET example, 1395
C#, VISA COM example, 1299
C#, VISA example, 1345
Calibration Commands, 201
calibration status, 206

CALibration,
:CHANnel<N>:PROBe:PRECprobe:CALib
ration command, 258

CAN acknowledge, 848
CAN baud rate, 849
CAN serial bus commands, 847
CAN signal definition, 850
CAN source, 851
CAN trigger, 853, 858
CAN trigger data pattern, 856
CAN trigger ID pattern, 860
CAN trigger pattern id mode, 862
CAN, :SBUS<N>:CAN:SAMPlepoint

command/query, 848
CAN, :SBUS<N>:CAN:SIGNal:BAUDrate

command/query, 849
CAN, :SBUS<N>:CAN:SIGNal:DEFinition

command/query, 850
CAN, :SBUS<N>:CAN:SOURce

command/query, 851
CAN, :SBUS<N>:CAN:TRIGger

command/query, 853
CAN, :SBUS<N>:CAN:TRIGger:PATTern:DATA

command/query, 856
CAN,

:SBUS<N>:CAN:TRIGger:PATTern:DATA:
LENGth command/query, 858

CAN, :SBUS<N>:CAN:TRIGger:PATTern:ID
command/query, 860

CAN,
:SBUS<N>:CAN:TRIGger:PATTern:ID:MO
DE command/query, 862

CANCel, :SELFtest:CANCel command, 918
CCBase,

:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Base command/query, 869

CCRepetition,
:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Repetition command/query, 870

CDIRectory, :DISK:CDIRectory
command, 300

CDRRATE, :MEASure:CDRRATE
command, 540

center screen voltage, 236, 247
CGRade, :DISPlay:CGRade

command/query, 324
CGRade, :DISPlay:CGRade:LEVels?

query, 326
CGRade, :DISPlay:CGRade:SCHeme

command/query, 328
CGRade, :MEASure:CGRade:CROSsing

command/query, 541
CGRade, :MEASure:CGRade:DCDistortion

command/query, 543
CGRade, :MEASure:CGRade:EHEight

command/query, 545
CGRade, :MEASure:CGRade:EWIDth

command/query, 547
CGRade, :MEASure:CGRade:EWINdow

command/query, 549
CGRade, :MEASure:CGRade:JITTer

command/query, 551

CGRade, :MEASure:CGRade:QFACtor
command/query, 553

Channel Commands, 209
CHANnel, :SBUS<N>:FLEXray:CHANnel

command/query, 865
CHANnels, :AUToscale:CHANnels

command, 812
channels, and VIEW, 1238
channel-to-channel skew factor, 205
character program data, 80
CHARge, :MEASure:CHARge

command/query, 556
CLASsic color grade scheme, 328
Clear method, 89
Clear Status (*CLS) command, 271
CLEar, :BUS<N>:CLEar

command/query, 195
CLEar, :MEASure:CLEar command, 557
CLEar, :WMEMory<N>:CLEar

command, 1254
Clearing, Buffers, 111
clearing, DONE bit, 133
clearing, error queue, 137, 1276
Clearing, Pending Commands, 111
clearing, registers and queues, 140
clearing, Standard Event Status

Register, 127, 274
clearing, status data structures, 271
clearing, TRG bit, 126, 135
clipped waveforms, and measurement

error, 535
clock timeout, SPI, 901
CLOCk, :BUS<N>:CLOCk

command/query, 196
CLOCk, :BUS<N>:CLOCk:SLOPe

command/query, 197
CLOCk, :MEASure:CLOCk

command/query, 558
CLOCk, :MEASure:CLOCk:METHod

command/query, 559, 1271
CLOCk, :MEASure:CLOCk:METHod:ALIGn

command/query, 561
CLOCk,

:MEASure:CLOCk:METHod:DEEMphasis
command/query, 563

CLOCk, :MEASure:CLOCk:METHod:EDGE
command/query, 564

CLOCk, :MEASure:CLOCk:METHod:JTF
command/query, 566

CLOCk, :MEASure:CLOCk:METHod:OJTF
command/query, 568

CLOCk, :MEASure:CLOCk:METHod:PLLTrack
command/query, 570

CLOCk, :MEASure:CLOCk:METHod:SOURce
command/query, 571

CLOCk, :MEASure:CLOCk:VERTical
command/query, 572

CLOCk, :MEASure:CLOCk:VERTical:OFFSet
command/query, 573

CLOCk, :MEASure:CLOCk:VERTical:RANGe
command/query, 574

1440 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

CLOCk, :MEASure:RJDJ:CLOCk
command/query, 690

CLOCk, :SBUS<N>:IIC:SOURce:CLOCk
command/query, 880

CLOCk, :SBUS<N>:SPI:BITorder
command/query, 899

CLOCk, :SBUS<N>:SPI:CLOCk:SLOPe
command/query, 900

CLOCk, :SBUS<N>:SPI:CLOCk:TIMeout
command/query, 901

CLOCk, :SBUS<N>:SPI:SOURce:CLOCk
command/query, 903

CLOCk, :TRIGger:ADVanced:STATe:CLOCk
command/query, 1117

CLOCk, :TRIGger:STATe:CLOCk
command/query, 1074

CME bit, 272, 274
code, SCPI.NET library example in

C#, 1395
code, SCPI.NET library example in

IronPython, 1409
code, SCPI.NET library example in Visual

Basic .NET, 1402
code, SICL library example in C, 1376
code, SICL library example in Visual

Basic, 1385
code, VISA COM library example in

C#, 1299
code, VISA COM library example in

Python, 1318
code, VISA COM library example in Visual

Basic, 1288
code, VISA COM library example in Visual

Basic .NET, 1309
code, VISA library example in C, 1326
code, VISA library example in C#, 1345
code, VISA library example in Python, 1369
code, VISA library example in Visual

Basic, 1335
code, VISA library example in Visual Basic

.NET, 1357
COL, :DISPlay:STATus:COL command

query, 344
COLumn, :DISPlay:COLumn

command/query, 1265
combining compound and simple

commands, 85
combining, commands in same

subsystem, 77
combining, long- and short-form

headers, 79
COMM, :TRIGger:ADVanced:COMM:BWIDth

command/query, 1104
COMM, :TRIGger:ADVanced:COMM:ENCode

command/query, 1105
COMM, :TRIGger:ADVanced:COMM:LEVel

command/query, 1106
COMM, :TRIGger:ADVanced:COMM:PATTern

command/query, 1107
COMM, :TRIGger:ADVanced:COMM:POLarity

command/query, 1108

COMM, :TRIGger:ADVanced:COMM:SOURce
command/query, 1109

COMM, :TRIGger:COMM:BWIDth
command/query, 1011

COMM, :TRIGger:COMM:ENCode
command/query, 1012

COMM, :TRIGger:COMM:PATTern
command/query, 1013

COMM, :TRIGger:COMM:POLarity
command/query, 1014

COMM, :TRIGger:COMM:SOURce
command/query, 1015

Command and Data Concepts, GPIB, 106
Command Error, 1278
Command Error, Status Bit, 118
Command Expert, 1395
Command tree, 153
Command Types, 153
Command, DIGitize, 92
command, execution and order, 115
Command, GPIB Mode, 106
command, structure, 91
Command, TRIGger MODE, 994
commands embedded in program

messages, 84
commands, obsolete and

discontinued, 1263
commas and spaces, 75
Common Command Header, 77
Common Commands, 269
Common Commands, Reset (*RST), 284
Common Commands, within a program

message, 269
commonmode voltage of operands, 355
COMMonmode,

:CHANnel<N>:COMMonmode
command/query, 213

COMMonmode,
:FUNCtion<F>:COMMonmode
command, 355

Communicating Over the GPIB
Interface, 107

Communicating Over the LAN
Interface, 108

COMPlete, :ACQuire:COMPlete
command/query, 168

COMPlete, :ACQuire:COMPlete:STATe
command/query, 170

COMPlete?, :WAVeform:COMPlete?
query, 1196

COMPosite, :DISK:SAVE:COMPosite
command, 307

compound command header, 76
compound queries, 115
Computer Code and Capability, 105
computer control examples, 1287
concurrent commands, 157
CONDition,

:MEASure:QUALifier<M>:CONDition
command/query, 676

CONDition,
:TRIGger:ADVanced:PATTern:CONDition
command/query, 1112

CONDition, :TRIGger:PATTern:CONDition
command/query, 1036

CONDition, :TRIGger:TIMeout:CONDition
command/query, 1079

CONDition, :TRIGger:WINDow:CONDition
command/query, 1099

connect oscilloscope, 59
CONNect, :DISPlay:CONNect

command/query, 330
CONTrol1, :FUNCtion<F>:MATLab:CONTrol1

command/query, 378
CONTrol2, :FUNCtion<F>:MATLab:CONTrol2

command/query, 379
CONTrol3, :FUNCtion<F>:MATLab:CONTrol3

command/query, 380
conventions of programming, 151
converting waveform data, from data value

to Y-axis units, 1192
CONVolve, :CHANnel<N>:ISIM:CONVolve

command/query, 225
COPY, :DISK:COPY command, 301
copying files, 301
CORRection,

:CHANnel<N>:ISIM:CORRection
command/query, 226

COUNt, :ACQuire:AVERage:COUNt
command/query, 163

COUNt, :ACQuire:SEGMented:COUNt
command/query, 183

COUNt, :MTESt:AVERage:COUNt
command/query, 483

COUNt, :MTESt:COUNt:FAILures?
query, 484

COUNt, :MTESt:COUNt:FUI? query, 485
COUNt, :MTESt:COUNt:FWAVeforms?

query, 486
COUNt, :MTESt:COUNt:UI? query, 487
COUNt, :MTESt:COUNt:WAVeforms?

query, 488
COUNt, :MTESt:FOLDing:COUNt query, 496
COUNt, :TRIGger:DELay:EDELay:COUNt

command/query, 1019
COUNt?, :WAVeform:COUNt? query, 1197
COUNt?, :WAVeform:SEGMented:COUNt?

query, 1231
COUPling, :CHANnel<N>:PROBe:COUPling

command/query, 241
COUPling, :TRIGger:EDGE:COUPling

command/query, 1028
coupling, input, 221
COUPling?, :WAVeform:COUPling?

query, 1198
CREate, :MTESt:AMASk:CREate

command, 474
CROSsing, :MEASure:CGRade:CROSsing

command/query, 541
CROSsing, :MEASure:CROSsing

command/query, 575

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1441

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce command/query, 1169

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:EDGE
command/query, 1171

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:LEVel
command/query, 1170

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce command/query, 1162

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:EDGE
command/query, 1164

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:LEVel
command/query, 1163

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce command/query, 1176

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:EDGE
command/query, 1178

CSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:LEVel
command/query, 1177

CSOurce, :TRIGger:SHOLd:CSOurce
command/query, 1067

CSOurce, :TRIGger:SHOLd:CSOurce:EDGE
command/query, 1068

CTCDutycycle, :MEASure:CTCDutycycle
command/query, 576

CTCJitter, :MEASure:CTCJitter
command/query, 578

CTCNwidth, :MEASure:CTCNwidth
command/query, 580

CTCPwidth, :MEASure:CTCPwidth
command/query, 582

CTLequalizer,
:SPRocessing:CTLequalizer:DCGain
command/query, 925

CTLequalizer,
:SPRocessing:CTLequalizer:DISPlay
command/query, 923

CTLequalizer,
:SPRocessing:CTLequalizer:NUMPoles
command/query, 926

CTLequalizer, :SPRocessing:CTLequalizer:P1
command/query, 927

CTLequalizer, :SPRocessing:CTLequalizer:P2
command/query, 928

CTLequalizer, :SPRocessing:CTLequalizer:P3
command/query, 929

CTLequalizer,
:SPRocessing:CTLequalizer:RATe
command/query, 930

CTLequalizer,
:SPRocessing:CTLequalizer:SOURce
command/query, 924

CTLequalizer,
:SPRocessing:CTLequalizer:VERTical
command/query, 931

CTLequalizer,
:SPRocessing:CTLequalizer:VERTical:OF
FSet command/query, 932

CTLequalizer,
:SPRocessing:CTLequalizer:VERTical:RA
NGe command/query, 933

CTLequalizer,
:SPRocessing:CTLequalizer:ZERo
command/query, 934

CURSor?, :MARKer:CURSor? query, 452

D

data in a :SYSTem:SETup command, 68
data in a program, 75
Data Mode, GPIB, 106
data pattern length, 858
data pattern, CAN trigger, 856
data source, SPI trigger, 904
Data Structures, and Status Reporting, 120
data transmission mode, and

FORMat, 1221
DATA, :DISPlay:DATA? query, 331
DATA,

:SBUS<N>:CAN:TRIGger:PATTern:DATA
command/query, 856

DATA,
:SBUS<N>:CAN:TRIGger:PATTern:DATA:
LENGth command/query, 858

DATA, :SBUS<N>:IIC:SOURce:DATA
command/query, 881

DATA,
:SBUS<N>:IIC:TRIGger:PATTern:ADDRes
s command/query, 885

DATA, :SBUS<N>:LIN:TRIGger:PATTern:DATA
command/query, 896

DATA,
:SBUS<N>:LIN:TRIGger:PATTern:DATA:L
ENGth command/query, 897

DATA, :SBUS<N>:SPI:SOURce:DATA
command/query, 904

DATA, :SBUS<N>:SPI:TRIGger:PATTern:DATA
command/query, 909

data, acquisition, 1192
data, conversion, 1192
DATA?, :LISTer:DATA? query, 448
DATA?, :WAVeform:DATA? query, 1199
DATA?, Analog Channels C Program, 1201
DATA?, Digital Channels C Program, 1207
DATarate, :MEASure:DATarate

command/query, 584
DATE, :CALibrate:DATE? query, 203

DATE, :SYSTem:DATE command/query, 966
DCDistortion,

:MEASure:CGRade:DCDistortion
command/query, 543

DCGain, :SPRocessing:CTLequalizer:DCGain
command/query, 925

DDE bit, 273, 274
DDPWS, :MEASure:DDPWS

command/query, 46, 1273
DEBug, :SYSTem:DEBug

command/query, 967
decimal 32 (ASCII space), 70
Decision Chart for Status Reporting, 140
decode type, SPI, 915
DEConvolve,

:CHANnel<N>:ISIM:DEConvolve
command/query, 228

DEEMphasis,
:MEASure:CLOCk:METHod:DEEMphasis
command/query, 563

DEEMphasis, :MEASure:DEEMphasis
command/query, 586

default setup, 975
Default Startup Conditions, 104
DEFault, :HISTogram:WINDow:DEFault

command, 411
Default, GPIB Address, 107
Default, Startup Conditions, 104
DEFine, :MEASure:DELTatime:DEFine

command/query, 590
defining functions, 348
DEFinition,

:SBUS<N>:CAN:SIGNal:DEFinition
command/query, 850

def-length block response data, 97
delay trigger modes, 1122, 1131
DELay, :CHANnel<N>:ISIM:DELay

command/query, 229
DELay,

:CHANnel<N>:PROBe:PRECprobe:DELay
command, 259

DELay, :FUNCtion<F>:DELay
command, 356

DELay, :ISCan:DELay command/query, 418
DELay,

:SPRocessing:DFEQualizer:TAP:DELay
command/query, 940

DELay, :SPRocessing:FFEQualizer:TAP:DELay
command/query, 955

DELay, :TIMebase:WINDow:DELay
command/query, 988

DELay,
:TRIGger:ADVanced:DELay:EDLY:ARM:SL
OPe command/query, 1125

DELay,
:TRIGger:ADVanced:DELay:EDLY:ARM:S
OURce command/query, 1124

DELay,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
DELay command/query, 1126

1442 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

DELay,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SLOPe command/query, 1128

DELay,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SOURce command/query, 1127

DELay,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SLOPe command/query, 1130

DELay,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SOURce command/query, 1129

DELay,
:TRIGger:ADVanced:DELay:TDLY:ARM:SL
OPe command/query, 1134

DELay,
:TRIGger:ADVanced:DELay:TDLY:ARM:S
OURce command/query, 1133

DELay,
:TRIGger:ADVanced:DELay:TDLY:DELay
command/query, 1135

DELay,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SLOPe command/query, 1137

DELay,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SOURce command/query, 1136

DELay, :TRIGger:DELay:ARM:SLOPe
command/query, 1018

DELay, :TRIGger:DELay:ARM:SOURce
command/query, 1017

DELay, :TRIGger:DELay:EDELay:COUNt
command/query, 1019

DELay, :TRIGger:DELay:EDELay:SLOPe
command/query, 1021

DELay, :TRIGger:DELay:EDELay:SOURce
command/query, 1020

DELay, :TRIGger:DELay:MODE
command/query, 1022

DELay, :TRIGger:DELay:TDELay:TIME
command/query, 1023

DELay, :TRIGger:DELay:TRIGger:SLOPe
command/query, 1025

DELay, :TRIGger:DELay:TRIGger:SOURce
command/query, 1024

delay, and WINDow DELay, 988
DELete, :CHANnel<N>:PROBe:HEAD:DELete

command, 251
DELete, :DISK:DELete command, 302
DELete, :DISPlay:BOOKmark<N>:DELete

command, 318
DELete, :MTESt:DELete command, 489
deleting files, 302
DELTatime, :MEASure:DELTatime

command/query, 588
DELTatime, :MEASure:DELTatime:DEFine

command/query, 590
derivative function, 357
DESCramble, :SBUS<N>:HS:DESCramble

command/query, 874
Device Address, GPIB, 107
Device Address, LAN, 108

Device Clear (DCL), 111
Device Clear Code and Capability, 105
Device Dependent Error (DDE), Status

Bit, 118
Device- or Oscilloscope-Specific

Error, 1280
Device Trigger Code and Capability, 105
device-dependent data, 97
DFEQualizer,

:SPRocessing:DFEQualizer:NTAPs
command/query, 937

DFEQualizer,
:SPRocessing:DFEQualizer:SOURce
command/query, 936

DFEQualizer,
:SPRocessing:DFEQualizer:STATe
command/query, 935

DFEQualizer, :SPRocessing:DFEQualizer:TAP
command/query, 938

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:AUToma
tic command, 946

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:DELay
command/query, 940

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:GAIN
command/query, 943

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:LTARget
command/query, 945

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:MAX
command/query, 941

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:MIN
command/query, 942

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:UTARget
command/query, 944

DFEQualizer,
:SPRocessing:DFEQualizer:TAP:WIDTh
command/query, 939

DFRequency, :MEASure:FFT:DFRequency
command/query, 599

DIFF, :FUNCtion<F>:DIFF command, 357
DIFFerential, :CHANnel<N>:DIFFerential

command/query, 214
DIFFerential,

:CHANnel<N>:DIFFerential:SKEW
command/query, 215

Digital Commands, 293
DIGital, :ACQuire:POINts:DIGital?

query, 178
DIGital, :ACQuire:SRATe:DIGital

command/query, 188
DIGital, :ACQuire:SRATe:DIGital:AUTO

command/query, 189
Digitize, Aborting, 111
DIGitize, setting up for execution, 161

DIRection,
:TRIGger:ADVanced:VIOLation:PWIDth:D
IRection command/query, 1154

DIRection, :TRIGger:PWIDth:DIRection
command/query, 1039

DIRection, :TRIGger:TRANsition:DIRection
command/query, 1083

DIRectory, :DISK:DIRectory? query, 303
Disabling Serial Poll, 111
discontinued and obsolete

commands, 1263
discrete derivative function, 357
Disk Commands, 299
Disk Commands, SEGMented, 316
Display Commands, 317
Display Commands, DATA?, 331
display persistence, 340
DISPlay, :BUS<N>:DISPlay

command/query, 198
DISPlay, :CHANnel<N>:DISPlay

command/query, 216
DISPlay, :CHANnel<N>:DISPlay:AUTO

command/query, 217
DISPlay, :CHANnel<N>:DISPlay:OFFSet

command/query, 218
DISPlay, :CHANnel<N>:DISPlay:RANGe

command/query, 219
DISPlay, :CHANnel<N>:DISPlay:SCALe

command/query, 220
DISPlay, :DIGital<N>:DISPlay

command/query, 294
DISPlay, :FUNCtion<F>:DISPlay

command/query, 358
DISPlay, :LISTer:DISPlay

command/query, 449
DISPlay, :POD<N>:DISPlay

command/query, 800
DISPlay, :SPRocessing:CTLequalizer:DISPlay

command/query, 923
DISPlay, :SPRocessing:FFEQualizer:DISPlay

command/query, 947
DISPlay, :WMEMory<N>:DISPlay

command/query, 1255
display, serial decode bus, 845
DIVide, :FUNCtion<F>:DIVide

command, 359
dividing functions, 359
DMAGnitude, :MEASure:FFT:DMAGnitude

command/query, 601
DPRinter, :HARDcopy:DPRinter

command/query, 399
Driver Electronics Code and Capability, 105
DSOurce,

:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce command/query, 1172

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:HTHReshold
command/query, 1173

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:H

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1443

OLD:DSOurce:LTHReshold
command/query, 1174

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce command/query, 1165

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:HTHReshold
command/query, 1166

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:LTHReshold
command/query, 1167

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce command/query, 1179

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:HTHReshold
command/query, 1180

DSOurce,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:LTHReshold
command/query, 1181

DSOurce, :TRIGger:SHOLd:DSOurce
command/query, 1069

DSP, :SYSTem:DSP command/query, 969
duplicate mnemonics, 77
DUTYcycle, :MEASure:DUTYcycle

command/query, 592

E

EADapter, :CHANnel<N>:PROBe:EADapter
command/query, 242

ECOupling, :CHANnel<N>:PROBe:ECOupling
command/query, 244

EDELay, :TRIGger:DELay:EDELay:COUNt
command/query, 1019

EDELay, :TRIGger:DELay:EDELay:SLOPe
command/query, 1021

EDELay, :TRIGger:DELay:EDELay:SOURce
command/query, 1020

EDGE, :ISCan:NONMonotonic:EDGE
command/query, 424

EDGE, :MEASure:CLOCk:METHod:EDGE
command/query, 564

EDGE, :MEASure:EDGE
command/query, 594

EDGE, :MEASure:RJDJ:EDGE
command/query, 691

EDGE,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:EDGE
command/query, 1171

EDGE,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:EDGE
command/query, 1164

EDGE,
:TRIGger:ADVanced:VIOLation:SETup:SH

OLd:CSOurce:EDGE
command/query, 1178

EDGE, :TRIGger:EDGE:COUPling
command/query, 1028

EDGE, :TRIGger:EDGE:SLOPe
command/query, 1029

EDGE, :TRIGger:EDGE:SOURce
command/query, 1030

EDGE, :TRIGger:SHOLd:CSOurce:EDGE
command/query, 1068

edges, measure all, 592, 594, 608, 636,
666, 668

EDLY,
:TRIGger:ADVanced:DELay:EDLY:ARM:SL
OPe command/query, 1125

EDLY,
:TRIGger:ADVanced:DELay:EDLY:ARM:S
OURce command/query, 1124

EDLY,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
DELay command/query, 1126

EDLY,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SLOPe command/query, 1128

EDLY,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SOURce command/query, 1127

EDLY,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SLOPe command/query, 1130

EDLY,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SOURce command/query, 1129

EHEight, :MEASure:CGRade:EHEight
command/query, 545

Ellipsis, ..., 72
embedded, commands, 84
embedded, strings, 67, 68, 82
Enable Register, 270
ENABle, :MTESt:ENABle

command/query, 490
ENABLE, :TIMebase:ROLL:ENABLE

command/query, 985
ENABle, :TRIGger:AND:ENABle

command/query, 996
ENABle, :TRIGger:SEQuence:RESet:ENABle

command/query, 1055
ENABle, :TRIGger:SEQuence:WAIT:ENABle

command/query, 1063
ENCode,

:TRIGger:ADVanced:COMM:ENCode
command/query, 1105

ENCode, :TRIGger:COMM:ENCode
command/query, 1012

End Of String (EOS), 83
End Of Text (EOT), 83
End-Or-Identify (EOI), 83
Enhanced Bandwidth, 165
ENUMber,

:TRIGger:ADVanced:TV:UDTV:ENUMber
command/query, 1146

ENUMber, :TRIGger:TV:UDTV:ENUMber
command/query, 1093

EOI and IEEE 488.2, 159
error messages, 1275
Error Messages table, 1282
error queue, 1276
error queue, and status reporting, 137
error queue, overflow, 1276
ERRor,

:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE
command/query, 868

error, in measurements, 534
error, numbers, 1277
error, query interrupt, 78, 94
ERRor?, :SYSTem:ERRor? query, 970
errors, exceptions to protocol, 115
ESB (Event Status Bit), 119, 286, 288
ESB (Event Summary Bit), 272
ESR (Standard Event Status Register), 127
ETIMe acquisition mode, 173
ETOedge, :MEASure:ETOedge

command, 596
event monitoring, 117
Event Registers Default, 104
Event Status Bit (ESB), 119
Event Status Enable (*ESE), Status

Reporting, 128
Event Status Register (*ESR?) query, 274
Event Summary Bit (ESB), 272
EVENt,

:TRIGger:ADVanced:DELay:EDLY:EVENt:
DELay command/query, 1126

EVENt,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SLOPe command/query, 1128

EVENt,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SOURce command/query, 1127

EVENt, :TRIGger:SEQuence:RESet:EVENt
command, 1059

EWIDth, :MEASure:CGRade:EWIDth
command/query, 547

EWINdow, :MEASure:CGRade:EWINdow
command/query, 549

Example Program, 91
Example Program, in initialization, 91
example programs, 1287
exceptions to protocol, 115
EXE bit, 272, 274
executing DIGITIZE, 161
Execution Error, 1279
Execution Error (EXE), Status Bit, 118
execution, errors, and command

errors, 1278
execution, of commands and order, 115
exponential notation, 81
exponents, 81
EXTernal, :CHANnel<N>:PROBe:EXTernal

command/query, 245
EXTernal,

:CHANnel<N>:PROBe:EXTernal:GAIN
command/query, 246

1444 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

EXTernal,
:CHANnel<N>:PROBe:EXTernal:OFFSet
command/query, 247

EXTernal,
:CHANnel<N>:PROBe:EXTernal:UNITs
command/query, 248

F

FACTors, :HARDcopy:FACTors
command/query, 400

FAIL, :ISCan:MEASurement:FAIL
command/query, 419

FAIL, :LTESt:FAIL command/query, 440
FAILures?, :MTESt:COUNt:FAILures?

query, 484
fall time measurement setup, 534
FALLtime, :MEASure:FALLtime

command/query, 597
FAST, :MTESt:FOLDing:FAST

command/query, 497
Fast, Worst Case Only option, 44, 497
FFEequalizer,

:SPRocessing:FFEequalizer:RATe
command/query, 951

FFEQualizer,
:SPRocessing:FFEQualizer:DISPlay
command/query, 947

FFEQualizer,
:SPRocessing:FFEQualizer:NPRecursor
command/query, 949

FFEQualizer,
:SPRocessing:FFEQualizer:NTAPs
command/query, 950

FFEQualizer,
:SPRocessing:FFEQualizer:SOURce
command/query, 948

FFEQualizer, :SPRocessing:FFEQualizer:TAP
command/query, 952

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:AUTomat
ic command, 956

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:BANDwi
dth command/query, 957

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:BWMode
command/query, 958

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:DELay
command/query, 955

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:PLENgth
command/query, 953

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:TDELay
command/query, 959

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:TDMode
command/query, 960

FFEQualizer,
:SPRocessing:FFEQualizer:TAP:WIDTh
command/query, 954

FFEQualizer,
:SPRocessing:FFEQualizer:VERTical
command/query, 961

FFEQualizer,
:SPRocessing:FFEQualizer:VERTical:OFF
Set command/query, 962

FFEQualizer,
:SPRocessing:FFEQualizer:VERTical:RA
NGe command/query, 963

FFT Commands, 534
FFT, :FUNCtion<F>:FFT:FREQuency

command/query, 360
FFT, :FUNCtion<F>:FFT:REFerence

command/query, 361
FFT, :FUNCtion<F>:FFT:RESolution?

query, 362
FFT, :FUNCtion<F>:FFT:TDELay

command/query, 363
FFT, :FUNCtion<F>:FFT:WINDow

command/query, 364
FFT, :MEASure:FFT:DFRequency

command/query, 599
FFT, :MEASure:FFT:DMAGnitude

command/query, 601
FFT, :MEASure:FFT:FREQuency

command/query, 603
FFT, :MEASure:FFT:MAGNitude

command/query, 604
FFT, :MEASure:FFT:PEAK1

command/query, 605
FFT, :MEASure:FFT:PEAK2

command/query, 606
FFT, :MEASure:FFT:THReshold

command/query, 607
FFTMagnitude, :FUNCtion<F>:FFTMagnitude

command, 366
FFTPhase, :FUNCtion<F>:FFTPhase

command, 367
FIELd, :TRIGger:ADVanced:TV:STV:FIELd

command/query, 1140
FLEXray serial bus commands, 863
FLEXray, :SBUS<N>:FLEXray:BAUDrate

command/query, 864
FLEXray, :SBUS<N>:FLEXray:CHANnel

command/query, 865
FLEXray, :SBUS<N>:FLEXray:SOURce

command/query, 866
FLEXray, :SBUS<N>:FLEXray:TRIGger

command/query, 867
FLEXray,

:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE
command/query, 868

FLEXray,
:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Base command/query, 869

FLEXray,
:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Repetition command/query, 870

FLEXray,
:SBUS<N>:FLEXray:TRIGger:FRAMe:ID
command/query, 871

FLEXray,
:SBUS<N>:FLEXray:TRIGger:FRAMe:TYP
E command/query, 872

FOLDing, :MTESt:FOLDing
command/query, 492

FOLDing, :MTESt:FOLDing:BITS
command/query, 494

FOLDing, :MTESt:FOLDing:COUNt
query, 496

FOLDing, :MTESt:FOLDing:FAST
command/query, 497

FOLDing, :MTESt:FOLDing:POSition
command/query, 499

FOLDing, :MTESt:FOLDing:SCALe
command/query, 501

FOLDing, :MTESt:FOLDing:TPOSition
command/query, 503

FOLDing, :MTESt:FOLDing:TSCale
command/query, 505

FORMat, :SBUS<N>:HS:FORMat
command/query, 875

FORMat, :WAVeform:FORMat
command/query, 1221

FORMat, and DATA, 1201
FormattedIO488 object, 88
formatting query responses, 965
fractional values, 81
FRAMe, :ACQuire:BANDwidth:FRAMe?

query, 167
FRAMe,

:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Base command/query, 869

FRAMe,
:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Repetition command/query, 870

FRAMe,
:SBUS<N>:FLEXray:TRIGger:FRAMe:ID
command/query, 871

FRAMe,
:SBUS<N>:FLEXray:TRIGger:FRAMe:TYP
E command/query, 872

FRAMe, :SBUS<N>:SPI:FRAMe:STATe
command/query, 902

FRAMe, :SBUS<N>:SPI:SOURce:FRAMe
command/query, 905

frequency measurement setup, 534
FREQuency, :FUNCtion<F>:FFT:FREQuency

command/query, 360
FREQuency, :MEASure:FFT:FREQuency

command/query, 603
FREQuency, :MEASure:FREQuency

command/query, 608
FUI?, :MTESt:COUNt:FUI? query, 485
full-scale vertical axis, 265
Function Commands, 347
function, and vertical scaling, 388
function, time scale, 348
functional elements of protocol, 114
functions, and VIEW, 1238

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1445

functions, combining in instructions, 77
FWAVeforms?, :MTESt:COUNt:FWAVeforms?

query, 486

G

gain and offset of a probe, 201
gain factor for user-defined probe, 246
GAIN, :CHANnel<N>:PROBe:EXTernal:GAIN

command/query, 246
GAIN, :CHANnel<N>:PROBe:GAIN

command/query, 249
GAIN, :SPRocessing:DFEQualizer:TAP:GAIN

command/query, 943
GATing, :FUNCtion<F>:GATing

command, 368
general SBUS<N> commands, 844
GENeral,

:MEASure:THResholds:GENeral:ABSolut
e command/query, 714

GENeral,
:MEASure:THResholds:GENeral:HYSTere
sis command/query, 716

GENeral,
:MEASure:THResholds:GENeral:METHod
command/query, 718

GENeral,
:MEASure:THResholds:GENeral:PERCen
t command/query, 720

GENeral,
:MEASure:THResholds:GENeral:TOPBas
e:ABSolute command/query, 722

GENeral,
:MEASure:THResholds:GENeral:TOPBas
e:METHod command/query, 724

GLITch, :TRIGger:GLITch:POLarity
command/query, 1032

GLITch, :TRIGger:GLITch:SOURce
command/query, 1033

GLITch, :TRIGger:GLITch:WIDTh
command/query, 1034

GPIB interface, 59
GPIB, Interface Connector, 103
GRATicule, :DISPlay:GRATicule

command, 336
GRATicule, :DISPlay:GRATicule

command/query, 332
GRATicule,

:DISPlay:GRATicule:AREA<N>:STATe
command/query, 333

GRATicule, :DISPlay:GRATicule:INTensity
command/query, 334

GRATicule, :DISPlay:GRATicule:NUMBer
command/query, 335

GRATicule, HARDcopy AREA, 398
Group Execute Trigger (GET), 111

H

Halting bus activity, 111

HAMPlitude, :MTESt:HAMPlitude
command/query, 507

Hardcopy Commands, 397
Hardcopy Commands, AREA, 398
hardcopy of the screen, 397
hardcopy output and message

termination, 115
HEAD, :CHANnel<N>:PROBe:HEAD:ADD

command, 250
HEAD, :CHANnel<N>:PROBe:HEAD:DELete

command, 251
HEAD, :CHANnel<N>:PROBe:HEAD:SELect

command/query, 252
HEAD, :CHANnel<N>:PROBe:HEAD:VTERm

command/query, 254
HEADer, :SYSTem:HEADer

command/query, 971
header, within instruction, 68
headers, 69
headers, types, 76
HIDE, :ISCan:ZONE:HIDE

command/query, 433
HIGHpass, :FUNCtion<F>:HIGHpass

command, 369
HiSLIP protocol, 61
Histogram Commands, 403
HISTogram, :MEASure:HISTogram:HITS

command/query, 610
HISTogram, :MEASure:HISTogram:M1S

command/query, 611
HISTogram, :MEASure:HISTogram:M2S

command/query, 612
HISTogram, :MEASure:HISTogram:M3S

command/query, 613
HISTogram, :MEASure:HISTogram:MAX

command/query, 614
HISTogram, :MEASure:HISTogram:MEAN

command/query, 615
HISTogram, :MEASure:HISTogram:MEDian

command/query, 616
HISTogram, :MEASure:HISTogram:MIN

command/query, 617
HISTogram, :MEASure:HISTogram:MODE

command/query, 618
HISTogram, :MEASure:HISTogram:PEAK

command/query, 619
HISTogram, :MEASure:HISTogram:PP

command/query, 620
HISTogram,

:MEASure:HISTogram:RESolution
command/query, 621

HISTogram, :MEASure:HISTogram:STDDev
command/query, 622

HISTogram, :MEASure:JITTer:HISTogram
command/query, 625

HITS, :MEASure:HISTogram:HITS
command/query, 610

HOLD,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce command/query, 1169

HOLD,
:TRIGger:ADVanced:VIOLation:SETup:H

OLD:CSOurce:EDGE
command/query, 1171

HOLD,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:LEVel
command/query, 1170

HOLD,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce command/query, 1172

HOLD,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:HTHReshold
command/query, 1173

HOLD,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:LTHReshold
command/query, 1174

HOLD,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:TIME command/query, 1175

HOLDoff, :TRIGger:HOLDoff
command/query, 998

HOLDoff, :TRIGger:HOLDoff:MAX
command/query, 999

HOLDoff, :TRIGger:HOLDoff:MIN
command/query, 1000

HOLDoff, :TRIGger:HOLDoff:MODE
command/query, 1001

HoldTIMe (HTIMe),
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:HoldTIMe (HTIMe)
command/query, 1183

HoldTIMe (HTIMe),
:TRIGger:SHOLd:HoldTIMe (HTIMe)
command/query, 1070

HOLDtime, :MEASure:HOLDtime
command/query, 623

horizontal scaling, functions, 348
HORizontal, :FUNCtion<F>:HORizontal

command/query, 370
HORizontal,

:FUNCtion<F>:HORizontal:POSition
command/query, 371

HORizontal,
:FUNCtion<F>:HORizontal:RANGe
command/query, 372

HORizontal, :HISTogram:HORizontal:BINS
command/query, 406

HORizontal,
:MEASure:JITTer:SPECtrum:HORizontal
command/query, 628

HORizontal,
:MEASure:JITTer:SPECtrum:HORizontal:
POSition command/query, 629

HORizontal,
:MEASure:JITTer:SPECtrum:HORizontal:
RANGe command/query, 630

horizontal, functions, controlling, 979
horizontal, offset, and XOFFset, 1259
horizontal, range, and XRANge, 1260
Host language, 68
HRESolution acquisition mode, 173

1446 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

HRESolution, :ACQuire:HRESolution
command/query, 171

HS serial bus commands, 873
HS, :SBUS<N>:HS:DESCramble

command/query, 874
HS, :SBUS<N>:HS:FORMat

command/query, 875
HS, :SBUS<N>:HS:IDLE

command/query, 876
HS, :SBUS<N>:HS:SOURce<S>

command/query, 877
HSYNc, :TRIGger:TV:UDTV:HSYNc

command/query, 1094
HTHReshold,

:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:HTHReshold
command/query, 1173

HTHReshold,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:HTHReshold
command/query, 1166

HTHReshold,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:HTHReshold
command/query, 1180

HTHReshold,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:HTHReshold
command/query, 1187

HTHReshold, :TRIGger:HTHReshold
command/query, 1002

HTIMe, :TRIGger:TV:UDTV:HTIMe
command/query, 1095

hue, 343
HYSTeresis,

:ISCan:NONMonotonic:HYSTeresis
command/query, 425

HYSTeresis, :ISCan:RUNT:HYSTeresis
command/query, 427

HYSTeresis,
:MEASure:THResholds:GENeral:HYSTere
sis command/query, 716

HYSTeresis,
:MEASure:THResholds:HYSTeresis
command/query, 726

HYSTeresis,
:MEASure:THResholds:RFALl:HYSTeresi
s command/query, 734

HYSTeresis,
:MEASure:THResholds:SERial:HYSTeresi
s command/query, 746

HYSTeresis, :TRIGger:HYSTeresis
command/query, 1003

I

id mode, 862
ID pattern, CAN trigger, 860
ID, :CHANnel<N>:PROBe:ID? query, 255
ID, :SBUS<N>:CAN:TRIGger:PATTern:ID

command/query, 860

ID,
:SBUS<N>:CAN:TRIGger:PATTern:ID:MO
DE command/query, 862

ID, :SBUS<N>:FLEXray:TRIGger:FRAMe:ID
command/query, 871

ID, :SBUS<N>:LIN:TRIGger:ID
command/query, 895

Identification Number (*IDN?) query, 275
IDLE, :SBUS<N>:HS:IDLE

command/query, 876
IEEE 488.1, 113
IEEE 488.1, and IEEE 488.2

relationship, 113
IEEE 488.2, 113
IEEE 488.2, compliance, 113
IEEE 488.2, conformity, 66
IEEE 488.2, Standard, 66
IEEE 488.2, Standard Status Data Structure

Model, 118
IIC clock source, 880
IIC data source, 881
IIC serial decode address field size, 879
IIC trigger commands, 878
IIC, :SBUS<N>:IIC:ASIZe

command/query, 879
IIC, :SBUS<N>:IIC:SOURce:CLOCk

command/query, 880
IIC, :SBUS<N>:IIC:SOURce:DATA

command/query, 881
IIC,

:SBUS<N>:IIC:TRIGger:PATTern:ADDRes
s command/query, 883, 885

IIC, :SBUS<N>:IIC:TRIGger:TYPE
command, 887

IMAGe, :DISK:SAVE:IMAGe command, 308
IMAGe, :HARDcopy:IMAGe

command/query, 401
IMPedance, :MTESt:IMPedance

command/query, 508
impedance, input, 221
IMPedance?, :MTESt:PROBe:IMPedance?

query, 513
INDex, :ACQuire:SEGMented:INDex

command/query, 184
individual commands language, 66
InfiniiScan Commands, 417
Infinity Representation, 156
initialization, 89
initialization, event status, 117
input buffer, 114
Input Buffer, Clearing, 111
input buffer, default condition, 115
input coupling, and COUPling?, 1198
INPut, :CHANnel<N>:INPut

command/query, 221
instruction headers, 69
Instrument Address, GPIB, 107
instrument status, 99
integer definition, 81
INTegrate, :FUNCtion<F>:INTegrate

command, 373
intensity, 334

INTensity, :DISPlay:GRATicule:INTensity
command/query, 334

Interface, Capabilities, 105
Interface, Clear (IFC), 111
interface, functions, 101
Interface, GPIB Select Code, 107
INTerpolate, :ACQuire:INTerpolate

command/query, 172
INTerpolate, :MEASure:RJDJ:INTerpolate

command/query, 692
interpreting commands, parser, 114
interrupted query, 78, 94
Introduction to Programming, 65
INVert, :FUNCtion<F>:INVert

command, 374
INVert, :MTESt:INVert

command/query, 509
inverting functions, 374
IO library, referencing, 87
IronPython, SCPI.NET example, 1409
ISIM, :CHANnel<N>:ISIM:APPLy

command/query, 222
ISIM, :CHANnel<N>:ISIM:BANDwidth

command/query, 223
ISIM, :CHANnel<N>:ISIM:BWLimit

command/query, 224
ISIM, :CHANnel<N>:ISIM:CONVolve

command/query, 225
ISIM, :CHANnel<N>:ISIM:CORRection

command/query, 226
ISIM, :CHANnel<N>:ISIM:DEConvolve

command/query, 228
ISIM, :CHANnel<N>:ISIM:DELay

command/query, 229
ISIM, :CHANnel<N>:ISIM:NORMalize

command/query, 230
ISIM, :CHANnel<N>:ISIM:PEXTraction

command/query, 231
ISIM, :CHANnel<N>:ISIM:SPAN

command/query, 233
ISIM, :CHANnel<N>:ISIM:STATe

command/query, 234

J

JITTer, :DISK:SAVE:JITTer command, 309
JITTer, :DISK:SAVE:LISTing command, 310
JITTer, :MEASure:CGRade:JITTer

command/query, 551
JITTer, :MEASure:JITTer:HISTogram

command/query, 625
JITTer, :MEASure:JITTer:MEASurement

command/query, 626
JITTer, :MEASure:JITTer:SPECtrum

command/query, 627
JITTer,

:MEASure:JITTer:SPECtrum:HORizontal
command/query, 628

JITTer,
:MEASure:JITTer:SPECtrum:HORizontal:
POSition command/query, 629

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1447

JITTer,
:MEASure:JITTer:SPECtrum:HORizontal:
RANGe command/query, 630

JITTer, :MEASure:JITTer:SPECtrum:VERTical
command/query, 631

JITTer,
:MEASure:JITTer:SPECtrum:VERTical:OF
FSet command/query, 632

JITTer,
:MEASure:JITTer:SPECtrum:VERTical:RA
NGe command/query, 633

JITTer,
:MEASure:JITTer:SPECtrum:VERTical:TY
PE command/query, 634

JITTer, :MEASure:JITTer:SPECtrum:WINDow
command/query, 635

JITTer, :MEASure:JITTer:STATistics
command/query, 636

JITTer, :MEASure:JITTer:TRENd
command/query, 637

JITTer, :MEASure:JITTer:TRENd:SMOoth
command/query, 638

JITTer,
:MEASure:JITTer:TRENd:SMOoth:POINts
command/query, 639

JITTer, :MEASure:JITTer:TRENd:VERTical
command/query, 640

JITTer,
:MEASure:JITTer:TRENd:VERTical:OFFSe
t command/query, 641

JITTer,
:MEASure:JITTer:TRENd:VERTical:RANG
e command/query, 642

JITTer, :STORe:JITTer command, 838
JTF, :MEASure:CLOCk:METHod:JTF

command/query, 566

K

Keysight Connection Expert, 60
Keysight Interactive IO application, 63
Keysight IO Control icon, 60
Keysight IO Libraries Suite, 4, 57, 61, 87,

89
Keysight IO Libraries Suite, installing, 58

L

LABel, :BUS<N>:LABel
command/query, 199

LABel, :CHANnel<N>:LABel
command/query, 235

LABel, :DIGital<N>:LABel
command/query, 295

LABel, :DISPlay:LABel
command/query, 337

LAMPlitude, :MTESt:LAMPlitude
command/query, 510

LAN interface, 59, 61
language for program examples, 66

LAYout, :DISPlay:LAYout
command/query, 338

Learn (*LRN?) query, 276
LENGth,

:SBUS<N>:CAN:TRIGger:PATTern:DATA:
LENGth command/query, 858

LENGth,
:SBUS<N>:LIN:TRIGger:PATTern:DATA:L
ENGth command/query, 897

LEVel, :TRIGger:ADVanced:COMM:LEVel
command/query, 1106

LEVel,
:TRIGger:ADVanced:PATTern:THReshold
:LEVel command/query, 1114

LEVel,
:TRIGger:ADVanced:STATe:THReshold:L
EVel command/query, 1121

LEVel,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:LEVel
command/query, 1170

LEVel,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:LEVel
command/query, 1163

LEVel,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:LEVel
command/query, 1177

LEVel, :TRIGger:LEVel
command/query, 1004

LEVel, :TRIGger:LEVel:FIFTy
command, 1005

LEVels, :DISPlay:CGRade:LEVels?
query, 326

Limit Test Commands, 439
LIN acknowledge, 890
LIN baud rate, 891
LIN serial bus commands, 889
LIN source, 892
LIN standard, 893
LIN, :SBUS<N>:LIN:SAMPlepoint

command/query, 890
LIN, :SBUS<N>:LIN:SIGNal:BAUDrate

command/query, 891
LIN, :SBUS<N>:LIN:SOURce

command/query, 892
LIN, :SBUS<N>:LIN:STANdard

command/query, 893
LIN, :SBUS<N>:LIN:TRIGger

command/query, 894
LIN, :SBUS<N>:LIN:TRIGger:ID

command/query, 895
LIN, :SBUS<N>:LIN:TRIGger:PATTern:DATA

command/query, 896
LIN,

:SBUS<N>:LIN:TRIGger:PATTern:DATA:L
ENGth command/query, 897

LINE, :DISPlay:LINE command, 1266
LINE, :TRIGger:ADVanced:TV:STV:LINE

command/query, 1141

LINE, :TRIGger:TV:LINE
command/query, 1088

linefeed, 83
List of Error Messages, 1282
Listener Code and Capability, 105
Listeners, Unaddressing All, 111
Lister Commands, 447
LLEVel, :ISCan:RUNT:LLEVel

command/query, 428
LLIMit, :HISTogram:WINDow:LLIMit

command/query, 413
LLIMit, :ISCan:MEASurement:LLIMit

command/query, 420
LLIMit, :LTESt:LLIMit command/query, 441
LOAD, :DISK:LOAD command, 304
LOAD, :MTESt:LOAD command, 511
LOAD, :WMEMory<N>:LOAD

command, 1256
loading and saving, 299
LOCation, :MEASure:NOISe:LOCation

command/query, 650
LOCK, :SYSTem:LOCK

command/query, 972
LOGic, :TRIGger:ADVanced:PATTern:LOGic

command/query, 1113
LOGic, :TRIGger:ADVanced:STATe:LOGic

command/query, 1118
LOGic, :TRIGger:PATTern:LOGic

command/query, 1037
LOGic, :TRIGger:STATe:LOGic

command/query, 1075
long-form headers, 79
LONGform, :SYSTem:LONGform

command/query, 973
lowercase, 79
lowercase, headers, 79
LOWPass, :FUNCtion<F>:LOWPass

command, 375
LTARget,

:SPRocessing:DFEQualizer:TAP:LTARget
command/query, 945

LTHReshold,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:LTHReshold
command/query, 1174

LTHReshold,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:LTHReshold
command/query, 1167

LTHReshold,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:LTHReshold
command/query, 1181

LTHReshold,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:LTHReshold
command/query, 1188

LTHReshold, :TRIGger:LTHReshold
command/query, 1006

LTYPe, :TRIGger:ADVanced:STATe:LTYPe
command/query, 1119

1448 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

LTYPe, :TRIGger:STATe:LTYPe
command/query, 1076

luminosity, 343

M

M1S, :MEASure:HISTogram:M1S
command/query, 611

M2S, :MEASure:HISTogram:M2S
command/query, 612

M3S, :MEASure:HISTogram:M3S
command/query, 613

MAGNify, :FUNCtion<F>:MAGNify
command, 376

MAGNitude, :MEASure:FFT:MAGNitude
command/query, 604

MAIN, :DISPlay:MAIN command/query, 339
making measurements, 535
Marker Commands, 451
Mask Test Commands, 469
Mask Test Commands, DELete, 489
mask, Service Request Enable

Register, 286
Master Summary Status (MSS), and

*STB, 288
Master Summary Status (MSS), Status

Bit, 119
MATLab, :FUNCtion<F>:MATLab

command, 377
MATLab, :FUNCtion<F>:MATLab:CONTrol1

command/query, 378
MATLab, :FUNCtion<F>:MATLab:CONTrol2

command/query, 379
MATLab, :FUNCtion<F>:MATLab:CONTrol3

command/query, 380
MATLab, :FUNCtion<F>:MATLab:OPERator

command/query, 381
MAV (Message Available), 119
MAV (Message Available), bit, 286, 288
MAX, :MEASure:HISTogram:MAX

command/query, 614
MAX, :SPRocessing:DFEQualizer:TAP:MAX

command/query, 941
MAX, :TRIGger:HOLDoff:MAX

command/query, 999
MAXimum, :FUNCtion<F>:MAXimum

command, 382
MDIRectory, :DISK:MDIRectory

command, 305
MEAN, :MEASure:HISTogram:MEAN

command/query, 615
measure all edges, 592, 594, 608, 636,

666, 668
Measure Commands, 527
Measure Commands, TMAX, 768
Measure Commands, TMIN, 769
Measure Commands, TVOLt, 770
Measure Commands, VMIDdle, 783
MEASure, RESults and statistics, 709

MEASurement,
:HISTogram:MEASurement:BINS
command/query, 407

MEASurement, :ISCan:MEASurement
command/query, 421

MEASurement, :ISCan:MEASurement:FAIL
command/query, 419

MEASurement, :ISCan:MEASurement:LLIMit
command/query, 420

MEASurement, :ISCan:MEASurement:ULIMit
command/query, 422

MEASurement, :LTESt:MEASurement
command/query, 442

MEASurement,
:MARKer:MEASurement:MEASurement
command, 453

MEASurement,
:MEASure:JITTer:MEASurement
command/query, 626

measurement, error, 534
measurement, setup, 534
MEASurements, :DISK:SAVE:MEASurements

command, 311
MEDian, :MEASure:HISTogram:MEDian

command/query, 616
memories, and VIEW, 1238
Message (MSG), Status Bit, 119
Message Available (MAV), and *OPC, 278
Message Available (MAV), Status Bit, 119
Message Communications and System

Functions, 113
Message Event Register, 125
message exchange protocols, of IEEE

488.2, 114
message, queue, 139
message, termination with hardcopy, 115
METHod, :MEASure:CLOCk:METHod

command/query, 559, 1271
METHod, :MEASure:CLOCk:METHod:ALIGn

command/query, 561
METHod,

:MEASure:CLOCk:METHod:DEEMphasis
command/query, 563

METHod, :MEASure:CLOCk:METHod:EDGE
command/query, 564

METHod, :MEASure:CLOCk:METHod:JTF
command/query, 566

METHod, :MEASure:CLOCk:METHod:OJTF
command/query, 568

METHod,
:MEASure:CLOCk:METHod:PLLTrack
command/query, 570

METHod, :MEASure:CLOCk:METHod:SOURce
command/query, 571

METHod, :MEASure:NOISe:METHod
command/query, 651

METHod, :MEASure:RJDJ:METHod
command/query, 693

METHod,
:MEASure:THResholds:GENeral:METHod
command/query, 718

METHod,
:MEASure:THResholds:GENeral:TOPBas
e:METHod command/query, 724

METHod, :MEASure:THResholds:METHod
command/query, 728

METHod,
:MEASure:THResholds:RFALl:METHod
command/query, 736

METHod,
:MEASure:THResholds:RFALl:TOPBase:
METHod command/query, 742

METHod,
:MEASure:THResholds:SERial:METHod
command/query, 748

METHod,
:MEASure:THResholds:SERial:TOPBase:
METHod command/query, 754

METHod,
:MEASure:THResholds:TOPBase:METHo
d command/query, 758

MHIStogram, :FUNCtion<F>:MHIStogram
command, 383

MIN, :MEASure:HISTogram:MIN
command/query, 617

MIN, :SPRocessing:DFEQualizer:TAP:MIN
command/query, 942

MIN, :TRIGger:HOLDoff:MIN
command/query, 1000

MINimum, :FUNCtion<F>:MINimum
command, 384

MISO data source, SPI, 906
MISO, :SBUS<N>:SPI:SOURce:MISO

command/query, 906
Mnemonic Truncation, 152
MODE, :ACQuire:MODE

command/query, 173
MODE, :CHANnel<N>:PROBe:MODE

command/query, 256
MODE,

:CHANnel<N>:PROBe:PRECprobe:MODE
command, 260

MODE, :HISTogram:MODE
command/query, 408

MODE, :ISCan:MODE command/query, 423
MODE, :ISCan:ZONE<N>:MODE

command/query, 435
MODE, :MARKer:MODE

command/query, 454
MODE, :MEASure:HISTogram:MODE

command/query, 618
MODe, :MEASure:RJDJ:MODe

command/query, 694
MODE,

:SBUS<N>:CAN:TRIGger:PATTern:ID:MO
DE command/query, 862

MODE, :TRIGger:ADVanced:VIOLation:MODE
command/query, 1151

MODE,
:TRIGger:ADVanced:VIOLation:SETup:M
ODE command/query, 1161

MODE, :TRIGger:DELay:MODE
command/query, 1022

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1449

MODE, :TRIGger:HOLDoff:MODE
command/query, 1001

MODE, :TRIGger:MODE
command/query, 1007

MODE, :TRIGger:SHOLd:MODE
command/query, 1071

MODE, :TRIGger:TV:MODE
command/query, 1089

mode, serial decode, 846
monitoring events, 117
MOSI data source, SPI, 907
MOSI, :SBUS<N>:SPI:SOURce:MOSI

command/query, 907
MSG bit, 286, 288
MSG, bit in the status register, 125
MSS bit and *STB, 288
MTRend, :FUNCtion<F>:MTRend

command, 385
Multiple numeric variables, 98
multiple, program commands, 85
multiple, queries, 98
multiple, subsystems, 85
MULTiply, :FUNCtion<F>:MULTiply

command, 386

N

N2750A probe, 256
N2893A probe, 240
N5444A probe head, 254
NAME, :MEASure:NAME

command/query, 643
NAME, :MEASurement<N>:NAME

command/query, 796
NCJitter, :MEASure:NCJitter

command/query, 644
NL (New Line), 83
NOISe, :MEASure:NOISe

command/query, 646
NOISe, :MEASure:NOISe:ALL? query, 647
NOISe, :MEASure:NOISe:BANDwidth

command/query, 649
NOISe, :MEASure:NOISe:LOCation

command/query, 650
NOISe, :MEASure:NOISe:METHod

command/query, 651
NOISe, :MEASure:NOISe:REPort

command/query, 652
NOISe, :MEASure:NOISe:RN

command/query, 653
NOISe, :MEASure:NOISe:SCOPe:RN

command/query, 654
NOISe, :MEASure:NOISe:STATe

command/query, 655
NOISe, :MEASure:NOISe:UNITs

command/query, 656
NONMonotonic,

:ISCan:NONMonotonic:EDGE
command/query, 424

NONMonotonic,
:ISCan:NONMonotonic:HYSTeresis
command/query, 425

NONMonotonic,
:ISCan:NONMonotonic:SOURce
command/query, 426

NORMalize, :CHANnel<N>:ISIM:NORMalize
command/query, 230

notices, 3
NPERiod, :MEASure:NPERiod

command/query, 657
NPRecursor,

:SPRocessing:FFEQualizer:NPRecursor
command/query, 949

NPULses, :MEASure:NPULses
command/query, 658

NREGions?, :MTESt:NREGions? query, 512
NTAPs, :SPRocessing:DFEQualizer:NTAPs

command/query, 937
NTAPs, :SPRocessing:FFEQualizer:NTAPs

command/query, 950
NTSC TV trigger mode, 1138
NUI, :MEASure:NUI command/query, 659
NUMBer, :DISPlay:GRATicule:NUMBer

command/query, 335
numeric, program data, 81
numeric, variable example, 96
numeric, variables, 96
NUMPoles,

:SPRocessing:CTLequalizer:NUMPoles
command/query, 926

NWIDth, :MEASure:NWIDth
command/query, 660

O

obsolete and discontinued
commands, 1263

offset and gain of a probe, 201
OFFSet, :CHANnel<N>:DISPlay:OFFSet

command/query, 218
OFFSet, :CHANnel<N>:OFFSet

command/query, 236
OFFSet,

:CHANnel<N>:PROBe:EXTernal:OFFSet
command/query, 247

OFFSet, :FUNCtion<F>:OFFSet
command/query, 387

OFFSet, :FUNCtion<F>:VERTical:OFFSet
command/query, 395

OFFSet, :MEASure:CLOCk:VERTical:OFFSet
command/query, 573

OFFSet,
:MEASure:JITTer:SPECtrum:VERTical:OF
FSet command/query, 632

OFFSet,
:MEASure:JITTer:TRENd:VERTical:OFFSe
t command/query, 641

OFFSet,
:SPRocessing:CTLequalizer:VERTical:OF
FSet command/query, 932

OFFSet,
:SPRocessing:FFEQualizer:VERTical:OFF
Set command/query, 962

OJTF, :MEASure:CLOCk:METHod:OJTF
command/query, 568

OPC bit, 273, 274
Open method, 88
OPER bit, 286, 288
operands and time scale, 348
operating the disk, 299
Operation Complete (*OPC)

command/query, 278
Operation Complete (*OPC), Status Bit, 119
operation status, 117
OPERator, :FUNCtion<F>:MATLab:OPERator

command/query, 381
Option (*OPT?) query, 279
Options, Program Headers, 79
order of commands and execution, 115
oscilloscope connection, opening, 88
oscilloscope connection, verifying, 60
Oscilloscope Default GPIB Address, 107
oscilloscope, connecting, 59
oscilloscope, operation, 4
oscilloscope, setting up, 59
oscilloscope, trigger modes and

commands, 994
output buffer, 78, 94
output queue, 78, 138
Output Queue, Clearing, 111
output queue, default condition, 115
output queue, definition, 114
OUTPut, :CALibrate:OUTPut

command/query, 204
overlapped and sequential commands, 157
OVERshoot, :MEASure:OVERshoot

command/query, 662

P

P1, :SPRocessing:CTLequalizer:P1
command/query, 927

P2, :SPRocessing:CTLequalizer:P2
command/query, 928

P3, :SPRocessing:CTLequalizer:P3
command/query, 929

PAL-M TV trigger mode, 1138
PAMPlitude, :MEASure:PAMPlitude

command/query, 664
Parallel Poll Code and Capability, 105
parametric measurements, 532
parser, 114
parser, default condition, 115
Parser, Resetting, 111
passing values across the bus, 78
pattern length, 858
PATTern, :ISCan:SERial:PATTern

command/query, 431
PATTern,

:SBUS<N>:CAN:TRIGger:PATTern:DATA
command/query, 856

1450 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

PATTern,
:SBUS<N>:CAN:TRIGger:PATTern:DATA:
LENGth command/query, 858

PATTern,
:SBUS<N>:CAN:TRIGger:PATTern:ID
command/query, 860

PATTern,
:SBUS<N>:CAN:TRIGger:PATTern:ID:MO
DE command/query, 862

PATTern,
:SBUS<N>:IIC:TRIGger:PATTern:ADDRes
s command/query, 883, 885

PATTern,
:SBUS<N>:LIN:TRIGger:PATTern:DATA
command/query, 896

PATTern,
:SBUS<N>:LIN:TRIGger:PATTern:DATA:L
ENGth command/query, 897

PATTern,
:SBUS<N>:SPI:TRIGger:PATTern:DATA
command/query, 909

PATTern,
:SBUS<N>:SPI:TRIGger:PATTern:WIDTh
command/query, 912

PATTern,
:TRIGger:ADVanced:COMM:PATTern
command/query, 1107

PATTern,
:TRIGger:ADVanced:PATTern:CONDition
command/query, 1112

PATTern, :TRIGger:ADVanced:PATTern:LOGic
command/query, 1113

PATTern,
:TRIGger:ADVanced:PATTern:THReshold
:LEVel command/query, 1114

PATTern,
:TRIGger:ADVanced:PATTern:THReshold
:POD<N> command/query, 1115

PATTern, :TRIGger:COMM:PATTern
command/query, 1013

PATTern, :TRIGger:PATTern:CONDition
command/query, 1036

PATTern, :TRIGger:PATTern:LOGic
command/query, 1037

PBASe, :MEASure:PBASe
command/query, 665

PDETect acquisition mode, 173
PEAK, :MEASure:HISTogram:PEAK

command/query, 619
PEAK1, :MEASure:FFT:PEAK1

command/query, 605
PEAK2, :MEASure:FFT:PEAK2

command/query, 606
peak-to-peak voltage, and VPP, 786
Pending Commands, Clearing, 111
PERCent,

:MEASure:THResholds:GENeral:PERCen
t command/query, 720

PERCent, :MEASure:THResholds:PERCent
command/query, 730

PERCent,
:MEASure:THResholds:RFALl:PERCent
command/query, 738

PERCent,
:MEASure:THResholds:SERial:PERCent
command/query, 750

PERCent, :TIMebase:REFerence:PERCent
command/query, 984

period measurement setup, 534
PERiod, :MEASure:PERiod

command/query, 666
PERSistence, :DISPlay:PERSistence

command/query, 340
PERSona, :SYSTem:PERSona

command/query, 974
PEXTraction,

:CHANnel<N>:ISIM:PEXTraction
command/query, 231

PGTHan,
:TRIGger:ADVanced:TV:UDTV:PGTHan
command/query, 1147

PGTHan, :TRIGger:TV:UDTV:PGTHan
command/query, 1096

PHASe, :MEASure:PHASe
command/query, 668

PLACement, :AUToscale:PLACement
command/query, 813

PLACement, :ISCan:ZONE<N>:PLACement
command/query, 436

PLENgth, :MEASure:RJDJ:PLENgth
command/query, 695

PLENgth,
:SPRocessing:FFEQualizer:TAP:PLENgth
command/query, 953

PLLTrack,
:MEASure:CLOCk:METHod:PLLTrack
command/query, 570

Pod Commands, 799
POD<N>,

:TRIGger:ADVanced:PATTern:THReshold
:POD<N> command/query, 1115

POINts, :ACQuire:POINts:ANALog
command/query, 175

POINts, :ACQuire:POINts:AUTO
command/query, 177

POINts, :ACQuire:POINts:DIGital?
query, 178

POINts,
:MEASure:JITTer:TRENd:SMOoth:POINts
command/query, 639

POINts?, :WAVeform:POINts? query, 1224
POLarity,

:TRIGger:ADVanced:COMM:POLarity
command/query, 1108

POLarity,
:TRIGger:ADVanced:TV:UDTV:POLarity
command/query, 1148

POLarity,
:TRIGger:ADVanced:VIOLation:PWIDth:P
OLarity command/query, 1155

POLarity, :TRIGger:COMM:POLarity
command/query, 1014

POLarity, :TRIGger:GLITch:POLarity
command/query, 1032

POLarity, :TRIGger:PWIDth:POLarity
command/query, 1040

POLarity, :TRIGger:RUNT:POLarity
command/query, 1045

POLarity, :TRIGger:TV:POLarity
command/query, 1090

POLarity, :TRIGger:TV:UDTV:POLarity
command/query, 1097

PON bit, 274
POSition,

:FUNCtion<F>:HORizontal:POSition
command/query, 371

POSition,
:MEASure:JITTer:SPECtrum:HORizontal:
POSition command/query, 629

POSition, :MTESt:FOLDing:POSition
command/query, 499

POSition, :TIMebase:POSition
command/query, 980

POSition, :TIMebase:WINDow:POSition
command/query, 989

position, and WINDow POSition, 989
pound sign (#) and block data, 97
Power On (PON) status bit, 118, 272
Power-on Status Clear (*PSC)

command/query, 282
Power-up Condition, 104
PP, :MEASure:HISTogram:PP

command/query, 620
PPULses, :MEASure:PPULses

command/query, 670
PREamble, :WAVeform:PREamble?

query, 1225
PRECprobe,

:CHANnel<N>:PROBe:PRECprobe:BAND
width command, 257

PRECprobe,
:CHANnel<N>:PROBe:PRECprobe:CALib
ration command, 258

PRECprobe,
:CHANnel<N>:PROBe:PRECprobe:DELay
command, 259

PRECprobe,
:CHANnel<N>:PROBe:PRECprobe:MODE
command, 260

PRECprobe,
:CHANnel<N>:PROBe:PRECprobe:ZSRC
command, 261

PRECprobe, :DISK:SAVE:PRECprobe
command, 312

PRESet, :SYSTem:PRESet command, 975
PREShoot, :MEASure:PREShoot

command/query, 671
PRINters?, :HARDcopy:PRINters?

query, 402
printing, specific screen data, 398
printing, the screen, 397
probe attenuation factor, 202
Probe Calibration, 201

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1451

PROBe, :CHANnel<N>:PROBe
command/query, 237

PROBe, :CHANnel<N>:PROBe:ACCAL
command/query, 238

PROBe, :CHANnel<N>:PROBe:ATTenuation
command/query, 239

PROBe, :CHANnel<N>:PROBe:AUTozero
command/query, 240

PROBe, :CHANnel<N>:PROBe:COUPling
command/query, 241

PROBe, :CHANnel<N>:PROBe:EADapter
command/query, 242

PROBe, :CHANnel<N>:PROBe:ECOupling
command/query, 244

PROBe, :CHANnel<N>:PROBe:EXTernal
command/query, 245

PROBe,
:CHANnel<N>:PROBe:EXTernal:GAIN
command/query, 246

PROBe,
:CHANnel<N>:PROBe:EXTernal:OFFSet
command/query, 247

PROBe,
:CHANnel<N>:PROBe:EXTernal:UNITs
command/query, 248

PROBe, :CHANnel<N>:PROBe:GAIN
command/query, 249

PROBe, :CHANnel<N>:PROBe:HEAD:ADD
command, 250

PROBe, :CHANnel<N>:PROBe:HEAD:DELete
command, 251

PROBe, :CHANnel<N>:PROBe:HEAD:SELect
command/query, 252

PROBe, :CHANnel<N>:PROBe:HEAD:VTERm
command/query, 254

PROBe, :CHANnel<N>:PROBe:ID?
query, 255

PROBe, :CHANnel<N>:PROBe:MODE
command/query, 256

PROBe,
:CHANnel<N>:PROBe:PRECprobe:BAND
width command, 257

PROBe,
:CHANnel<N>:PROBe:PRECprobe:CALib
ration command, 258

PROBe,
:CHANnel<N>:PROBe:PRECprobe:DELay
command, 259

PROBe,
:CHANnel<N>:PROBe:PRECprobe:MODE
command, 260

PROBe,
:CHANnel<N>:PROBe:PRECprobe:ZSRC
command, 261

PROBe, :CHANnel<N>:PROBe:SKEW
command/query, 263

PROBe, :CHANnel<N>:PROBe:STYPe
command/query, 264

PROBe, :MTESt:PROBe:IMPedance?
query, 513

program data, 75
Program example, 91

Program Header Options, 79
program message, 88
program message terminator, 83
program overview, initialization

example, 91
programming basics, 66
Programming Conventions, 151
programming examples, 1287
programming examples language, 66
Programming Getting Started, 86
PROPortion, :DISPlay:PROPortion

command/query, 341
protocol, exceptions and operation, 114
PSKew, :POD<N>:PSKew

command/query, 801
PTOP, :MEASure:PTOP

command/query, 673
pulse width measurement setup, 534
pulse width violation mode, 1152
PWD, :DISK:PWD? query, 306
PWIDth, :MEASure:PWIDth

command/query, 674
PWIDth,

:TRIGger:ADVanced:VIOLation:PWIDth:D
IRection command/query, 1154

PWIDth,
:TRIGger:ADVanced:VIOLation:PWIDth:P
OLarity command/query, 1155

PWIDth,
:TRIGger:ADVanced:VIOLation:PWIDth:S
OURce command/query, 1156

PWIDth,
:TRIGger:ADVanced:VIOLation:PWIDth:
WIDTh command/query, 1157

PWIDth, :TRIGger:PWIDth:DIRection
command/query, 1039

PWIDth, :TRIGger:PWIDth:POLarity
command/query, 1040

PWIDth, :TRIGger:PWIDth:SOURce
command/query, 1041

PWIDth, :TRIGger:PWIDth:TPOint
command/query, 1042

PWIDth, :TRIGger:PWIDth:WIDTh
command/query, 1043

Python, VISA COM example, 1318
Python, VISA example, 1369

Q

QFACtor, :MEASure:CGRade:QFACtor
command/query, 553

QUALified, :TRIGger:RUNT:QUALified
command/query, 1046

QUALifier<M>,
:MEASure:QUALifier<M>:CONDition
command/query, 676

QUALifier<M>,
:MEASure:QUALifier<M>:SOURce
command/query, 677

QUALifier<M>,
:MEASure:QUALifier<M>:STATe
command/query, 678

Query, 69, 78
Query Error, 1281
Query Error, QYE Status Bit, 119
query interrupt, 94
query, headers, 78
query, interrupt, 78
query, response, 94
query, responses, formatting, 965
question mark, 78
queue, output, 78
quoted strings, 1266
quotes, with embedded strings, 82
QYE bit, 273, 274

R

random jitter, specified, 697
random noise, specified, 653
RANGe, :CHANnel<N>:DISPlay:RANGe

command/query, 219
RANGe, :CHANnel<N>:RANGe

command/query, 265
RANGe, :FUNCtion<F>:HORizontal:RANGe

command/query, 372
RANGe, :FUNCtion<F>:RANGe

command/query, 388
RANGe, :FUNCtion<F>:VERTical:RANGe

command/query, 396
RANGe, :MEASure:CLOCk:VERTical:RANGe

command/query, 574
RANGe,

:MEASure:JITTer:SPECtrum:HORizontal:
RANGe command/query, 630

RANGe,
:MEASure:JITTer:SPECtrum:VERTical:RA
NGe command/query, 633

RANGe,
:MEASure:JITTer:TRENd:VERTical:RANG
e command/query, 642

RANGe,
:SPRocessing:CTLequalizer:VERTical:RA
NGe command/query, 933

RANGe,
:SPRocessing:FFEQualizer:VERTical:RA
NGe command/query, 963

RANGe, :TIMebase:RANGe
command/query, 981

RANGe, :TIMebase:WINDow:RANGe
command/query, 990

range, and WINDow RANGe, 990
RATe, :SPRocessing:CTLequalizer:RATe

command/query, 930
RATe, :SPRocessing:FFEequalizer:RATe

command/query, 951
ReadIEEEBlock method, 88
ReadList method, 88
ReadNumber method, 88

1452 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

READout, :BUS<N>:READout
command/query, 200

ReadSTB example, 123
ReadString method, 88
real number definition, 81
real time mode, 173
real time mode, and interpolation, 172
Recall (*RCL) command, 283
Receiving Common Commands, 269
Receiving Information from the

Instrument, 94
REDGe, :ACQuire:REDGe

command/query, 180
REFClock, :TIMebase:REFClock

command/query, 982
REFerence, :FUNCtion<F>:FFT:REFerence

command/query, 361
REFerence, :TIMebase:REFerence

command/query, 983
REFerence, :TIMebase:REFerence:PERCent

command/query, 984
register, save/recall, 283, 285
register, Standard Event Status Enable, 128
reliability of measured data, 117
remote control examples, 1287
Remote Local Code and Capability, 105
remote programming basics, 66
REPort, :MEASure:NOISe:REPort

command/query, 652
REPort, :MEASure:RJDJ:REPort

command/query, 696
representation of infinity, 156
Request Control (RQC), Status Bit, 119
Request Service (RQS), Default, 104
Request Service (RQS), status bit, 119
Reset (*RST) command, 284
RESet, :TRIGger:SEQuence:RESet:ENABle

command/query, 1055
RESet, :TRIGger:SEQuence:RESet:EVENt

command, 1059
RESet, :TRIGger:SEQuence:RESet:TIME

command/query, 1061
RESet, :TRIGger:SEQuence:RESet:TYPE

command/query, 1057
Resetting the Parser, 111
RESolution,

:MEASure:HISTogram:RESolution
command/query, 621

RESolution?, :FUNCtion<F>:FFT:RESolution?
query, 362

resource session object, 89
ResourceManager object, 88
RESPonse, :ACQuire:RESPonse

command/query, 182
response, data, 97
response, generation, 158
responses, buffered, 158
result state code, and SENDvalid, 704
RESults?, :LTESt:RESults? query, 443
RESults?, :MEASure:RESults? query, 679
Returning control to system computer, 111

RFALl,
:MEASure:THResholds:RFALl:ABSolute
command/query, 732

RFALl,
:MEASure:THResholds:RFALl:HYSTeresi
s command/query, 734

RFALl, :MEASure:THResholds:RFALl:METHod
command/query, 736

RFALl,
:MEASure:THResholds:RFALl:PERCent
command/query, 738

RFALl,
:MEASure:THResholds:RFALl:TOPBase:A
BSolute command/query, 740

RFALl,
:MEASure:THResholds:RFALl:TOPBase:
METHod command/query, 742

rise time measurement setup, 534
RISetime, :MEASure:RISetime

command/query, 682
RJ, :MEASure:RJDJ:RJ

command/query, 697
RJ, :MEASure:RJDJ:SCOPe:RJ

command/query, 698
RJDJ, :MEASure:RJDJ:ALL? query, 684
RJDJ, :MEASure:RJDJ:APLength?

query, 686
RJDJ, :MEASure:RJDJ:BANDwidth

command/query, 687
RJDJ, :MEASure:RJDJ:BER

command/query, 688
RJDJ, :MEASure:RJDJ:CLOCk

command/query, 690
RJDJ, :MEASure:RJDJ:EDGE

command/query, 691
RJDJ, :MEASure:RJDJ:INTerpolate

command/query, 692
RJDJ, :MEASure:RJDJ:METHod

command/query, 693
RJDJ, :MEASure:RJDJ:MODe

command/query, 694
RJDJ, :MEASure:RJDJ:PLENgth

command/query, 695
RJDJ, :MEASure:RJDJ:REPort

command/query, 696
RJDJ, :MEASure:RJDJ:RJ

command/query, 697
RJDJ, :MEASure:RJDJ:SCOPe:RJ

command/query, 698
RJDJ, :MEASure:RJDJ:SOURce

command/query, 699
RJDJ, :MEASure:RJDJ:STATe

command/query, 700
RJDJ, :MEASure:RJDJ:TJRJDJ? query, 701
RJDJ, :MEASure:RJDJ:UNITs

command/query, 702
RLIMit, :HISTogram:WINDow:RLIMit

command/query, 414
RMS voltage, and VRMS, 788
RN, :MEASure:NOISe:RN

command/query, 653

RN, :MEASure:NOISe:SCOPe:RN
command/query, 654

ROLL, :TIMebase:ROLL:ENABLE
command/query, 985

Root level commands, 805
ROW, :DISPlay: ROW command

query, 1267
ROW, :DISPlay:STATus:ROW command

query, 345
RQC (Request Control), 119
RQC (Request Control), bit, 273, 274
RQS (Request Service), 119
RQS (Request Service), and *STB, 288
RQS (Request Service), Default, 104
RQS/MSS bit, 288
RSI, Description;Repetitive Strain Injury,

Description, 145
RTIMe acquisition mode, 173
rule of truncation, 152
rules of traversal, 153
RUMode, :MTESt:RUMode

command/query, 514
RUMode, :MTESt:RUMode:SOFailure

command/query, 515
run state, 831
RUN, and GET relationship, 111
RUNT, :ISCan:RUNT:HYSTeresis

command/query, 427
RUNT, :ISCan:RUNT:LLEVel

command/query, 428
RUNT, :ISCan:RUNT:SOURce

command/query, 429
RUNT, :ISCan:RUNT:ULEVel

command/query, 430
RUNT, :TRIGger:RUNT:POLarity

command/query, 1045
RUNT, :TRIGger:RUNT:QUALified

command/query, 1046
RUNT, :TRIGger:RUNT:SOURce

command/query, 1047
RUNT, :TRIGger:RUNT:TIME

command/query, 1048

S

SAMPlepoint, :SBUS<N>:CAN:SAMPlepoint
command/query, 848

SAMPlepoint, :SBUS<N>:LIN:SAMPlepoint
command/query, 890

sampling mode, 173
saturation, 343
Save (*SAV) command, 285
SAVE, :DISK:SAVE:COMPosite

command, 307
SAVE, :DISK:SAVE:IMAGe command, 308
SAVE, :DISK:SAVE:JITTer command, 309
SAVE, :DISK:SAVE:LISTing command, 310
SAVE, :DISK:SAVE:MEASurements

command, 311
SAVE, :DISK:SAVE:PRECprobe

command, 312

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1453

SAVE, :DISK:SAVE:SETup command, 313
SAVE, :DISK:SAVE:WAVeform

command, 314
SAVE, :MTESt:AMASk:SAVE command, 477
SAVE, :WMEMory<N>:SAVE

command, 1257
save/recall register, 283, 285
saving and loading, 299
SBUS CAN commands, 847
SBUS FLEXray commands, 863
SBUS HS commands, 873
SBUS LIN commands, 889
SBUS<N> commands, general, 844
SCALe, :CHANnel<N>:DISPlay:SCALe

command/query, 220
SCALe, :CHANnel<N>:SCALe

command/query, 266
SCALe, :HISTogram:SCALe:SIZE

command/query, 409
SCALe, :MTESt:FOLDing:SCALe

command/query, 501
SCALe, :MTESt:SCALe:BIND

command/query, 516
SCALe, :MTESt:SCALe:X1

command/query, 517
SCALe, :MTESt:SCALe:XDELta

command/query, 518
SCALe, :MTESt:SCALe:Y1

command/query, 519
SCALe, :MTESt:SCALe:Y2

command/query, 520
SCALe, :TIMebase:SCALe

command/query, 986
SCALe, :TIMebase:WINDow:SCALe

command/query, 991
SCHeme, :DISPlay:CGRade:SCHeme

command/query, 328
SCOLor, :DISPlay:SCOLor

command/query, 342
SCOPe, :MEASure:NOISe:SCOPe:RN

command/query, 654
SCOPe, :MEASure:RJDJ:SCOPe:RJ

command/query, 698
SCOPETEST, :SELFtest:SCOPETEST

command/query, 919
SCPI.NET example in C#, 1395
SCPI.NET example in IronPython, 1409
SCPI.NET example in Visual Basic

.NET, 1402
SCPI.NET examples, 1395
SCRatch, :MEASure:SCRatch

command, 703
SCReen, HARDcopy AREA, 398
SEGHres acquisition mode, 174
SEGMented acquisition mode, 174
SEGMented, :ACQuire:SEGMented:COUNt

command/query, 183
SEGMented, :ACQuire:SEGMented:INDex

command/query, 184
SEGMented, :ACQuire:SEGMented:TTAGs

command/query, 185

SEGMented, :DISK:SEGMented
command/query, 316

SEGMented, :WAVeform:SEGMented:ALL
command/query, 1230

SEGMented,
:WAVeform:SEGMented:COUNt?
query, 1231

SEGMented, :WAVeform:SEGMented:TTAG?
query, 1232

SEGMented, :WAVeform:SEGMented:XLISt?
query, 1233

SEGPdetect acquisition mode, 174
SELect, :CHANnel<N>:PROBe:HEAD:SELect

command/query, 252
Selected Device Clear (SDC), 111
Selecting Multiple Subsystems, 85
self test, 291
Self-Test Commands, 917
semicolon usage, 77
sending compound queries, 115
SENDvalid, :MEASure:SENDvalid

command/query, 704
separator, 70
SEQuence,

:TRIGger:SEQuence:RESet:ENABle
command/query, 1055

SEQuence, :TRIGger:SEQuence:RESet:EVENt
command, 1059

SEQuence, :TRIGger:SEQuence:RESet:TIME
command/query, 1061

SEQuence, :TRIGger:SEQuence:RESet:TYPE
command/query, 1057

SEQuence, :TRIGger:SEQuence:TERM1
command/query, 1051

SEQuence, :TRIGger:SEQuence:TERM2
command/query, 1053

SEQuence,
:TRIGger:SEQuence:WAIT:ENABle
command/query, 1063

SEQuence, :TRIGger:SEQuence:WAIT:TIME
command/query, 1065

Sequential and Overlapped
Commands, 157

Serial Bus Commands, 843
Serial Data Equalization Commands, 921
serial decode bus display, 845
serial decode mode, 846
serial poll, (ReadSTB) in example, 123
Serial Poll, Disabling, 111
serial poll, of the Status Byte Register, 123
serial prefix, reading, 275
SERial, :ISCan:SERial:PATTern

command/query, 431
SERial, :ISCan:SERial:SOURce

command/query, 432
SERial,

:MEASure:THResholds:SERial:ABSolute
command/query, 744

SERial,
:MEASure:THResholds:SERial:HYSTeresi
s command/query, 746

SERial,
:MEASure:THResholds:SERial:METHod
command/query, 748

SERial,
:MEASure:THResholds:SERial:PERCent
command/query, 750

SERial,
:MEASure:THResholds:SERial:TOPBase:
ABSolute command/query, 752

SERial,
:MEASure:THResholds:SERial:TOPBase:
METHod command/query, 754

Service Request Enabl, (*SRE)
command/query, 286

Service Request Enable, Register
(SRE), 124

Service Request Enable, Register Bits, 286
Service Request Enable, Register

Default, 104
Service Request, Code and Capability, 105
set up oscilloscope, 59
SET, :DISPlay:BOOKmark<N>:SET

command, 319
SETGrat, :DISPlay:GRATicule:SETGrat

command, 336
setting up, for programming, 86
setting up, the instrument, 90
setting, bits in the Service Request Enable

Register, 124
setting, horizontal tracking, 370
setting, Standard Event Status Enable

Register bits, 128
setting, time and date, 978
setting, TRG bit, 126
setting, voltage and time markers, 451
setup recall, 283
setup violation mode, 1158
SETup, :DISK:SAVE:SETup command, 313
SETup, :RECall:SETup command, 830
SETup, :STORe:SETup command, 839
SETup, :SYSTem:SETup

command/query, 976
SETup,

:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce command/query, 1169

SETup,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:EDGE
command/query, 1171

SETup,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:LEVel
command/query, 1170

SETup,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce command/query, 1172

SETup,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:HTHReshold
command/query, 1173

SETup,
:TRIGger:ADVanced:VIOLation:SETup:H

1454 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

OLD:DSOurce:LTHReshold
command/query, 1174

SETup,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:TIME command/query, 1175

SETup,
:TRIGger:ADVanced:VIOLation:SETup:M
ODE command/query, 1161

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce command/query, 1162

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:EDGE
command/query, 1164

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:LEVel
command/query, 1163

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce command/query, 1165

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:HTHReshold
command/query, 1166

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:LTHReshold
command/query, 1167

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:TIME command/query, 1168

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce command/query, 1176

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:EDGE
command/query, 1178

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:LEVel
command/query, 1177

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce command/query, 1179

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:HTHReshold
command/query, 1180

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:LTHReshold
command/query, 1181

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:HoldTIMe (HTIMe)
command/query, 1183

SETup,
:TRIGger:ADVanced:VIOLation:SETup:SH

OLd:SetupTIMe (STIMe)
command/query, 1182

SetupTIMe (STIMe),
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:SetupTIMe (STIMe)
command/query, 1182

SETuptime, :MEASure:SETuptime
command/query, 705

SetupTIMe, :TRIGger:SHOLd:SetupTIMe
command/query, 1072

SHAPe, :MEASure:TIEFilter:SHAPe
command/query, 763

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce command/query, 1176

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:EDGE
command/query, 1178

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:LEVel
command/query, 1177

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce command/query, 1179

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:HTHReshold
command/query, 1180

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:LTHReshold
command/query, 1181

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:HoldTIMe (HTIMe)
command/query, 1183

SHOLd,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:SetupTIMe (STIMe)
command/query, 1182

SHOLd, :TRIGger:SHOLd:CSOurce
command/query, 1067

SHOLd, :TRIGger:SHOLd:CSOurce:EDGE
command/query, 1068

SHOLd, :TRIGger:SHOLd:DSOurce
command/query, 1069

SHOLd, :TRIGger:SHOLd:HoldTIMe (HTIMe)
command/query, 1070

SHOLd, :TRIGger:SHOLd:MODE
command/query, 1071

SHOLd, :TRIGger:SHOLd:SetupTIMe
command/query, 1072

Short form, 79
short-form headers, 79
short-form mnemonics, 152
SICL example in C, 1376
SICL example in Visual Basic, 1385
SICL examples, 1376
SIGNal, :SBUS<N>:CAN:SIGNal:BAUDrate

command/query, 849

SIGNal, :SBUS<N>:CAN:SIGNal:DEFinition
command/query, 850

SIGNal, :SBUS<N>:LIN:SIGNal:BAUDrate
command/query, 891

simple command header, 76
SIZE, :DIGital<N>:SIZE

command/query, 296
SIZE, :HISTogram:SCALe:SIZE

command/query, 409
SKEW, :CALibrate:SKEW

command/query, 205
SKEW, :CHANnel<N>:DIFFerential:SKEW

command/query, 215
SKEW, :CHANnel<N>:PROBe:SKEW

command/query, 263
SLEWrate, :MEASure:SLEWrate

command/query, 707
SLOPe, :BUS<N>:CLOCk:SLOPe

command/query, 197
SLOPe, :SBUS<N>:SPI:CLOCk:SLOPe

command/query, 900
SLOPe,

:TRIGger:ADVanced:DELay:EDLY:ARM:SL
OPe command/query, 1125

SLOPe,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SLOPe command/query, 1128

SLOPe,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SLOPe command/query, 1130

SLOPe,
:TRIGger:ADVanced:DELay:TDLY:ARM:SL
OPe command/query, 1134

SLOPe,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SLOPe command/query, 1137

SLOPe, :TRIGger:ADVanced:STATe:SLOPe
command/query, 1120

SLOPe, :TRIGger:DELay:ARM:SLOPe
command/query, 1018

SLOPe, :TRIGger:DELay:EDELay:SLOPe
command/query, 1021

SLOPe, :TRIGger:DELay:TRIGger:SLOPe
command/query, 1025

SLOPe, :TRIGger:EDGE:SLOPe
command/query, 1029

SLOPe, :TRIGger:STATe:SLOPe
command/query, 1077

SMOoth, :FUNCtion<F>:SMOoth
command, 389

SMOoth, :MEASure:JITTer:TRENd:SMOoth
command/query, 638

SMOoth,
:MEASure:JITTer:TRENd:SMOoth:POINts
command/query, 639

SOFailure, :MTESt:RUMode:SOFailure
command/query, 515

software version, reading, 275
source, 851, 892
SOURce, :HISTogram:WINDow:SOURce

command/query, 412

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1455

SOURce, :ISCan:NONMonotonic:SOURce
command/query, 426

SOURce, :ISCan:RUNT:SOURce
command/query, 429

SOURce, :ISCan:SERial:SOURce
command/query, 432

SOURce, :ISCan:ZONE:SOURce
command/query, 434

SOURce, :MEASure:CLOCk:METHod:SOURce
command/query, 571

SOURce, :MEASure:QUALifier<M>:SOURce
command/query, 677

SOURce, :MEASure:RJDJ:SOURce
command/query, 699

SOURce, :MEASure:SOURce
command/query, 708

SOURce, :MEASurement<N>:SOURce
command/query, 797

SOURce, :MTESt:AMASk:SOURce
command/query, 475

SOURce, :MTESt:SOURce
command/query, 521

SOURce, :MTESt:TRIGger:SOURce
command/query, 526

SOURce, :SBUS<N>:CAN:SOURce
command/query, 851

SOURce, :SBUS<N>:FLEXray:SOURce
command/query, 866

SOURce, :SBUS<N>:IIC:SOURce:CLOCk
command/query, 880

SOURce, :SBUS<N>:IIC:SOURce:DATA
command/query, 881

SOURce, :SBUS<N>:LIN:SOURce
command/query, 892

SOURce, :SBUS<N>:SPI:SOURce:CLOCk
command/query, 903

SOURce, :SBUS<N>:SPI:SOURce:DATA
command/query, 904

SOURce, :SBUS<N>:SPI:SOURce:FRAMe
command/query, 905

SOURce, :SBUS<N>:SPI:SOURce:MISO
command/query, 906

SOURce, :SBUS<N>:SPI:SOURce:MOSI
command/query, 907

SOURce,
:SPRocessing:CTLequalizer:SOURce
command/query, 924

SOURce,
:SPRocessing:DFEQualizer:SOURce
command/query, 936

SOURce, :SPRocessing:FFEQualizer:SOURce
command/query, 948

SOURce,
:TRIGger:ADVanced:COMM:SOURce
command/query, 1109

SOURce,
:TRIGger:ADVanced:DELay:EDLY:ARM:S
OURce command/query, 1124

SOURce,
:TRIGger:ADVanced:DELay:EDLY:EVENt:
SOURce command/query, 1127

SOURce,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SOURce command/query, 1129

SOURce,
:TRIGger:ADVanced:DELay:TDLY:ARM:S
OURce command/query, 1133

SOURce,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SOURce command/query, 1136

SOURce,
:TRIGger:ADVanced:TV:STV:SOURce
command/query, 1142

SOURce,
:TRIGger:ADVanced:TV:UDTV:SOURce
command/query, 1149

SOURce,
:TRIGger:ADVanced:VIOLation:PWIDth:S
OURce command/query, 1156

SOURce,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce command/query, 1186

SOURce,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:HTHReshold
command/query, 1187

SOURce,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:LTHReshold
command/query, 1188

SOURce, :TRIGger:AND:SOURce
command/query, 997

SOURce, :TRIGger:COMM:SOURce
command/query, 1015

SOURce, :TRIGger:DELay:ARM:SOURce
command/query, 1017

SOURce, :TRIGger:DELay:EDELay:SOURce
command/query, 1020

SOURce, :TRIGger:DELay:TRIGger:SOURce
command/query, 1024

SOURce, :TRIGger:EDGE:SOURce
command/query, 1030

SOURce, :TRIGger:GLITch:SOURce
command/query, 1033

SOURce, :TRIGger:PWIDth:SOURce
command/query, 1041

SOURce, :TRIGger:RUNT:SOURce
command/query, 1047

SOURce, :TRIGger:TIMeout:SOURce
command/query, 1080

SOURce, :TRIGger:TRANsition:SOURce
command/query, 1084

SOURce, :TRIGger:TV:SOURce
command/query, 1091

SOURce, :TRIGger:WINDow:SOURce
command/query, 1100

SOURce, :WAVeform:SOURce
command/query, 1234

SOURce, and measurements, 535
SOURce<S>, :SBUS<N>:HS:SOURce<S>

command/query, 877
spaces and commas, 75

SPAN, :CHANnel<N>:ISIM:SPAN
command/query, 233

specified random jitter, 697
specified random noise, 653
SPECtrum, :MEASure:JITTer:SPECtrum

command/query, 627
SPECtrum,

:MEASure:JITTer:SPECtrum:HORizontal
command/query, 628

SPECtrum,
:MEASure:JITTer:SPECtrum:HORizontal:
POSition command/query, 629

SPECtrum,
:MEASure:JITTer:SPECtrum:HORizontal:
RANGe command/query, 630

SPECtrum,
:MEASure:JITTer:SPECtrum:VERTical
command/query, 631

SPECtrum,
:MEASure:JITTer:SPECtrum:VERTical:OF
FSet command/query, 632

SPECtrum,
:MEASure:JITTer:SPECtrum:VERTical:RA
NGe command/query, 633

SPECtrum,
:MEASure:JITTer:SPECtrum:VERTical:TY
PE command/query, 634

SPECtrum,
:MEASure:JITTer:SPECtrum:WINDow
command/query, 635

spelling of headers, 79
SPI clock slope, 900
SPI clock source, 903
SPI clock timeout, 901
SPI decode bit order, 899
SPI decode type, 915
SPI decode word width, 916
SPI frame source, 905
SPI frame state, 902
SPI trigger commands, 898
SPI trigger data pattern, 909
SPI trigger pattern width, 912
SPI trigger type, 914
SPI, :SBUS<N>:SPI:BITorder

command/query, 899
SPI, :SBUS<N>:SPI:CLOCk:SLOPe

command/query, 900
SPI, :SBUS<N>:SPI:CLOCk:TIMeout

command/query, 901
SPI, :SBUS<N>:SPI:FRAMe:STATe

command/query, 902
SPI, :SBUS<N>:SPI:SOURce:CLOCk

command/query, 903
SPI, :SBUS<N>:SPI:SOURce:DATA

command/query, 904
SPI, :SBUS<N>:SPI:SOURce:FRAMe

command/query, 905
SPI, :SBUS<N>:SPI:SOURce:MISO

command/query, 906
SPI, :SBUS<N>:SPI:SOURce:MOSI

command/query, 907

1456 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

SPI, :SBUS<N>:SPI:TRIGger:PATTern:DATA
command/query, 909

SPI, :SBUS<N>:SPI:TRIGger:PATTern:WIDTh
command/query, 912

SPI, :SBUS<N>:SPI:TRIGger:TYPE
command/query, 914

SPI, :SBUS<N>:SPI:TYPE
command/query, 915

SPI, :SBUS<N>:SPI:WIDTh
command/query, 916

SPOLarity,
:TRIGger:ADVanced:TV:STV:SPOLarity
command/query, 1143

SQRT, :FUNCtion<F>:SQRT command, 390
Square Brackets, 73
SQUare, :FUNCtion<F>:SQUare

command, 391
SRATe, :ACQuire:SRATe:ANALog

command/query, 186
SRATe, :ACQuire:SRATe:ANALog:AUTO

command/query, 187
SRATe, :ACQuire:SRATe:DIGital

command/query, 188
SRATe, :ACQuire:SRATe:DIGital:AUTO

command/query, 189
SRE (Service Request Enable

Register), 124
Standard Event Status Enable Register,

(SESER), 128
Standard Event Status Enable Register,

Bits, 272
Standard Event Status Enable Register,

Default, 104
Standard Event Status Register (ESR), 127
Standard Event Status Register, bits, 274
Standard Status Data Structure Model, 118
STANdard, :SBUS<N>:LIN:STANdard

command/query, 893
STANdard, :TRIGger:TV:STANdard

command/query, 1092
standard, LIN, 893
STARt, :MEASure:TIEFilter:STARt

command/query, 764
STARt, :MTESt:STARt command, 522
STATe, :ACQuire:COMPlete:STATe

command/query, 170
STATe, :CHANnel<N>:ISIM:STATe

command/query, 234
STATe, :DISPlay:GRATicule:AREA<N>:STATe

command/query, 333
STATe, :ISCan:ZONE<N>:STATe

command/query, 437
STATe, :MEASure:NOISe:STATe

command/query, 655
STATe, :MEASure:QUALifier<M>:STATe

command/query, 678
STATe, :MEASure:RJDJ:STATe

command/query, 700
STATe, :MEASure:TIEFilter:STATe

command/query, 765
STATe, :SBUS<N>:SPI:FRAMe:STATe

command/query, 902

STATe, :SPRocessing:DFEQualizer:STATe
command/query, 935

STATe, :TRIGger:ADVanced:STATe:CLOCk
command/query, 1117

STATe, :TRIGger:ADVanced:STATe:LOGic
command/query, 1118

STATe, :TRIGger:ADVanced:STATe:LTYPe
command/query, 1119

STATe, :TRIGger:ADVanced:STATe:SLOPe
command/query, 1120

STATe,
:TRIGger:ADVanced:STATe:THReshold:L
EVel command/query, 1121

STATe, :TRIGger:STATe:CLOCk
command/query, 1074

STATe, :TRIGger:STATe:LOGic
command/query, 1075

STATe, :TRIGger:STATe:LTYPe
command/query, 1076

STATe, :TRIGger:STATe:SLOPe
command/query, 1077

state, acquisition, 809
state, run, 831
STATistics, :MEASure:JITTer:STATistics

command/query, 636
STATistics, :MEASure:STATistics

command/query, 709
status, 99
Status Byte (*STB?) query, 288
Status Byte Register, 122
Status Byte Register, and serial

polling, 123
Status Byte Register, bits, 288
Status Registers, 99, 270
Status Reporting, 117
Status Reporting Decision Chart, 140
Status Reporting, Bit Definitions, 118
Status Reporting, Data Structures, 120
STATus, :CALibrate:STATus? query, 206
STATus, :DISPlay:STATus:COL command

query, 344
STATus, :DISPlay:STATus:ROW command

query, 345
status, of an operation, 117
STDDev, :MEASure:HISTogram:STDDev

command/query, 622
STIMe, :MTESt:STIMe

command/query, 524
STOP, :MEASure:TIEFilter:STOP

command/query, 766
STOP, :MTESt:STOP command, 523
STReaming, :WAVeform:STReaming

command/query, 1236
string variables, 95
string variables, example, 95
STRing, :DISPlay:STRing command, 1268
string, quoted, 1266
strings, alphanumeric, 80
STV commands, 1138
STV, :TRIGger:ADVanced:TV:STV:FIELd

command/query, 1140

STV, :TRIGger:ADVanced:TV:STV:LINE
command/query, 1141

STV, :TRIGger:ADVanced:TV:STV:SOURce
command/query, 1142

STV, :TRIGger:ADVanced:TV:STV:SPOLarity
command/query, 1143

STYPe, :CHANnel<N>:PROBe:STYPe
command/query, 264

SUBTract, :FUNCtion<F>:SUBTract
command, 392

suffix multipliers, 81, 115
suffix units, 116
summary bits, 122
SWEep, :TRIGger:SWEep

command/query, 1009
syntax error, 1278
System Commands, 965
System Computer, Returning control

to, 111
SYSTem:SETup and *LRN, 277

T

TAB, :DISPlay:TAB command/query, 346
Talker, Code and Capability, 105
Talker, Unaddressing, 111
TAP, :SPRocessing:DFEQualizer:TAP

command/query, 938
TAP,

:SPRocessing:DFEQualizer:TAP:AUToma
tic command, 946

TAP, :SPRocessing:DFEQualizer:TAP:DELay
command/query, 940

TAP, :SPRocessing:DFEQualizer:TAP:GAIN
command/query, 943

TAP, :SPRocessing:DFEQualizer:TAP:LTARget
command/query, 945

TAP, :SPRocessing:DFEQualizer:TAP:MAX
command/query, 941

TAP, :SPRocessing:DFEQualizer:TAP:MIN
command/query, 942

TAP,
:SPRocessing:DFEQualizer:TAP:UTARget
command/query, 944

TAP, :SPRocessing:DFEQualizer:TAP:WIDTh
command/query, 939

TAP, :SPRocessing:FFEQualizer:TAP
command/query, 952

TAP,
:SPRocessing:FFEQualizer:TAP:AUTomat
ic command, 956

TAP,
:SPRocessing:FFEQualizer:TAP:BANDwi
dth command/query, 957

TAP,
:SPRocessing:FFEQualizer:TAP:BWMode
command/query, 958

TAP, :SPRocessing:FFEQualizer:TAP:DELay
command/query, 955

TAP, :SPRocessing:FFEQualizer:TAP:PLENgth
command/query, 953

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1457

TAP, :SPRocessing:FFEQualizer:TAP:TDELay
command/query, 959

TAP, :SPRocessing:FFEQualizer:TAP:TDMode
command/query, 960

TAP, :SPRocessing:FFEQualizer:TAP:WIDTh
command/query, 954

TDELay, :FUNCtion<F>:FFT:TDELay
command/query, 363

TDELay,
:SPRocessing:FFEQualizer:TAP:TDELay
command/query, 959

TDELay, :TRIGger:DELay:TDELay:TIME
command/query, 1023

TDLY,
:TRIGger:ADVanced:DELay:TDLY:ARM:SL
OPe command/query, 1134

TDLY,
:TRIGger:ADVanced:DELay:TDLY:ARM:S
OURce command/query, 1133

TDLY, :TRIGger:ADVanced:DELay:TDLY:DELay
command/query, 1135

TDLY,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SLOPe command/query, 1137

TDLY,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SOURce command/query, 1136

TDMode,
:SPRocessing:FFEQualizer:TAP:TDMode
command/query, 960

TEDGe, :MEASure:TEDGe
command/query, 710

TEMP, :CALibrate:TEMP? query, 207
temperature and calibration, 201
temperature color grade scheme, 328
TERM1, :TRIGger:SEQuence:TERM1

command/query, 1051
TERM2, :TRIGger:SEQuence:TERM2

command/query, 1053
termination of message during

hardcopy, 115
termination voltage for N5444A probe

head, 254
Terminator, 83
Test (*TST?) query, 291
TEST, :LTESt:TEST command/query, 444
TEXT, :DISPlay:TEXT command, 1269
THReshold, :DIGital<N>:THReshold

command/query, 297
THReshold, :MEASure:FFT:THReshold

command/query, 607
THReshold, :POD<N>:THReshold

command/query, 802
THReshold,

:TRIGger:ADVanced:PATTern:THReshold
:LEVel command/query, 1114

THReshold,
:TRIGger:ADVanced:PATTern:THReshold
:POD<N> command/query, 1115

THReshold,
:TRIGger:ADVanced:STATe:THReshold:L
EVel command/query, 1121

THResholds,
:MEASure:THResholds:ABSolute
command/query, 712

THResholds,
:MEASure:THResholds:GENeral:ABSolut
e command/query, 714

THResholds,
:MEASure:THResholds:GENeral:HYSTere
sis command/query, 716

THResholds,
:MEASure:THResholds:GENeral:METHod
command/query, 718

THResholds,
:MEASure:THResholds:GENeral:PERCen
t command/query, 720

THResholds,
:MEASure:THResholds:GENeral:TOPBas
e:ABSolute command/query, 722

THResholds,
:MEASure:THResholds:GENeral:TOPBas
e:METHod command/query, 724

THResholds,
:MEASure:THResholds:HYSTeresis
command/query, 726

THResholds,
:MEASure:THResholds:METHod
command/query, 728

THResholds,
:MEASure:THResholds:PERCent
command/query, 730

THResholds,
:MEASure:THResholds:RFALl:ABSolute
command/query, 732

THResholds,
:MEASure:THResholds:RFALl:HYSTeresi
s command/query, 734

THResholds,
:MEASure:THResholds:RFALl:METHod
command/query, 736

THResholds,
:MEASure:THResholds:RFALl:PERCent
command/query, 738

THResholds,
:MEASure:THResholds:RFALl:TOPBase:A
BSolute command/query, 740

THResholds,
:MEASure:THResholds:RFALl:TOPBase:
METHod command/query, 742

THResholds,
:MEASure:THResholds:SERial:ABSolute
command/query, 744

THResholds,
:MEASure:THResholds:SERial:HYSTeresi
s command/query, 746

THResholds,
:MEASure:THResholds:SERial:METHod
command/query, 748

THResholds,
:MEASure:THResholds:SERial:PERCent
command/query, 750

THResholds,
:MEASure:THResholds:SERial:TOPBase:
ABSolute command/query, 752

THResholds,
:MEASure:THResholds:SERial:TOPBase:
METHod command/query, 754

THResholds,
:MEASure:THResholds:TOPBase:ABSolu
te command/query, 756

THResholds,
:MEASure:THResholds:TOPBase:METHo
d command/query, 758

TIEClock2, :MEASure:TIEClock2
command/query, 759

TIEData, :MEASure:TIEData
command/query, 761

TIEFilter, :MEASure:TIEFilter:SHAPe
command/query, 763

TIEFilter, :MEASure:TIEFilter:STARt
command/query, 764

TIEFilter, :MEASure:TIEFilter:STATe
command/query, 765

TIEFilter, :MEASure:TIEFilter:STOP
command/query, 766

TIEFilter, :MEASure:TIEFilter:TYPE
command/query, 767

TIETimebase, :WMEMory<N>:TIETimebase
command/query, 1258

time and date, setting, 965
Time Base Commands, 979
time buckets, and POINts?, 1224
time scale, operands and functions, 348
TIME, :SYSTem:TIME command/query, 978
TIME,

:TRIGger:ADVanced:VIOLation:SETup:H
OLD:TIME command/query, 1175

TIME,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:TIME command/query, 1168

TIME, :TRIGger:DELay:TDELay:TIME
command/query, 1023

TIME, :TRIGger:RUNT:TIME
command/query, 1048

TIME, :TRIGger:SEQuence:RESet:TIME
command/query, 1061

TIME, :TRIGger:SEQuence:WAIT:TIME
command/query, 1065

TIME, :TRIGger:TIMeout:TIME
command/query, 1081

TIME, :TRIGger:TRANsition:TIME
command/query, 1085

TIME, :TRIGger:WINDow:TIME
command/query, 1101

TIMeout, :SBUS<N>:SPI:CLOCk:TIMeout
command/query, 901

TIMeout, :TRIGger:TIMeout:CONDition
command/query, 1079

TIMeout, :TRIGger:TIMeout:SOURce
command/query, 1080

TIMeout, :TRIGger:TIMeout:TIME
command/query, 1081

timeout, SPI clock, 901

1458 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

TITLe?, :MTESt:TITLe? query, 525
TJRJDJ?, :MEASure:RJDJ:TJRJDJ?

query, 701
TLIMit, :HISTogram:WINDow:TLIMit

command/query, 416
TMAX, :MEASure:TMAX

command/query, 768
TMIN, :MEASure:TMIN

command/query, 769
TOPBase,

:MEASure:THResholds:GENeral:TOPBas
e:ABSolute command/query, 722

TOPBase,
:MEASure:THResholds:GENeral:TOPBas
e:METHod command/query, 724

TOPBase,
:MEASure:THResholds:RFALl:TOPBase:A
BSolute command/query, 740

TOPBase,
:MEASure:THResholds:RFALl:TOPBase:
METHod command/query, 742

TOPBase,
:MEASure:THResholds:SERial:TOPBase:
ABSolute command/query, 752

TOPBase,
:MEASure:THResholds:SERial:TOPBase:
METHod command/query, 754

TOPBase,
:MEASure:THResholds:TOPBase:ABSolu
te command/query, 756

TOPBase,
:MEASure:THResholds:TOPBase:METHo
d command/query, 758

TPOint, :TRIGger:PWIDth:TPOint
command/query, 1042

TPOint, :TRIGger:WINDow:TPOint
command/query, 1102

TPOSition, :MTESt:FOLDing:TPOSition
command/query, 503

transferring waveform data, 1192
transition violation mode, 1184
TRANsition,

:TRIGger:ADVanced:VIOLation:TRANsitio
n command/query, 1185

TRANsition,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce command/query, 1186

TRANsition,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:HTHReshold
command/query, 1187

TRANsition,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:LTHReshold
command/query, 1188

TRANsition,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:TYPE command/query, 1189

TRANsition, :TRIGger:TRANsition:DIRection
command/query, 1083

TRANsition, :TRIGger:TRANsition:SOURce
command/query, 1084

TRANsition, :TRIGger:TRANsition:TIME
command/query, 1085

TRANsition, :TRIGger:TRANsition:TYPE
command/query, 1086

transmission mode, and FORMat, 1221
traversal rules, 153
Tree Traversal, Examples, 154
Tree Traversal, Rules, 153
TRENd, :MEASure:JITTer:TRENd

command/query, 637
TRENd, :MEASure:JITTer:TRENd:SMOoth

command/query, 638
TRENd,

:MEASure:JITTer:TRENd:SMOoth:POINts
command/query, 639

TRENd, :MEASure:JITTer:TRENd:VERTical
command/query, 640

TRENd,
:MEASure:JITTer:TRENd:VERTical:OFFSe
t command/query, 641

TRENd,
:MEASure:JITTer:TRENd:VERTical:RANG
e command/query, 642

TRG, bit, 287, 289
TRG, bit in the status byte, 126
TRG, Event Enable Register, 119
Trigger (*TRG) command, 290
Trigger Commands, 993
Trigger Event Register (TRG), 126
TRIGger IIC commands, 878
trigger mode, 994
trigger mode, ADVanced, 994
trigger mode, advanced delay, 1122, 1131
trigger mode, advanced TV, 1138, 1144
trigger mode, COMM, 1103
trigger mode, delay, 1122, 1131
trigger mode, NTSC TV, 1138
trigger mode, PAL-M TV, 1138
trigger mode, pattern, 1110
trigger mode, state, 1116
trigger mode, User Defined TV, 1144
trigger mode, violation types, 1150
trigger modes, summary, 994
trigger other instruments, 204
TRIGger SPI commands, 898
trigger type, SPI, 914
TRIGger, :MTESt:TRIGger:SOURce

command/query, 526
TRIGger, :SBUS<N>:CAN:TRIGger

command/query, 853
TRIGger,

:SBUS<N>:CAN:TRIGger:PATTern:DATA
command/query, 856

TRIGger,
:SBUS<N>:CAN:TRIGger:PATTern:DATA:
LENGth command/query, 858

TRIGger,
:SBUS<N>:CAN:TRIGger:PATTern:ID
command/query, 860

TRIGger,
:SBUS<N>:CAN:TRIGger:PATTern:ID:MO
DE command/query, 862

TRIGger, :SBUS<N>:FLEXray:TRIGger
command/query, 867

TRIGger,
:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE
command/query, 868

TRIGger,
:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Base command/query, 869

TRIGger,
:SBUS<N>:FLEXray:TRIGger:FRAMe:CC
Repetition command/query, 870

TRIGger,
:SBUS<N>:FLEXray:TRIGger:FRAMe:ID
command/query, 871

TRIGger,
:SBUS<N>:FLEXray:TRIGger:FRAMe:TYP
E command/query, 872

TRIGger,
:SBUS<N>:IIC:TRIGger:PATTern:ADDRes
s command/query, 883, 885

TRIGger, :SBUS<N>:IIC:TRIGger:TYPE
command, 887

TRIGger, :SBUS<N>:LIN:TRIGger
command/query, 894

TRIGger, :SBUS<N>:LIN:TRIGger:ID
command/query, 895

TRIGger,
:SBUS<N>:LIN:TRIGger:PATTern:DATA
command/query, 896

TRIGger,
:SBUS<N>:LIN:TRIGger:PATTern:DATA:L
ENGth command/query, 897

TRIGger,
:SBUS<N>:SPI:TRIGger:PATTern:DATA
command/query, 909

TRIGger,
:SBUS<N>:SPI:TRIGger:PATTern:WIDTh
command/query, 912

TRIGger, :SBUS<N>:SPI:TRIGger:TYPE
command/query, 914

TRIGger,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SLOPe command/query, 1130

TRIGger,
:TRIGger:ADVanced:DELay:EDLY:TRIGge
r:SOURce command/query, 1129

TRIGger,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SLOPe command/query, 1137

TRIGger,
:TRIGger:ADVanced:DELay:TDLY:TRIGge
r:SOURce command/query, 1136

TRIGger, :TRIGger:DELay:TRIGger:SLOPe
command/query, 1025

TRIGger, :TRIGger:DELay:TRIGger:SOURce
command/query, 1024

Trigger, *TRG status bit, 119
trigger, CAN, 853
trigger, CAN pattern data length, 858
trigger, CAN pattern ID mode, 862
trigger, CAN sample point, 848
trigger, CAN signal baudrate, 849

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1459

trigger, CAN signal definition, 850
trigger, CAN source, 851
trigger, IIC signal baudrate, 891
trigger, LIN sample point, 890
trigger, LIN source, 892
triggering, for User Defined TV mode, 1145
truncating numbers, 81
Truncation Rule, 152
TSCale, :MTESt:FOLDing:TSCale

command/query, 505
TSTArt, :MARKer:TSTArt

command/query, 455
TSTOp, :MARKer:TSTOp

command/query, 456
TTAG?, :WAVeform:SEGMented:TTAG?

query, 1232
TTAGs, :ACQuire:SEGMented:TTAGs

command/query, 185
TV, :TRIGger:ADVanced:TV:STV:FIELd

command/query, 1140
TV, :TRIGger:ADVanced:TV:STV:LINE

command/query, 1141
TV, :TRIGger:ADVanced:TV:STV:SOURce

command/query, 1142
TV, :TRIGger:ADVanced:TV:STV:SPOLarity

command/query, 1143
TV, :TRIGger:ADVanced:TV:UDTV:ENUMber

command/query, 1146
TV, :TRIGger:ADVanced:TV:UDTV:PGTHan

command/query, 1147
TV, :TRIGger:ADVanced:TV:UDTV:POLarity

command/query, 1148
TV, :TRIGger:ADVanced:TV:UDTV:SOURce

command/query, 1149
TV, :TRIGger:TV:LINE

command/query, 1088
TV, :TRIGger:TV:MODE

command/query, 1089
TV, :TRIGger:TV:POLarity

command/query, 1090
TV, :TRIGger:TV:SOURce

command/query, 1091
TV, :TRIGger:TV:STANdard

command/query, 1092
TV, :TRIGger:TV:UDTV:ENUMber

command/query, 1093
TV, :TRIGger:TV:UDTV:HSYNc

command/query, 1094
TV, :TRIGger:TV:UDTV:HTIMe

command/query, 1095
TV, :TRIGger:TV:UDTV:PGTHan

command/query, 1096
TV, :TRIGger:TV:UDTV:POLarity

command/query, 1097
TVOLt, :MEASure:TVOLt

command/query, 770
TYPE, :BUS:B<N>:TYPE

command/query, 192
TYPE,

:MEASure:JITTer:SPECtrum:VERTical:TY
PE command/query, 634

TYPE, :MEASure:TIEFilter:TYPE
command/query, 767

TYPE,
:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE
command/query, 868

TYPE,
:SBUS<N>:FLEXray:TRIGger:FRAMe:TYP
E command/query, 872

TYPE, :SBUS<N>:IIC:TRIGger:TYPE
command, 887

TYPE, :SBUS<N>:SPI:TRIGger:TYPE
command/query, 914

TYPE, :SBUS<N>:SPI:TYPE
command/query, 915

TYPE,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:TYPE command/query, 1189

TYPE, :TRIGger:SEQuence:RESet:TYPE
command/query, 1057

TYPE, :TRIGger:TRANsition:TYPE
command/query, 1086

TYPE?, :WAVeform:TYPE? query, 1237

U

UDTV commands, 1144
UDTV,

:TRIGger:ADVanced:TV:UDTV:ENUMber
command/query, 1146

UDTV, :TRIGger:ADVanced:TV:UDTV:PGTHan
command/query, 1147

UDTV, :TRIGger:ADVanced:TV:UDTV:POLarity
command/query, 1148

UDTV, :TRIGger:ADVanced:TV:UDTV:SOURce
command/query, 1149

UDTV, :TRIGger:TV:UDTV:ENUMber
command/query, 1093

UDTV, :TRIGger:TV:UDTV:HSYNc
command/query, 1094

UDTV, :TRIGger:TV:UDTV:HTIMe
command/query, 1095

UDTV, :TRIGger:TV:UDTV:PGTHan
command/query, 1096

UDTV, :TRIGger:TV:UDTV:POLarity
command/query, 1097

UI?, :MTESt:COUNt:UI? query, 487
UITouijitter, :MEASure:UITouijitter

command/query, 772
ULEVel, :ISCan:RUNT:ULEVel

command/query, 430
ULIMit, :ISCan:MEASurement:ULIMit

command/query, 422
ULIMit, :LTESt:ULIMit command/query, 445
Unaddressing all listeners, 111
UNITinterval, :MEASure:UNITinterval

command/query, 773
UNITs, :CHANnel<N>:PROBe:EXTernal:UNITs

command/query, 248
UNITs, :CHANnel<N>:UNITs

command/query, 267

UNITs, :MEASure:NOISe:UNITs
command/query, 656

UNITs, :MEASure:RJDJ:UNITs
command/query, 702

UNITs, :MTESt:AMASk:UNITs
command/query, 478

units, vertical, 248, 267
UNKNown vertical units, 248, 267
uppercase, 79
uppercase, headers, 79
uppercase, letters and responses, 80
URQ bit (User Request), 272
USB (Device) interface, 59
User Request (URQ) status bit, 118
User Request Bit (URQ), 272
User's Guide, 4
User-Defined Measurements, 534
Using the Digitize Command, 92
USR bit, 287, 289
UTARget,

:SPRocessing:DFEQualizer:TAP:UTARget
command/query, 944

V

VAMPlitude, :MEASure:VAMPlitude
command/query, 775

VAVerage, :MEASure:VAVerage
command/query, 777

VBA, 87, 1288
VBASe, :MEASure:VBASe

command/query, 779
version of software, reading, 275
VERSus, :FUNCtion<F>:VERSus

command, 393
vertical axis, full-scale, 265
vertical scaling, functions, 348
vertical units, 248, 267
VERTical, :AUToscale:VERTical

command, 814
VERTical, :DISPlay:BOOKmark<N>:VERTical?

query, 321
VERTical, :FUNCtion<F>:VERTical

command/query, 394
VERTical, :FUNCtion<F>:VERTical:OFFSet

command/query, 395
VERTical, :FUNCtion<F>:VERTical:RANGe

command/query, 396
VERTical, :HISTogram:VERTical:BINS

command/query, 410
VERTical, :MEASure:CLOCk:VERTical

command/query, 572
VERTical, :MEASure:CLOCk:VERTical:OFFSet

command/query, 573
VERTical, :MEASure:CLOCk:VERTical:RANGe

command/query, 574
VERTical,

:MEASure:JITTer:SPECtrum:VERTical
command/query, 631

1460 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

VERTical,
:MEASure:JITTer:SPECtrum:VERTical:OF
FSet command/query, 632

VERTical,
:MEASure:JITTer:SPECtrum:VERTical:RA
NGe command/query, 633

VERTical,
:MEASure:JITTer:SPECtrum:VERTical:TY
PE command/query, 634

VERTical, :MEASure:JITTer:TRENd:VERTical
command/query, 640

VERTical,
:MEASure:JITTer:TRENd:VERTical:OFFSe
t command/query, 641

VERTical,
:MEASure:JITTer:TRENd:VERTical:RANG
e command/query, 642

VERTical,
:SPRocessing:CTLequalizer:VERTical
command/query, 931

VERTical,
:SPRocessing:CTLequalizer:VERTical:OF
FSet command/query, 932

VERTical,
:SPRocessing:CTLequalizer:VERTical:RA
NGe command/query, 933

VERTical,
:SPRocessing:FFEQualizer:VERTical
command/query, 961

VERTical,
:SPRocessing:FFEQualizer:VERTical:OFF
Set command/query, 962

VERTical,
:SPRocessing:FFEQualizer:VERTical:RA
NGe command/query, 963

vertical, axis control, 210
vertical, axis offset, and YRANge, 1261
vertical, scaling, and YRANge, 1262
VIEW and BLANk, 816
VIEW, :TIMebase:VIEW

command/query, 987
VIEW, :WAVeform:VIEW

command/query, 1238
violation modes for trigger, 1150
VIOLation,

:TRIGger:ADVanced:VIOLation:MODE
command/query, 1151

VIOLation,
:TRIGger:ADVanced:VIOLation:PWIDth:D
IRection command/query, 1154

VIOLation,
:TRIGger:ADVanced:VIOLation:PWIDth:P
OLarity command/query, 1155

VIOLation,
:TRIGger:ADVanced:VIOLation:PWIDth:S
OURce command/query, 1156

VIOLation,
:TRIGger:ADVanced:VIOLation:PWIDth:
WIDTh command/query, 1157

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce command/query, 1169

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:EDGE
command/query, 1171

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:CSOurce:LEVel
command/query, 1170

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce command/query, 1172

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:HTHReshold
command/query, 1173

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:DSOurce:LTHReshold
command/query, 1174

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:H
OLD:TIME command/query, 1175

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:M
ODE command/query, 1161

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce command/query, 1162

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:EDGE
command/query, 1164

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:CSOurce:LEVel
command/query, 1163

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce command/query, 1165

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:HTHReshold
command/query, 1166

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:DSOurce:LTHReshold
command/query, 1167

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SE
Tup:TIME command/query, 1168

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce command/query, 1176

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:EDGE
command/query, 1178

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:CSOurce:LEVel
command/query, 1177

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce command/query, 1179

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:HTHReshold
command/query, 1180

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:DSOurce:LTHReshold
command/query, 1181

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:HoldTIMe (HTIMe)
command/query, 1183

VIOLation,
:TRIGger:ADVanced:VIOLation:SETup:SH
OLd:SetupTIMe (STIMe)
command/query, 1182

VIOLation,
:TRIGger:ADVanced:VIOLation:TRANsitio
n command/query, 1185

VIOLation,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce command/query, 1186

VIOLation,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:HTHReshold
command/query, 1187

VIOLation,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:SOURce:LTHReshold
command/query, 1188

VIOLation,
:TRIGger:ADVanced:VIOLation:TRANsitio
n:TYPE command/query, 1189

VISA COM example in C#, 1299
VISA COM example in Python, 1318
VISA COM example in Visual Basic, 1288
VISA COM example in Visual Basic

.NET, 1309
VISA example in C, 1326
VISA example in C#, 1345
VISA example in Python, 1369
VISA example in Visual Basic, 1335
VISA example in Visual Basic .NET, 1357
VISA examples, 1288, 1326
Visual Basic .NET, SCPI.NET example, 1402
Visual Basic .NET, VISA COM

example, 1309
Visual Basic .NET, VISA example, 1357
Visual Basic 6.0, 87
Visual Basic for Applications, 87, 1288
Visual Basic for Applications (VBA), 66
Visual Basic, SICL library example, 1385
Visual Basic, VISA COM example, 1288
Visual Basic, VISA example, 1335
VLOWer, :MEASure:VLOWer

command/query, 780
VMAX, :MEASure:VMAX

command/query, 781

Index

Keysight Infiniium Oscilloscopes Programmer's Guide 1461

VMIDdle, :MEASure:VMIDdle
command/query, 783

VMIN, :MEASure:VMIN
command/query, 784

voltage at center screen, 236, 247
VOLTS as vertical units, 248, 267
VOVershoot, :MEASure:VOVershoot

command/query, 785
VPP, :MEASure:VPP command/query, 786
VPReshoot, :MEASure:VPReshoot

command/query, 787
VRMS, :MEASure:VRMS

command/query, 788
VSTArt, :MARKer:VSTArt

command/query, 457
VSTOp, :MARKer:VSTOp

command/query, 458
VTERm, :CHANnel<N>:PROBe:HEAD:VTERm

command/query, 254
VTIMe, :MEASure:VTIMe

command/query, 790
VTOP, :MEASure:VTOP

command/query, 792
VUPPer, :MEASure:VUPPer

command/query, 793

W

WAIT, :TRIGger:SEQuence:WAIT:ENABle
command/query, 1063

WAIT, :TRIGger:SEQuence:WAIT:TIME
command/query, 1065

Wait-to-Continue (*WAI) command, 292
WATTS as vertical units, 248, 267
Waveform Commands, 1191
Waveform Memory Commands, 1253
waveform type, and COMPlete?, 1196
waveform type, and COUNt?, 1197
WAVeform, :DISK:SAVE:WAVeform

command, 314
WAVeform, :STORe:WAVeform

command, 840
waveform, data and preamble, 1192
waveform, saving, 314
waveform, view parameters, 1238
WAVeforms?, :MTESt:COUNt:WAVeforms?

query, 488
what's new, 35
white space (separator), 70
WIDTh,

:SBUS<N>:SPI:TRIGger:PATTern:WIDTh
command/query, 912

WIDTh, :SBUS<N>:SPI:WIDTh
command/query, 916

WIDTh,
:SPRocessing:DFEQualizer:TAP:WIDTh
command/query, 939

WIDTh,
:SPRocessing:FFEQualizer:TAP:WIDTh
command/query, 954

WIDTh,
:TRIGger:ADVanced:VIOLation:PWIDth:
WIDTh command/query, 1157

WIDTh, :TRIGger:GLITch:WIDTh
command/query, 1034

WIDTh, :TRIGger:PWIDth:WIDTh
command/query, 1043

WINDow, :FUNCtion<F>:FFT:WINDow
command/query, 364

WINDow, :HISTogram:WINDow:BLIMit
command/query, 415

WINDow, :HISTogram:WINDow:DEFault
command, 411

WINDow, :HISTogram:WINDow:LLIMit
command/query, 413

WINDow, :HISTogram:WINDow:RLIMit
command/query, 414

WINDow, :HISTogram:WINDow:SOURce
command/query, 412

WINDow, :HISTogram:WINDow:TLIMit
command/query, 416

WINDow,
:MEASure:JITTer:SPECtrum:WINDow
command/query, 635

WINDow, :MEASure:WINDow
command/query, 795

WINDow, :TIMebase:WINDow:DELay
command/query, 988

WINDow, :TIMebase:WINDow:POSition
command/query, 989

WINDow, :TIMebase:WINDow:RANGe
command/query, 990

WINDow, :TIMebase:WINDow:SCALe
command/query, 991

WINDow, :TRIGger:WINDow:CONDition
command/query, 1099

WINDow, :TRIGger:WINDow:SOURce
command/query, 1100

WINDow, :TRIGger:WINDow:TIME
command/query, 1101

WINDow, :TRIGger:WINDow:TPOint
command/query, 1102

word width, SPI decode, 916
WORD, and FORMat, 1222
WORD, Understanding the format, 1216
WriteIEEEBlock method, 88
WriteList method, 88
WriteNumber method, 88
WriteString method, 88
WriteString VISA COM method, 67
writing, text to the screen, 1268

X

x axis, controlling, 979
X vs Y, 393
X1, :MTESt:SCALe:X1 command/query, 517
X1Position, :MARKer:X1Position

command/query, 459
X1Y1source, :MARKer:X1Y1source

command/query, 461

X2Position, :MARKer:X2Position
command/query, 460

X2Y2source, :MARKer:X2Y2source
command/query, 463

x-axis duration, and XRANge?, 1243
x-axis, offset, and XOFFset, 1259
x-axis, range, and XRANge, 1260
x-axis, units and XUNits, 1245
XDELta, :MTESt:AMASk:XDELta

command/query, 479
XDELta, :MTESt:SCALe:XDELta

command/query, 518
XDELta?, :MARKer:XDELta? query, 465
XDISplay?, :WAVeform:XDISplay?

query, 1240
XINCrement?, :WAVeform:XINCrement?

query, 1241
XLISt?, :WAVeform:SEGMented:XLISt?

query, 1233
XOFFset, :WMEMory<N>:XOFFset

command/query, 1259
XORigin?, :WAVeform:XORigin?

query, 1242
XPOSition,

:DISPlay:BOOKmark<N>:XPOSition
command/query, 322

XRANge, :WMEMory<N>:XRANge
command/query, 1260

XRANge?, :WAVeform:XRANge?
query, 1243

XREFerence?, :WAVeform:XREFerence?
query, 1244

XUNits?, :WAVeform:XUNits? query, 1245

Y

Y1, :MTESt:SCALe:Y1 command/query, 519
Y1Position, :MARKer:Y1Position

command/query, 466
Y2, :MTESt:SCALe:Y2 command/query, 520
Y2Position, :MARKer:Y2Position

command/query, 467
Y-axis control, 210
YDELta, :MTESt:AMASk:YDELta

command/query, 480
YDELta?, :MARKer:YDELta? query, 468
YDISplay?, :WAVeform:YDISplay?

query, 1246
YINCrement?, :WAVeform:YINCrement?

query, 1247
YOFFset, :WMEMory<N>:YOFFset

command/query, 1261
YORigin?, :WAVeform:YORigin?

query, 1248
YPOSition,

:DISPlay:BOOKmark<N>:YPOSition
command/query, 323

YRANge, :WMEMory<N>:YRANge
command/query, 1262

YRANge?, :WAVeform:YRANge?
query, 1249

1462 Keysight Infiniium Oscilloscopes Programmer's Guide

Index

YREFerence?, :WAVeform:YREFerence?
query, 1250

YUNits?, :WAVeform:YUNits? query, 1251

Z

ZERo, :SPRocessing:CTLequalizer:ZERo
command/query, 934

ZONE, :ISCan:ZONE:HIDE
command/query, 433

ZONE, :ISCan:ZONE:SOURce
command/query, 434

ZONE<N>, :ISCan:ZONE<N>:MODE
command/query, 435

ZONE<N>, :ISCan:ZONE<N>:PLACement
command/query, 436

ZONE<N>, :ISCan:ZONE<N>:STATe
command/query, 437

ZSRC,
:CHANnel<N>:PROBe:PRECprobe:ZSRC
command, 261

	In This Book
	Contents
	What's New
	What's New in Version 5.20
	What's New in Version 5.10
	What's New in Version 5.00
	What's New in Version 4.60
	What's New in Version 4.50
	What's New in Version 4.30
	What's New in Version 4.20
	What's New in Version 4.10
	What's New in Version 4.00
	What's New in Version 3.50
	What's New in Version 3.20
	What's New in Version 3.11
	What's New in Version 3.10

	Setting Up
	Step 1. Install Keysight IO Libraries Suite software
	Step 2. Connect and set up the oscilloscope
	Using the USB (Device) Interface
	Using the LAN Interface

	Step 3. Verify the oscilloscope connection

	Introduction to Programming
	Communicating with the Oscilloscope
	Instructions
	Instruction Header
	White Space (Separator)
	Braces
	Ellipsis
	Square Brackets
	Command and Query Sources
	Program Data
	Header Types
	Simple Command Header
	Compound Command Header
	Combining Commands in the Same Subsystem
	Common Command Header
	Duplicate Mnemonics

	Query Headers
	Program Header Options
	Character Program Data
	Numeric Program Data
	Embedded Strings
	Program Message Terminator
	Common Commands within a Subsystem
	Selecting Multiple Subsystems
	Programming Getting Started
	Referencing the IO Library
	Opening the Oscilloscope Connection via the IO Library
	Initializing the Interface and the Oscilloscope
	Autoscale
	Setting Up the Oscilloscope

	Example Program
	Using the DIGITIZE Command
	Receiving Information from the Oscilloscope
	String Variable Example
	Numeric Variable Example
	Definite-Length Block Response Data
	Multiple Queries
	Oscilloscope Status

	LAN, USB, and GPIB Interfaces
	LAN Interface Connector
	GPIB Interface Connector
	Default Startup Conditions
	Interface Capabilities
	GPIB Command and Data Concepts
	Communicating Over the GPIB Interface
	Interface Select Code
	Oscilloscope Address

	Communicating Over the LAN Interface
	Communicating via Telnet and Sockets
	Telnet
	Sockets

	Bus Commands
	Device Clear
	Group Execute Trigger
	Interface Clear

	Message Communication and System Functions
	Protocols
	Functional Elements
	Protocol Overview
	Protocol Operation
	Protocol Exceptions
	Suffix Multiplier
	Suffix Unit

	Status Reporting
	Figure 1 Status Reporting Overview Block Diagram
	Status Reporting Data Structures
	Figure 2 Status Reporting Data Structures
	Figure 3 Status Reporting Data Structures (Continued)

	Status Byte Register
	Service Request Enable Register
	Message Event Register
	Trigger Event Register
	Standard Event Status Register
	Standard Event Status Enable Register
	Operation Status Register
	Operation Status Enable Register
	Mask Test Event Register
	Mask Test Event Enable Register
	Acquisition Done Event Register
	Process Done Event Register
	Trigger Armed Event Register
	Auto Trigger Event Register
	Error Queue
	Output Queue
	Message Queue
	Clearing Registers and Queues
	Figure 4 Status Reporting Decision Chart

	Remote Acquisition Synchronization
	Programming Flow
	Setting Up the Oscilloscope
	Acquiring a Waveform
	Retrieving Results
	Acquisition Synchronization
	Blocking Synchronization
	Polling Synchronization With Timeout

	Single Shot Device Under Test (DUT)
	Averaging Acquisition Synchronization

	Programming Conventions
	Truncation Rule
	The Command Tree
	Command Types
	Tree Traversal Rules
	Tree Traversal Examples

	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	EOI

	Acquire Commands
	:ACQuire:AVERage
	:ACQuire[:AVERage]:COUNt
	:ACQuire:BANDwidth
	(Enhanced bandwidth or noise reduction option only)
	:ACQuire:BANDwidth:FRAMe
	:ACQuire:COMPlete
	:ACQuire:COMPlete:STATe
	:ACQuire:HRESolution
	:ACQuire:INTerpolate
	:ACQuire:MODE
	:ACQuire:POINts[:ANALog]
	:ACQuire:POINts:AUTO
	:ACQuire:POINts:DIGital?
	:ACQuire:REDGe
	(90000 Q-Series, Z-Series)
	:ACQuire:RESPonse
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:ACQuire:SEGMented:COUNt
	:ACQuire:SEGMented:INDex
	:ACQuire:SEGMented:TTAGs
	:ACQuire:SRATe[:ANALog]
	:ACQuire:SRATe[:ANALog]:AUTO
	:ACQuire:SRATe:DIGital
	:ACQuire:SRATe:DIGital:AUTO

	Bus Commands
	:BUS:B<N>:TYPE
	:BUS<N>:BIT<M>
	:BUS<N>:BITS
	:BUS<N>:CLEar
	:BUS<N>:CLOCk
	:BUS<N>:CLOCk:SLOPe
	:BUS<N>:DISPlay
	:BUS<N>:LABel
	:BUS<N>:READout

	Calibration Commands
	:CALibrate:DATE?
	:CALibrate:OUTPut
	:CALibrate:SKEW
	:CALibrate:STATus?
	:CALibrate:TEMP?

	Channel Commands
	:CHANnel<N>:BWLimit
	(9000 Series, 9000H Series, S-Series)
	:CHANnel<N>:COMMonmode
	:CHANnel<N>:DIFFerential
	:CHANnel<N>:DIFFerential:SKEW
	:CHANnel<N>:DISPlay
	:CHANnel<N>:DISPlay:AUTO
	:CHANnel<N>:DISPlay:OFFSet
	:CHANnel<N>:DISPlay:RANGe
	:CHANnel<N>:DISPlay:SCALe
	:CHANnel<N>:INPut
	:CHANnel<N>:ISIM:APPLy
	:CHANnel<N>:ISIM:BANDwidth
	:CHANnel<N>:ISIM:BWLimit
	:CHANnel<N>:ISIM:CONVolve
	:CHANnel<N>:ISIM:CORRection
	:CHANnel<N>:ISIM:DEConvolve
	:CHANnel<N>:ISIM:DELay
	:CHANnel<N>:ISIM:NORMalize
	:CHANnel<N>:ISIM:PEXTraction
	:CHANnel<N>:ISIM:SPAN
	:CHANnel<N>:ISIM:STATe
	:CHANnel<N>:LABel
	:CHANnel<N>:OFFSet
	:CHANnel<N>:PROBe
	:CHANnel<N>:PROBe:ACCAL
	:CHANnel<N>:PROBe:ATTenuation
	:CHANnel<N>:PROBe:AUTozero
	:CHANnel<N>:PROBe:COUPling
	:CHANnel<N>:PROBe:EADapter
	:CHANnel<N>:PROBe:ECOupling
	:CHANnel<N>:PROBe:EXTernal
	:CHANnel<N>:PROBe:EXTernal:GAIN
	:CHANnel<N>:PROBe:EXTernal:OFFSet
	:CHANnel<N>:PROBe:EXTernal:UNITs
	:CHANnel<N>:PROBe:GAIN
	:CHANnel<N>:PROBe:HEAD:ADD
	:CHANnel<N>:PROBe:HEAD:DELete ALL
	:CHANnel<N>:PROBe:HEAD:SELect
	:CHANnel<N>:PROBe:HEAD:VTERm
	:CHANnel<N>:PROBe:ID?
	:CHANnel<N>:PROBe:MODE
	:CHANnel<N>:PROBe:PRECprobe:BANDwidth
	:CHANnel<N>:PROBe:PRECprobe:CALibration
	:CHANnel<N>:PROBe:PRECprobe:DELay
	:CHANnel<N>:PROBe:PRECprobe:MODE
	:CHANnel<N>:PROBe:PRECprobe:ZSRC
	:CHANnel<N>:PROBe:SKEW
	:CHANnel<N>:PROBe:STYPe
	:CHANnel<N>:RANGe
	:CHANnel<N>:SCALe
	:CHANnel<N>:UNITs

	Common Commands
	*CLS
	*ESE
	*ESR?
	*IDN?
	*LRN?
	*OPC
	*OPT?
	*PSC
	*RCL
	*RST
	*SAV
	*SRE
	*STB?
	*TRG
	*TST?
	*WAI

	Digital Commands
	:DIGital<N>:DISPlay
	:DIGital<N>:LABel
	:DIGital<N>:SIZE
	:DIGital<N>:THReshold

	Disk Commands
	:DISK:CDIRectory
	:DISK:COPY
	:DISK:DELete
	:DISK:DIRectory?
	:DISK:LOAD
	:DISK:MDIRectory
	:DISK:PWD?
	:DISK:SAVE:COMPosite
	:DISK:SAVE:IMAGe
	:DISK:SAVE:JITTer
	:DISK:SAVE:LISTing
	:DISK:SAVE:MEASurements
	:DISK:SAVE:PRECprobe
	:DISK:SAVE:SETup
	:DISK:SAVE:WAVeform
	:DISK:SEGMented

	Display Commands
	:DISPlay:BOOKmark<N>:DELete
	:DISPlay:BOOKmark<N>:SET
	:DISPlay:BOOKmark<N>:VERTical
	:DISPlay:BOOKmark<N>:XPOSition
	:DISPlay:BOOKmark<N>:YPOSition
	:DISPlay:CGRade
	:DISPlay:CGRade:LEVels?
	:DISPlay:CGRade:SCHeme
	:DISPlay:CONNect
	:DISPlay:DATA?
	:DISPlay:GRATicule
	:DISPlay:GRATicule:AREA<N>:STATe
	:DISPlay:GRATicule:INTensity
	:DISPlay:GRATicule:NUMBer
	:DISPlay:GRATicule:SETGrat
	:DISPlay:LABel
	:DISPlay:LAYout
	:DISPlay:MAIN
	:DISPlay:PERSistence
	:DISPlay:PROPortion
	:DISPlay:SCOLor
	:DISPlay:STATus:COL
	:DISPlay:STATus:ROW
	:DISPlay:TAB

	Function Commands
	:FUNCtion<F>?
	:FUNCtion<F>:ABSolute
	:FUNCtion<F>:ADD
	:FUNCtion<F>:ADEMod
	:FUNCtion<F>:AVERage
	:FUNCtion<F>:COMMonmode
	:FUNCtion<F>:DELay
	:FUNCtion<F>:DIFF
	:FUNCtion<F>:DISPlay
	:FUNCtion<F>:DIVide
	:FUNCtion<F>:FFT:FREQuency
	:FUNCtion<F>:FFT:REFerence
	:FUNCtion<F>:FFT:RESolution?
	:FUNCtion<F>:FFT:TDELay
	:FUNCtion<F>:FFT:WINDow
	:FUNCtion<F>:FFTMagnitude
	:FUNCtion<F>:FFTPhase
	:FUNCtion<F>:GATing
	:FUNCtion<F>:HIGHpass
	:FUNCtion<F>:HORizontal
	:FUNCtion<F>:HORizontal:POSition
	:FUNCtion<F>:HORizontal:RANGe
	:FUNCtion<F>:INTegrate
	:FUNCtion<F>:INVert
	:FUNCtion<F>:LOWPass
	:FUNCtion<F>:MAGNify
	:FUNCtion<F>:MATLab
	:FUNCtion<F>:MATLab:CONTrol1
	:FUNCtion<F>:MATLab:CONTrol2
	:FUNCtion<F>:MATLab:CONTrol3
	:FUNCtion<F>:MATLab:OPERator
	:FUNCtion<F>:MAXimum
	:FUNCtion<F>:MHIStogram
	:FUNCtion<F>:MINimum
	:FUNCtion<F>:MTRend
	:FUNCtion<F>:MULTiply
	:FUNCtion<F>:OFFSet
	:FUNCtion<F>:RANGe
	:FUNCtion<F>:SMOoth
	:FUNCtion<F>:SQRT
	:FUNCtion<F>:SQUare
	:FUNCtion<F>:SUBTract
	:FUNCtion<F>:VERSus
	:FUNCtion<F>:VERTical
	:FUNCtion<F>:VERTical:OFFSet
	:FUNCtion<F>:VERTical:RANGe

	Hardcopy Commands
	:HARDcopy:AREA
	:HARDcopy:DPRinter
	:HARDcopy:FACTors
	:HARDcopy:IMAGe
	:HARDcopy:PRINters?

	Histogram Commands
	:HISTogram:AXIS
	:HISTogram:HORizontal:BINS
	:HISTogram:MEASurement:BINS
	:HISTogram:MODE
	:HISTogram:SCALe:SIZE
	:HISTogram:VERTical:BINS
	:HISTogram:WINDow:DEFault
	:HISTogram:WINDow:SOURce
	:HISTogram:WINDow:LLIMit
	:HISTogram:WINDow:RLIMit
	:HISTogram:WINDow:BLIMit
	:HISTogram:WINDow:TLIMit

	InfiniiScan (ISCan) Commands
	:ISCan:DELay
	:ISCan:MEASurement:FAIL
	:ISCan:MEASurement:LLIMit
	:ISCan:MEASurement
	:ISCan:MEASurement:ULIMit
	:ISCan:MODE
	:ISCan:NONMonotonic:EDGE
	:ISCan:NONMonotonic:HYSTeresis
	:ISCan:NONMonotonic:SOURce
	:ISCan:RUNT:HYSTeresis
	:ISCan:RUNT:LLEVel
	:ISCan:RUNT:SOURce
	:ISCan:RUNT:ULEVel
	:ISCan:SERial:PATTern
	:ISCan:SERial:SOURce
	:ISCan:ZONE:HIDE
	:ISCan:ZONE:SOURce
	:ISCan:ZONE<N>:MODE
	:ISCan:ZONE<N>:PLACement
	:ISCan:ZONE<N>:STATe

	Limit Test Commands
	:LTESt:FAIL
	:LTESt:LLIMit
	:LTESt:MEASurement
	:LTESt:RESults?
	:LTESt:TEST
	:LTESt:ULIMit

	Lister Commands
	:LISTer:DATA
	:LISTer:DISPlay

	Marker Commands
	:MARKer:CURSor?
	:MARKer:MEASurement:MEASurement
	:MARKer:MODE
	:MARKer:TSTArt
	:MARKer:TSTOp
	:MARKer:VSTArt
	:MARKer:VSTOp
	:MARKer:X1Position
	:MARKer:X2Position
	:MARKer:X1Y1source
	:MARKer:X2Y2source
	:MARKer:XDELta?
	:MARKer:Y1Position
	:MARKer:Y2Position
	:MARKer:YDELta?

	Mask Test Commands
	:MTESt:ALIGn
	:MTESt:AlignFIT
	:MTESt:AMASk:CREate
	:MTESt:AMASk:SOURce
	:MTESt:AMASk:SAVE
	:MTESt:AMASk:UNITs
	:MTESt:AMASk:XDELta
	:MTESt:AMASk:YDELta
	:MTESt:AUTO
	:MTESt:AVERage
	:MTESt:AVERage:COUNt
	:MTESt:COUNt:FAILures?
	:MTESt:COUNt:FUI?
	:MTESt:COUNt:FWAVeforms?
	:MTESt:COUNt:UI?
	:MTESt:COUNt:WAVeforms?
	:MTESt:DELete
	:MTESt:ENABle
	:MTESt:FOLDing
	(Clock Recovery software only)
	:MTESt:FOLDing:BITS
	:MTESt:FOLDing:COUNt
	:MTESt:FOLDing:FAST
	:MTESt:FOLDing:POSition
	:MTESt:FOLDing:SCALe
	:MTESt:FOLDing:TPOSition
	:MTESt:FOLDing:TSCale
	:MTESt:HAMPlitude
	:MTESt:IMPedance
	:MTESt:INVert
	:MTESt:LAMPlitude
	:MTESt:LOAD
	:MTESt:NREGions?
	:MTESt:PROBe:IMPedance?
	:MTESt:RUMode
	:MTESt:RUMode:SOFailure
	:MTESt:SCALe:BIND
	:MTESt:SCALe:X1
	:MTESt:SCALe:XDELta
	:MTESt:SCALe:Y1
	:MTESt:SCALe:Y2
	:MTESt:SOURce
	:MTESt:STARt
	:MTESt:STOP
	:MTESt:STIMe
	:MTESt:TITLe?
	:MTESt:TRIGger:SOURce

	Measure Commands
	:MEASure:AREA
	:MEASure:BINTerval
	:MEASure:BPERiod
	:MEASure:BWIDth
	:MEASure:CDRRATE
	:MEASure:CGRade:CROSsing
	:MEASure:CGRade:DCDistortion
	:MEASure:CGRade:EHEight
	:MEASure:CGRade:EWIDth
	:MEASure:CGRade:EWINdow
	:MEASure:CGRade:JITTer
	:MEASure:CGRade:QFACtor
	:MEASure:CHARge
	(9000 Series, 9000H Series, S-Series)
	:MEASure:CLEar
	:MEASure:CLOCk
	:MEASure:CLOCk:METHod
	:MEASure:CLOCk:METHod:ALIGn
	:MEASure:CLOCk:METHod:DEEMphasis
	:MEASure:CLOCk:METHod:EDGE
	:MEASure:CLOCk:METHod:JTF
	:MEASure:CLOCk:METHod:OJTF
	:MEASure:CLOCk:METHod:PLLTrack
	:MEASure:CLOCk:METHod:SOURce
	:MEASure:CLOCk:VERTical
	:MEASure:CLOCk:VERTical:OFFSet
	:MEASure:CLOCk:VERTical:RANGe
	:MEASure:CROSsing
	:MEASure:CTCDutycycle
	:MEASure:CTCJitter
	:MEASure:CTCNwidth
	:MEASure:CTCPwidth
	:MEASure:DATarate
	:MEASure:DEEMphasis
	:MEASure:DELTatime
	:MEASure:DELTatime:DEFine
	:MEASure:DUTYcycle
	:MEASure:EDGE
	:MEASure:ETOedge
	:MEASure:FALLtime
	:MEASure:FFT:DFRequency
	:MEASure:FFT:DMAGnitude
	:MEASure:FFT:FREQuency
	:MEASure:FFT:MAGNitude
	:MEASure:FFT:PEAK1
	:MEASure:FFT:PEAK2
	:MEASure:FFT:THReshold
	:MEASure:FREQuency
	:MEASure:HISTogram:HITS
	:MEASure:HISTogram:M1S
	:MEASure:HISTogram:M2S
	:MEASure:HISTogram:M3S
	:MEASure:HISTogram:MAX
	:MEASure:HISTogram:MEAN
	:MEASure:HISTogram:MEDian
	:MEASure:HISTogram:MIN
	:MEASure:HISTogram:MODE
	:MEASure:HISTogram:PEAK
	:MEASure:HISTogram:PP
	:MEASure:HISTogram:RESolution
	:MEASure:HISTogram:STDDev
	:MEASure:HOLDtime
	:MEASure:JITTer:HISTogram
	:MEASure:JITTer:MEASurement
	:MEASure:JITTer:SPECtrum
	:MEASure:JITTer:SPECtrum:HORizontal
	:MEASure:JITTer:SPECtrum:HORizontal:POSition
	:MEASure:JITTer:SPECtrum:HORizontal:RANGe
	:MEASure:JITTer:SPECtrum:VERTical
	:MEASure:JITTer:SPECtrum:VERTical:OFFSet
	:MEASure:JITTer:SPECtrum:VERTical:RANGe
	:MEASure:JITTer:SPECtrum:VERTical:TYPE
	:MEASure:JITTer:SPECtrum:WINDow
	:MEASure:JITTer:STATistics
	:MEASure:JITTer:TRENd
	:MEASure:JITTer:TRENd:SMOoth
	:MEASure:JITTer:TRENd:SMOoth:POINts
	:MEASure:JITTer:TRENd:VERTical
	:MEASure:JITTer:TRENd:VERTical:OFFSet
	:MEASure:JITTer:TRENd:VERTical:RANGe
	:MEASure:NAME
	:MEASure:NCJitter
	:MEASure:NOISe
	:MEASure:NOISe:ALL?
	:MEASure:NOISe:BANDwidth
	:MEASure:NOISe:LOCation
	:MEASure:NOISe:METHod
	:MEASure:NOISe:REPort
	:MEASure:NOISe:RN
	:MEASure:NOISe:SCOPe:RN
	:MEASure:NOISe:STATe
	:MEASure:NOISe:UNITs
	:MEASure:NPERiod
	:MEASure:NPULses
	:MEASure:NUI
	:MEASure:NWIDth
	:MEASure:OVERshoot
	:MEASure:PAMPlitude
	:MEASure:PBASe
	:MEASure:PERiod
	:MEASure:PHASe
	:MEASure:PPULses
	:MEASure:PREShoot
	:MEASure:PTOP
	:MEASure:PWIDth
	:MEASure:QUALifier<M>:CONDition
	:MEASure:QUALifier<M>:SOURce
	:MEASure:QUALifier<M>:STATe
	:MEASure:RESults?
	:MEASure:RISetime
	:MEASure:RJDJ:ALL?
	:MEASure:RJDJ:APLength?
	:MEASure:RJDJ:BANDwidth
	:MEASure:RJDJ:BER
	:MEASure:RJDJ:CLOCk
	:MEASure:RJDJ:EDGE
	:MEASure:RJDJ:INTerpolate
	:MEASure:RJDJ:METHod
	:MEASure:RJDJ:MODe
	:MEASure:RJDJ:PLENgth
	:MEASure:RJDJ:REPort
	:MEASure:RJDJ:RJ
	:MEASure:RJDJ:SCOPe:RJ
	:MEASure:RJDJ:SOURce
	:MEASure:RJDJ:STATe
	:MEASure:RJDJ:TJRJDJ?
	:MEASure:RJDJ:UNITs
	:MEASure:SCRatch
	:MEASure:SENDvalid
	:MEASure:SETuptime
	:MEASure:SLEWrate
	:MEASure:SOURce
	:MEASure:STATistics
	:MEASure:TEDGe
	:MEASure:THResholds:ABSolute
	:MEASure:THResholds:GENeral:ABSolute
	:MEASure:THResholds:GENeral:HYSTeresis
	:MEASure:THResholds:GENeral:METHod
	:MEASure:THResholds:GENeral:PERCent
	:MEASure:THResholds:GENeral:TOPBase:ABSolute
	:MEASure:THResholds:GENeral:TOPBase:METHod
	:MEASure:THResholds:HYSTeresis
	:MEASure:THResholds:METHod
	:MEASure:THResholds:PERCent
	:MEASure:THResholds:RFALl:ABSolute
	:MEASure:THResholds:RFALl:HYSTeresis
	:MEASure:THResholds:RFALl:METHod
	:MEASure:THResholds:RFALl:PERCent
	:MEASure:THResholds:RFALl:TOPBase:ABSolute
	:MEASure:THResholds:RFALl:TOPBase:METHod
	:MEASure:THResholds:SERial:ABSolute
	:MEASure:THResholds:SERial:HYSTeresis
	:MEASure:THResholds:SERial:METHod
	:MEASure:THResholds:SERial:PERCent
	:MEASure:THResholds:SERial:TOPBase:ABSolute
	:MEASure:THResholds:SERial:TOPBase:METHod
	:MEASure:THResholds:TOPBase:ABSolute
	:MEASure:THResholds:TOPBase:METHod
	:MEASure:TIEClock2
	:MEASure:TIEData
	:MEASure:TIEFilter:SHAPe
	:MEASure:TIEFilter:STARt
	:MEASure:TIEFilter:STATe
	:MEASure:TIEFilter:STOP
	:MEASure:TIEFilter:TYPE
	:MEASure:TMAX
	:MEASure:TMIN
	:MEASure:TVOLt
	:MEASure:UITouijitter
	:MEASure:UNITinterval
	:MEASure:VAMPlitude
	:MEASure:VAVerage
	:MEASure:VBASe
	:MEASure:VLOWer
	:MEASure:VMAX
	:MEASure:VMIDdle
	:MEASure:VMIN
	:MEASure:VOVershoot
	:MEASure:VPP
	:MEASure:VPReshoot
	:MEASure:VRMS
	:MEASure:VTIMe
	:MEASure:VTOP
	:MEASure:VUPPer
	:MEASure:WINDow
	:MEASurement<N>:NAME
	:MEASurement<N>:SOURce

	Pod Commands
	:POD<N>:DISPlay
	:POD<N>:PSKew
	:POD<N>:THReshold

	Root Level Commands
	:ADER?
	:AER?
	:ASTate?
	:ATER?
	:AUToscale
	:AUToscale:CHANnels
	:AUToscale:PLACement
	:AUToscale:VERTical
	:BEEP
	:BLANk
	:CDISplay
	:DIGitize
	:DISable DIGital
	:ENABle DIGital
	:MODel?
	:MTEE
	:MTER?
	:OPEE
	:OPER?
	:OVLRegister?
	:PDER?
	:PRINt
	:RECall:SETup
	:RSTate?
	:RUN
	:SERial
	:SINGle
	:STATus?
	:STOP
	:STORe:JITTer
	:STORe:SETup
	:STORe:WAVeform
	:TER?
	:VIEW

	Serial Bus Commands
	General :SBUS<N> Commands
	:SBUS<N>[:DISPlay]
	:SBUS<N>:MODE

	:SBUS<N>:CAN Commands
	:SBUS<N>:CAN:SAMPlepoint
	:SBUS<N>:CAN:SIGNal:BAUDrate
	:SBUS<N>:CAN:SIGNal:DEFinition
	:SBUS<N>:CAN:SOURce
	:SBUS<N>:CAN:TRIGger
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:CAN:TRIGger:PATTern:DATA
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:CAN:TRIGger:PATTern:DATA:LENGth
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:CAN:TRIGger:PATTern:ID
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:CAN:TRIGger:PATTern:ID:MODE
	(9000 Series, 9000H Series, S-Series)

	:SBUS<N>:FLEXray Commands
	:SBUS<N>:FLEXray:BAUDrate
	:SBUS<N>:FLEXray:CHANnel
	:SBUS<N>:FLEXray:SOURce
	:SBUS<N>:FLEXray:TRIGger
	:SBUS<N>:FLEXray:TRIGger:ERRor:TYPE
	:SBUS<N>:FLEXray:TRIGger:FRAMe:CCBase
	:SBUS<N>:FLEXray:TRIGger:FRAMe:CCRepetition
	:SBUS<N>:FLEXray:TRIGger:FRAMe:ID
	:SBUS<N>:FLEXray:TRIGger:FRAMe:TYPE

	:SBUS<N>:HS Commands
	:SBUS<N>:HS:DESCramble
	:SBUS<N>:HS:FORMat
	:SBUS<N>:HS:IDLE
	:SBUS<N>:HS:SOURce<S>

	:SBUS<N>:IIC Commands
	:SBUS<N>:IIC:ASIZe
	:SBUS<N>:IIC:SOURce:CLOCk
	:SBUS<N>:IIC:SOURce:DATA
	:SBUS<N>:IIC:TRIGger:PATTern:ADDRess
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:IIC:TRIGger:PATTern:DATA
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:IIC:TRIGger:TYPE
	(9000 Series, 9000H Series, S-Series)

	:SBUS<N>:LIN Commands
	:SBUS<N>:LIN:SAMPlepoint
	:SBUS<N>:LIN:SIGNal:BAUDrate
	:SBUS<N>:LIN:SOURce
	:SBUS<N>:LIN:STANdard
	:SBUS<N>:LIN:TRIGger
	:SBUS<N>:LIN:TRIGger:ID
	:SBUS<N>:LIN:TRIGger:PATTern:DATA
	:SBUS<N>:LIN:TRIGger:PATTern:DATA:LENGth

	:SBUS<N>:SPI Commands
	:SBUS<N>:SPI:BITorder
	:SBUS<N>:SPI:CLOCk:SLOPe
	:SBUS<N>:SPI:CLOCk:TIMeout
	:SBUS<N>:SPI:FRAMe:STATe
	:SBUS<N>:SPI:SOURce:CLOCk
	:SBUS<N>:SPI:SOURce:DATA
	:SBUS<N>:SPI:SOURce:FRAMe
	:SBUS<N>:SPI:SOURce:MISO
	:SBUS<N>:SPI:SOURce:MOSI
	:SBUS<N>:SPI:TRIGger:PATTern:DATA
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:SPI:TRIGger:PATTern:WIDTh
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:SPI:TRIGger:TYPE
	(9000 Series, 9000H Series, S-Series)
	:SBUS<N>:SPI:TYPE
	:SBUS<N>:SPI:WIDTh

	Self-Test Commands
	:SELFtest:CANCel
	:SELFtest:SCOPETEST

	Serial Data Equalization Commands
	:SPRocessing:CTLequalizer:DISPlay
	:SPRocessing:CTLequalizer:SOURce
	:SPRocessing:CTLequalizer:DCGain
	:SPRocessing:CTLequalizer:NUMPoles
	:SPRocessing:CTLequalizer:P1
	:SPRocessing:CTLequalizer:P2
	:SPRocessing:CTLequalizer:P3
	:SPRocessing:CTLequalizer:RATe
	:SPRocessing:CTLequalizer:VERTical
	:SPRocessing:CTLequalizer:VERTical:OFFSet
	:SPRocessing:CTLequalizer:VERTical:RANGe
	:SPRocessing:CTLequalizer:ZERo
	:SPRocessing:DFEQualizer:STATe
	:SPRocessing:DFEQualizer:SOURce
	:SPRocessing:DFEQualizer:NTAPs
	:SPRocessing:DFEQualizer:TAP
	:SPRocessing:DFEQualizer:TAP:WIDTh
	:SPRocessing:DFEQualizer:TAP:DELay
	:SPRocessing:DFEQualizer:TAP:MAX
	:SPRocessing:DFEQualizer:TAP:MIN
	:SPRocessing:DFEQualizer:TAP:GAIN
	:SPRocessing:DFEQualizer:TAP:UTARget
	:SPRocessing:DFEQualizer:TAP:LTARget
	:SPRocessing:DFEQualizer:TAP:AUTomatic
	:SPRocessing:FFEQualizer:DISPlay
	:SPRocessing:FFEQualizer:SOURce
	:SPRocessing:FFEQualizer:NPRecursor
	:SPRocessing:FFEQualizer:NTAPs
	:SPRocessing:FFEequalizer:RATe
	:SPRocessing:FFEQualizer:TAP
	:SPRocessing:FFEQualizer:TAP:PLENgth
	:SPRocessing:FFEQualizer:TAP:WIDTh
	:SPRocessing:FFEQualizer:TAP:DELay
	:SPRocessing:FFEQualizer:TAP:AUTomatic
	:SPRocessing:FFEQualizer:TAP:BANDwidth
	:SPRocessing:FFEQualizer:TAP:BWMode
	:SPRocessing:FFEQualizer:TAP:TDELay
	:SPRocessing:FFEQualizer:TAP:TDMode
	:SPRocessing:FFEQualizer:VERTical
	:SPRocessing:FFEQualizer:VERTical:OFFSet
	:SPRocessing:FFEQualizer:VERTical:RANGe

	System Commands
	:SYSTem:DATE
	:SYSTem:DEBug
	:SYSTem:DSP
	:SYSTem:ERRor?
	:SYSTem:HEADer
	:SYSTem:LOCK
	:SYSTem:LONGform
	:SYSTem:PERSona
	:SYSTem:PRESet
	:SYSTem:SETup
	:SYSTem:TIME

	Time Base Commands
	:TIMebase:POSition
	:TIMebase:RANGe
	:TIMebase:REFClock
	:TIMebase:REFerence
	:TIMebase:REFerence:PERCent
	:TIMebase:ROLL:ENABLE
	:TIMebase:SCALe
	:TIMebase:VIEW
	:TIMebase:WINDow:DELay
	:TIMebase:WINDow:POSition
	:TIMebase:WINDow:RANGe
	:TIMebase:WINDow:SCALe

	Trigger Commands
	General Trigger Commands
	:TRIGger:AND:ENABle
	:TRIGger:AND:SOURce
	:TRIGger:HOLDoff
	:TRIGger:HOLDoff:MAX
	:TRIGger:HOLDoff:MIN
	:TRIGger:HOLDoff:MODE
	:TRIGger:HTHReshold
	:TRIGger:HYSTeresis
	:TRIGger:LEVel
	:TRIGger:LEVel:FIFTy
	:TRIGger:LTHReshold
	:TRIGger:MODE
	:TRIGger:SWEep

	Comm Trigger Commands
	:TRIGger:COMM:BWIDth
	:TRIGger:COMM:ENCode
	:TRIGger:COMM:PATTern
	:TRIGger:COMM:POLarity
	:TRIGger:COMM:SOURce

	Delay Trigger Commands
	:TRIGger:DELay:ARM:SOURce
	:TRIGger:DELay:ARM:SLOPe
	:TRIGger:DELay:EDELay:COUNt
	:TRIGger:DELay:EDELay:SOURce
	:TRIGger:DELay:EDELay:SLOPe
	:TRIGger:DELay:MODE
	:TRIGger:DELay:TDELay:TIME
	:TRIGger:DELay:TRIGger:SOURce
	:TRIGger:DELay:TRIGger:SLOPe

	Edge Trigger Commands
	:TRIGger:EDGE:COUPling
	(9000 Series, 9000H Series, S-Series)
	:TRIGger:EDGE:SLOPe
	:TRIGger:EDGE:SOURce

	Glitch Trigger Commands
	:TRIGger:GLITch:POLarity
	:TRIGger:GLITch:SOURce
	:TRIGger:GLITch:WIDTh

	Pattern Trigger Commands
	:TRIGger:PATTern:CONDition
	:TRIGger:PATTern:LOGic

	Pulse Width Trigger Commands
	:TRIGger:PWIDth:DIRection
	:TRIGger:PWIDth:POLarity
	:TRIGger:PWIDth:SOURce
	:TRIGger:PWIDth:TPOint
	:TRIGger:PWIDth:WIDTh

	Runt Trigger Commands
	:TRIGger:RUNT:POLarity
	:TRIGger:RUNT:QUALified
	:TRIGger:RUNT:SOURce
	:TRIGger:RUNT:TIME

	Sequence Trigger Commands
	:TRIGger:SEQuence:TERM1
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:TRIGger:SEQuence:TERM2
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:TRIGger:SEQuence:RESet:ENABle
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:TRIGger:SEQuence:RESet:TYPE
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:TRIGger:SEQuence:RESet:EVENt
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:TRIGger:SEQuence:RESet:TIME
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:TRIGger:SEQuence:WAIT:ENABle
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)
	:TRIGger:SEQuence:WAIT:TIME
	(90000A Series, 90000 X-Series, 90000 Q-Series, Z-Series)

	Setup and Hold Trigger Commands
	:TRIGger:SHOLd:CSOurce
	:TRIGger:SHOLd:CSOurce:EDGE
	:TRIGger:SHOLd:DSOurce
	:TRIGger:SHOLd:HoldTIMe (HTIMe)
	:TRIGger:SHOLd:MODE
	:TRIGger:SHOLd:SetupTIMe

	State Trigger Commands
	:TRIGger:STATe:CLOCk
	:TRIGger:STATe:LOGic
	:TRIGger:STATe:LTYPe
	:TRIGger:STATe:SLOPe

	Timeout Trigger Commands
	:TRIGger:TIMeout:CONDition
	:TRIGger:TIMeout:SOURce
	:TRIGger:TIMeout:TIME

	Transition Trigger Commands
	:TRIGger:TRANsition:DIRection
	:TRIGger:TRANsition:SOURce
	:TRIGger:TRANsition:TIME
	:TRIGger:TRANsition:TYPE

	TV Trigger Commands
	:TRIGger:TV:LINE
	:TRIGger:TV:MODE
	:TRIGger:TV:POLarity
	:TRIGger:TV:SOURce
	:TRIGger:TV:STANdard
	:TRIGger:TV:UDTV:ENUMber
	:TRIGger:TV:UDTV:HSYNc
	:TRIGger:TV:UDTV:HTIMe
	:TRIGger:TV:UDTV:PGTHan
	:TRIGger:TV:UDTV:POLarity

	Window Trigger Commands
	:TRIGger:WINDow:CONDition
	:TRIGger:WINDow:SOURce
	:TRIGger:WINDow:TIME
	:TRIGger:WINDow:TPOint

	Advanced Comm Trigger Commands
	:TRIGger:ADVanced:COMM:BWIDth
	:TRIGger:ADVanced:COMM:ENCode
	:TRIGger:ADVanced:COMM:LEVel
	:TRIGger:ADVanced:COMM:PATTern
	:TRIGger:ADVanced:COMM:POLarity
	:TRIGger:ADVanced:COMM:SOURce

	Advanced Pattern Trigger Commands
	:TRIGger:ADVanced:PATTern:CONDition
	:TRIGger:ADVanced:PATTern:LOGic
	:TRIGger:ADVanced:PATTern:THReshold:LEVel
	:TRIGger:ADVanced:PATTern:THReshold:POD<N>

	Advanced State Trigger Commands
	:TRIGger:ADVanced:STATe:CLOCk
	:TRIGger:ADVanced:STATe:LOGic
	:TRIGger:ADVanced:STATe:LTYPe
	:TRIGger:ADVanced:STATe:SLOPe
	:TRIGger:ADVanced:STATe:THReshold:LEVel

	Advanced Delay By Event Trigger Commands
	:TRIGger:ADVanced:DELay:EDLY:ARM:SOURce
	:TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe
	:TRIGger:ADVanced:DELay:EDLY:EVENt:DELay
	:TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce
	:TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe
	:TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce
	:TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe

	Advanced Delay By Time Trigger Commands
	:TRIGger:ADVanced:DELay:TDLY:ARM:SOURce
	:TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe
	:TRIGger:ADVanced:DELay:TDLY:DELay
	:TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce
	:TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe

	Advanced Standard TV Trigger Commands
	:TRIGger:ADVanced:TV:STV:FIELd
	:TRIGger:ADVanced:TV:STV:LINE
	:TRIGger:ADVanced:TV:STV:SOURce
	:TRIGger:ADVanced:TV:STV:SPOLarity

	Advanced User Defined TV Mode and Commands
	:TRIGger:ADVanced:TV:UDTV:ENUMber
	:TRIGger:ADVanced:TV:UDTV:PGTHan
	:TRIGger:ADVanced:TV:UDTV:POLarity
	:TRIGger:ADVanced:TV:UDTV:SOURce

	Advanced Violation Trigger Modes
	:TRIGger:ADVanced:VIOLation:MODE

	Advanced Pulse Width Violation Trigger Commands
	:TRIGger:ADVanced:VIOLation:PWIDth:DIRection
	:TRIGger:ADVanced:VIOLation:PWIDth:POLarity
	:TRIGger:ADVanced:VIOLation:PWIDth:SOURce
	:TRIGger:ADVanced:VIOLation:PWIDth:WIDTh

	Advanced Setup Violation Trigger Commands
	:TRIGger:ADVanced:VIOLation:SETup:MODE
	:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce
	:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:LEVel
	:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:EDGE
	:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce
	:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold
	:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold
	:TRIGger:ADVanced:VIOLation:SETup:SETup:TIME
	:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce
	:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel
	:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:EDGE
	:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce
	:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:HTHReshold
	:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:LTHReshold
	:TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:HTHReshold
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:LTHReshold
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe (STIMe)
	:TRIGger:ADVanced:VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

	Advanced Transition Violation Trigger Commands
	:TRIGger:ADVanced:VIOLation:TRANsition
	:TRIGger:ADVanced:VIOLation:TRANsition:SOURce
	:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold
	:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold
	:TRIGger:ADVanced:VIOLation:TRANsition:TYPE

	Waveform Commands
	:WAVeform:BANDpass?
	:WAVeform:BYTeorder
	:WAVeform:COMPlete?
	:WAVeform:COUNt?
	:WAVeform:COUPling?
	:WAVeform:DATA?
	Figure 5 Streaming Off
	Figure 6 Streaming On
	Figure 7 Block Diagram of an ADC
	Figure 8 ADC Non-linearity Errors for a 3-bit ADC
	Figure 9 Data Flow in Infiniium

	:WAVeform:FORMat
	:WAVeform:POINts?
	:WAVeform:PREamble?
	:WAVeform:SEGMented:ALL
	:WAVeform:SEGMented:COUNt?
	:WAVeform:SEGMented:TTAG?
	:WAVeform:SEGMented:XLISt?
	:WAVeform:SOURce
	:WAVeform:STReaming
	:WAVeform:TYPE?
	:WAVeform:VIEW
	:WAVeform:XDISplay?
	:WAVeform:XINCrement?
	:WAVeform:XORigin?
	:WAVeform:XRANge?
	:WAVeform:XREFerence?
	:WAVeform:XUNits?
	:WAVeform:YDISplay?
	:WAVeform:YINCrement?
	:WAVeform:YORigin?
	:WAVeform:YRANge?
	:WAVeform:YREFerence?
	:WAVeform:YUNits?

	Waveform Memory Commands
	:WMEMory<N>:CLEar
	:WMEMory<N>:DISPlay
	:WMEMory<N>:LOAD
	:WMEMory<N>:SAVE
	:WMEMory<N>:TIETimebase
	:WMEMory<N>:XOFFset
	:WMEMory<N>:XRANge
	:WMEMory<N>:YOFFset
	:WMEMory<N>:YRANge

	Obsolete and Discontinued Commands
	:DISPlay:COLumn
	:DISPlay:LINE
	:DISPlay:ROW
	:DISPlay:STRing
	:DISPlay:TEXT
	:MEASure:CLOCk:METHod
	(deprecated)
	:MEASure:DDPWS

	Error Messages
	Error Queue
	Error Numbers
	Command Error
	Execution Error
	Device- or Oscilloscope-Specific Error
	Query Error
	List of Error Messages

	Sample Programs
	VISA COM Examples
	VISA COM Example in Visual Basic
	VISA COM Example in C#
	VISA COM Example in Visual Basic .NET
	VISA COM Example in Python

	VISA Examples
	VISA Example in C
	VISA Example in Visual Basic
	VISA Example in C#
	VISA Example in Visual Basic .NET
	VISA Example in Python

	SICL Examples
	SICL Example in C
	SICL Example in Visual Basic

	SCPI.NET Examples
	SCPI.NET Example in C#
	SCPI.NET Example in Visual Basic .NET
	SCPI.NET Example in IronPython

	Reference
	HDF5 Example
	CSV and TSV Header Format
	BIN Header Format
	File Header
	Waveform Header
	Waveform Data Header
	Example Program for Reading Binary Data

	Index

